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Abstract—In the lattice-based post-quantum crypto scheme 

Crystal-Kyber, efficient implementation of polynomial multipli-

cation is crucial to achieve high-performance system. This paper 

proposes an efficient multi-channel parallel polynomial 

multiplication accelerator designed to optimize the execution 

speed of polynomial multiplication. Specifically, it presents a 

novel butterfly computing unit that integrates 32 parallel 

butterfly units and employs a low-complexity Barrett modular 

reduction algorithm to reduce computational complexity. To 

further optimize performance, a cross-multiplexing architecture 

is utilized to construct the PWM hardware structure, effectively 

enhancing resource utilization and reducing computation cycles. 

In addition, during the butterfly processing unit stage, a 

dynamic data output mechanism is employed to simplify the 

RAM access control logic and improve memory access efficiency. 

Experimental results demonstrate that the proposed scheme 

completes NTT, INTT, and PWM operations in 58, 58, and 29 

clock cycles, respectively. Compared with other schemes, the 

total number of clock cycles is significantly reduced, which is 

valuable for implementing efficient lattice-based post-quantum 

cryptographic system. 

Index Terms—polynomial multiplication, Crystal-Kyber, 

butterfly operation, number theoretic transform, post-quantum 

cryptography 

I. INTRODUCTION 

HE rapid development of quantum computing technol-

ogy has presented unprecedented challenges to tradi-

tional public key cryptography systems. Quantum computers, 

employing the Shor algorithm [1], can efficiently solve com-

plex problems such as large integer factorization and discrete 

logarithm in polynomial time, thereby posing a significant se-

curity threat to existing encryption standards. In response to 

this challenge, NIST launched their PQC project in 2016 with 

a global call for proposals. The goal was to solicit, evaluate 

and standardize new cryptographic algorithms designed to be 

secure against the threat of quantum computing. Following 

six years of rigorous evaluation, on August 13, 2024, NIST 

officially standardized CRYSTALS-Kyber as FIPS 203 to 

enhance resilience against quantum computer attacks [2]. 
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Although the Kyber algorithm offers notable security 

advantages, its implementation requires a substantial number 

of complex polynomial multiplication operations, leading to 

considerable resource consumption in hardware applications 

[3], [4], [5]. Consequently, optimizing computing speed and 

resource utilization within constrained hardware environ-

ments has emerged as a critical issue. 

In recent years, extensive research has been conducted to 

optimize the implementation of the Kyber algorithm. Li [6] 

and Xing [7] utilize Barrett modular reduction to construct 

basic butterfly units, thereby enhancing the computational 

efficiency of these units. Bisheh-Niasar proposed a register-

free butterfly cell based on the K2-RED modular reduction 

algorithm and applied it to four parallel NTT running units, 

resulting in a high-speed design [8], [9]. Lü enhanced the K2-

RED algorithm and subsequently designed a new butterfly 

computing unit. This new computing unit not only supports 

Number Theoretical Transform (NTT) and its inverse (INTT) 

operations but also can efficiently handle Point-Wise 

Multiplication (PWM) operations [10]. In terms of storage 

optimization, Chen implemented a ping-pong structure to 

store polynomial coefficients and a pipeline architecture to 

reduce the resource consumption of butterfly computing units 

[11]. Yang shortened the computation cycle of critical opera-

tions by executing multiple butterfly units in parallel and 

enhanced memory access efficiency by optimizing multi-

RAM channel storage [12]. Li explored a memory access 

scheme suitable for parallel processing through data reuse 

and memory grouping techniques and proposed a reconfigu-

rable, high-speed, and area-efficient polynomial multiplica-

tion accelerator [13]. Dang designed a double butterfly 

structure to optimize the control circuit, reduce clock waiting 

times, and facilitate pointwise multiplication through inter-

leaved iterations of pipelines [14]. Li introduced a novel Split 

Radix DGT algorithm that employs the Split Radix technique 

to diminish computational complexity while preserving the 

transformation length of the DGT. This algorithm achieves a 

reduction in multiplication operations by a minimum of 10% 

compared to the most recent NTT algorithm for a polynomial 

length of 128. Additionally, a specialized flow replacement 

network was developed to minimize idle periods and enable 

full pipeline operation [15]. Ni proposed an optimized 

modular multiplication architecture that integrates K2-RED 

with lookup table algorithms [16]. Nguyen initially proposed 

a non-memory-based iterative NTT architecture, utilizing 

double butterfly cells for NTT/INTT and PWM operations, 

and designed configurable reordering cells capable of 

rearranging coefficients at each NTT/INTT stage [17]. 

The main contributions of our work can be summarized as 

follows:  

1) We propose an architecture to accelerate polynomial 

multiplication within the Kyber algorithm. This 

architecture employs 32 Butterfly Units (BU) and 
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schedules the butterfly operation modules with 

parallel pipelining, achieving dynamic scheduling 

during the execution of NTT, INTT, and PWM 

operations. 

2) We optimize PWM implementation by developing a 

runtime-reconfigurable core composed of four cross-

multiplexing basic BUs, optimizing time efficiency 

in terms of area-time performance for polynomial 

multiplication. 

3) Through the optimization of the scheduling mecha-

nism for the output cache of the data storage and 

processing unit, we realize compact control logic, 

thus reducing the occupation of additional resources. 

The remainder of this paper is organized as follows: 

Section II introduces the notations used in this paper, the 

Kyber public-key cryptography, and polynomial multiplica-

tion based on number-theoretic transforms. Section III 

presents our design, including the PWM architecture with 

multi-path parallel operations and the scheduling scheme 

under a constant structure. Section IV provides the 

implementation results and comparisons with state-of-the-art 

works. Finally, Section V concludes the paper. 

II. PRELIMINARIES 

Kyber is a lattice-based encryption algorithm whose 

security is based on the Module Learning with Errors (MLWE) 

problem. The Kyber public key encryption scheme, as shown 

in Figure 1, consists of three core algorithms: key generation, 

encryption, and decryption. 

In the key generation stage, first select matrix 𝐴̂  and 

private key 𝑠  from the uniform distribution and binomial 

distribution, respectively. Subsequently, the product of 𝐴̂ 

and ŝ  is calculated in the NTT domain, and noise 𝑒̂  is 

added to the result to generate the public key 𝑝𝑘, which is 

𝑝𝑘 = 𝐴̂ ∘ 𝑠̂ + 𝑒̂. 

The encryption process can be described as three steps: 1) 

Calculate 𝑣 = 𝑡̂𝑇 ∘ 𝑟̂ + 𝑒2 + 𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑚, 1) , where 

𝑚  represents the message, 𝑒2  represents the noise, 𝑡̂𝑇  is 

the transpose of the public key vector, and 𝑟̂ is the value on 

the NTT field generated through binomial distribution; 2) 

Calculate 𝑢 = 𝐴̂𝑇 ∘ 𝑟̂ + 𝑒1, where at is the transpose of 𝐴̂𝑇 

in the key generation stage, and 𝑒1  is the noise vector; 3) 

Compress 𝑢 and 𝑣 to generate ciphertext ct. Namely 𝑐𝑡 =
(𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑢, 𝑑𝑢) || 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑣, 𝑑𝑣)). 

The decryption process calculates the product of the 

private key 𝑠̂ and the matrix 𝑢 to recover the approximate 

value of the vector 𝑣, and then decrypts the original message, 

that is, 𝑚 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑣 − ŝ𝑇𝑢, 1). 

 
Fig. 1.  Kyber Public Key Encryption Structure 

In Kyber's encryption process, operations on polynomial 

rings are the core. This polynomial ring is defined as 𝑅𝑞 =

ℤ𝑞[𝑥]/(𝑥𝑛 + 1) , where ℤ𝑞  The integer ring representing 

modulus 𝑞 , 𝑥𝑛 + 1  is an irreducible polynomial. Under 

these conditions, the coefficients of the polynomial are 

limited to the range of modulus 𝑞, which means that addition 

and subtraction operations are relatively simple, but 

multiplication rules are more complex. Matrix encryption and 

homomorphic operations rely on efficient multiplication over 

polynomial rings [18]. To optimize the efficiency of 

polynomial multiplication, Kyber typically employs poly-

nomial multiplication operations based on NTT. 

Polynomial multiplication based on NTT mainly includes 

three types of operations: the NTT operation that maps 

polynomial coefficients to the NTT domain, the point wise 

multiplication operation PWM, and the inverse NTT 

operation INTT on the elements in the NTT domain. The 

main advantage of NTT based polynomial multiplication is 

that it can reduce the complexity of polynomial multiplication 

from direct convolution calculation to more efficient 

coefficient point multiplication. For example, suppose a 256- 

degree polynomial 𝑓(𝑥) = 𝑓0 + 𝑓1𝑥 + ⋯ + 𝑓255𝑥255 , then 

the NTT transformation of 𝑓 can be expressed as (1): 

NTT(𝑓) = 𝑓 = 𝑓0 + 𝑓1𝛸 + ⋯ + 𝑓255𝑋255   (1) 

where 𝑓2𝑖 and 𝑓2𝑖+1 (𝑖 = 0, . . . ,127) are defined as, 

𝑓2𝑖 = ∑ 𝑓2𝑗𝜔(2𝑏𝑟7(𝑖)+1)𝑗127
𝑗=0            (2) 

𝑓2𝑖+1 = ∑ 𝑓2𝑗+1𝜔(2𝑏𝑟7(𝑖)+1)𝑗127
𝑗=0          (3) 

with 𝜔 is a primitive 256th root of unity and 𝑏𝑟7(𝑖)  is a 7-

bit bit reverse operation on i. 

PWM is the multiplication operation of ℤ3329[𝑥]/(𝑋2 −

𝜔(2𝑏𝑟7(𝑖)+1)) on the ring. Assuming PWM multiplication is 

denoted as ℎ̂ = (𝑓 ∘  𝑔̂), ℎ̂ can be calculated by (4). 

{
ℎ̂2𝑖 = 𝑓2𝑖 ∙ 𝑔̂2𝑖 + 𝑓2𝑖+1 ∙ 𝑔̂2𝑖+1 ∙ 𝜔(2𝑏𝑟7(𝑖)+1)

ℎ̂2𝑖+1 = 𝑔̂2𝑖 ∙ 𝑓2𝑖+1 + 𝑓2𝑖 ∙ 𝑔̂2𝑖+1                        
 (4) 

Compared to traditional multiplication, the multiplication 

method based on NTT transform reduces the operational 

complexity from 𝑂(𝑛2)  to 𝑂(𝑛 𝑙𝑜𝑔 𝑛) . This not only 

simplifies the process of polynomial multiplication but also 

improves the efficiency of the entire encryption algorithm. 

Algorithms 1 and 2 outline the specific processes of NTT and 

INTT as utilized in the Kyber algorithm. 

Algorithm 1: Forward Transform NTT 

Input：𝑓 = (𝑓0, 𝑓1, ⋯ , 𝑓𝑛−1), 𝜔, 𝑞; 

Output：𝑁𝑇𝑇(𝑓); 

1. for 𝑖 = 𝑙𝑜𝑔2 𝑛 downto 1 do 

2.   𝑚 ← 2𝑖 , 𝑟 ← 0 

3.   for 𝑘 = 0 to 𝑛 − 1 by m do 

4.     𝜔 ← 𝑅𝑂𝑀[𝑟 + 𝑏𝑟7(𝑚/2)] 
5.     for 𝑗 = 0 to 𝑚/2 − 1 do 

6.       𝑢 ← 𝑓𝑗+𝑘;            𝑡 ← 𝜔 ∙ 𝑓𝑗+𝑘+𝑚/2 

7.       𝑓𝑗+𝑘 ← 𝑢 + 𝑡;   𝑓𝑗+𝑘+𝑚/2 ← 𝑢 − 𝑡 

8.     end for 

9.     𝑟 ← 𝑟 + 1 

10.   end for 

11. end for  

12. Return NTT(𝑓). 
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Algorithm 2: Inverse transformation INTT 

Input：𝑓 = (𝑓0, 𝑓1, ⋯ , 𝑓𝑛−1), 𝜔−1, 𝑞; 

Output：𝐼𝑁𝑇𝑇(𝑓); 

1. for 𝑖 = 1 to 𝑙𝑜𝑔2 𝑛  do 

2.   𝑚 ← 2𝑖 , 𝑟 ← 0 

3.   for 𝑘 = 0 to 𝑛 − 1 by m do 

4.     𝜔 ← 𝑅𝑂𝑀[𝑟 + 𝑏𝑟7(𝑚/2)] 
5.     for 𝑗 = 0 to 𝑚/2 − 1 do 

6.       𝑢 ← (𝑓𝑗+𝑘 + 𝑓𝑗+𝑘+𝑚/2)/2; 

       𝑡 ← (𝑓𝑗+𝑘 − 𝑓𝑗+𝑘+𝑚/2)/2 

7.       𝑓𝑗+𝑘 ←  𝑢;   𝑓𝑗+𝑘+𝑚/2 ← 𝜔 ∙ 𝑡 

8.     end for 

9.     𝑟 ← 𝑟 + 1 

10.   end for 

11. end for  

12. Return INTT(𝑓). 

III. POLYNOMIAL MULTIPLICATION UNIT BASED ON 

MULTI-CHANNEL PARALLEL NTT 

IMPLEMENTATION 

A. Overall Architecture 

 
Fig. 2.  Polynomial Multiplication Unit Based On NTT 

The polynomial multiplication unit, based on the multi-

channel parallel NTT implementation presented in this article, 

is illustrated in Figure 2. It comprises a butterfly operation 

processing module, an address generator, memory, and a 

control unit. The butterfly operation unit serves as the core 

component, significantly enhancing data processing speed. 

Within this structure, the butterfly operation processing 

module contains 32 BUs, specifically designed for the 

parallel processing of high-complexity computational tasks, 

which integrate NTT, INTT, and PWM modules. The Buffer 

module is intended to store polynomial coefficients and cache 

intermediate results throughout the iteration process. 

Furthermore, the pre-calculated value of ω is stored in the 

ROM module, which allows rapid retrieval and output to the 

butterfly operation module during calculations. The control 

unit oversees the input and output operations of the butterfly 

operation processing module and ensures that data read from 

RAM in each clock cycle is accurately directed to this module, 

synchronized with the twiddle factor obtained from ROM. 

Concurrently, state variables and state machine control are 

utilized to generate mapping addresses, update data 

transmission statuses, and guarantee the coordinated 

operation of the overall structure. In summary, the poly-

nomial multiplication architecture employs a loosely coupled 

structural design, enabling flexible execution of NTT, INTT, 

and PWM operations according to varying parameter 

configurations, thereby facilitating efficient polynomial 

multiplication calculations. 

B. Butterfly Unit 

As illustrated in Figure 2, the butterfly operation 

processing module comprises 32 independent BUs. Each BU, 

as shown in Figure 3, consists of a modular addition module, 

a modular subtraction module, multiple cache registers, a 

DSP multiplier, and a module reduction unit, which are 

utilized to perform NTT, INTT, and PWM transformations. 

𝑓𝑜𝑟𝑤𝑎𝑟𝑑  NTT ∶    𝑈 = (𝑢 + 𝑡𝜔) 𝑚𝑜𝑑 𝑞;  

𝑇 = (𝑢 − 𝑡𝜔) 𝑚𝑜𝑑 𝑞      (5) 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒  NTT ∶    𝑈 =  (𝑢 + 𝑡) 𝑚𝑜𝑑  𝑞;  

𝑇 = (𝑢 − 𝑡)𝜔 𝑚𝑜𝑑 𝑞      (6) 

NTT transformation and INTT transformation are illustrated 

in (5) and (6). 

In the forward NTT pipeline operation, the modular 

multiplication is initially executed over four clock cycles (as 

illustrated in the shaded part of Figure 3), followed by the 

modular addition and subtraction operation, which requires 

one clock cycle. The sequence of operations for INTT is 

reversed; it begins with the modular addition and subtraction 

module, followed by the modular multiplication operation. To 

facilitate synchronous data transfer between modules, several 

cache registers are implemented. Specifically, in both NTT 

and INTT, the outputs U and T necessitate five clock cycles. 

In the PWM algorithm, due to the collaboration of multiple 

modular multiplications, the results of the intermediate 

modular multiplications are directly output to M for buffering 

over four clock cycles. Figure 4 illustrates each phase of the 

single BU pipeline. 

 
Fig. 3.  Single BU Structure 

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

 
______________________________________________________________________________________ 



 

 

 
Fig. 4.  BU Pipeline 

In the BU, the input ports u and t receive 12-bit coefficients, 

while the twiddle port synchronously acquires the twiddle 

factor (𝜔) from the ROM. Based on the mode signal, data 

flows along a designated path to execute the corresponding 

function, with the processed data ultimately being output 

through the U and T/M ports. The mode signal is configured 

to 00, 01, and 10, which correspond to the single BU mode 

configurations in NTT, INTT, and PWM operations, 

respectively. We utilize the DSP multiplier of the FPGA chip 

to carry out 12×12 bits multiplication and apply the low-

complexity Barrett algorithm to reduce the multiplication 

result to the NTT domain, as elaborated below. 

24-bit low-complexity Barrett modular reduction 

In the realization of polynomial multiplication, modular 

reduction operation (handled by REDUCE module in Figure 

3) is the most time-consuming operation. To optimize this 

operation, the following low-complexity, high-efficiency 

Barrett modular reduction algorithm is adopted in this paper. 

In the Kyber algorithm, since the modulus q of NTT 

satisfies the specific form 𝑞 = 𝑘 × 2𝑚 + 1, where k = 13 and 

m = 8, the 24-bit result of the multiplication operation in the 

shaded part of Figure 3 can be represented as 𝑐 = 𝑐1 ⋅ 28 +
𝑐0 , where 𝑐0 = 𝑐[7: 0]  represents the lower 8 bits of 𝑐 , 

𝑐1 = 𝑐[23: 8] represents the upper 16 bits. 𝑐 𝑚𝑜𝑑 𝑞  can be 

converted into (7): 

𝑐 𝑚𝑜𝑑 𝑞 = (𝑐1 ⋅ 2𝑚 + 𝑐0) 𝑚𝑜𝑑 𝑞 

      ≡ (𝑐1 ⋅ 2𝑚 𝑚𝑜𝑑 (𝑞 − 1) − ⌊
𝑐1⋅2𝑚

𝑞−1
⌋ + 𝑐0)  𝑚𝑜𝑑 𝑞 

       ≡ ((𝑐1 ⋅ 2𝑚 𝑚𝑜𝑑 (𝑘 ⋅ 2𝑚)) − ⌊
𝑐1⋅2𝑚

𝑞−1
⌋ + 𝑐0) 𝑚𝑜𝑑𝑞 

       =   (𝑟1 ⋅ 2𝑚 − 𝒬1 + 𝑐0 )𝑚𝑜𝑑 𝑞              (7) 

where 𝒬1 = ⌊𝑐1/𝑘⌋ , 𝑟1 = 𝑐1 𝑚𝑜𝑑 𝑘 . This transformation 

converts the modulo q operation into a modulo k operation. 

Because k is much smaller than q, the computational 

complexity is significantly reduced. 

In order to minimize the complexity of hardware 

implementation, we further simplified the calculation of 𝒬1 

and 𝑟1.  

From equation (7), 𝑟1 is the remainder of 𝑐1 divided by 

k, and 𝒬1  is the quotient. 𝒬1  and 𝑟1 can be respectively 

rewritten as: 

𝒬1 = ⌊
𝑐1⋅(216/13)

216 ⌋,        𝑟1 = 𝑐1  −  𝒬1 ⋅13. 

This can be further simplified using the fact that as 

13 =  23  +  22  +  1  and 216  13⁄  =  (2−3  +  2−5) (1 −
2−6) 215. By this conversion, 𝒬1 and 𝑟1 can be computed 

using addition, subtraction, and shift operations, thereby 

minimizing hardware complexity to the greatest extent 

possible. The specific low-complexity Barrett modular 

reduction process is detailed in Algorithm 3 as follows.  
Figure 5 shows an illustration of the modular reduction 

structure. In this structure, we utilize fast carry logic element 

CARRY4 to implement multi-bit addition and subtraction. In 

this implementation, multiple LUT6 units are employed to 

handle multi-bit XOR operations, multiple CARRY4 units is 

used to generate look-ahead multiple parallel carry signals 

which effectively avoids the delay caused by cascading in 

traditional carry chains. 

 
Fig. 5.  Modular Reduction Structure 
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Algorithm 3: Low-Complexity Barrett Modular Reduction 

Input   : 𝑐 = 𝑎 ⋅ 𝑏 ∈ [0: 224); 
Output  ∶ 𝑟 ≡ 𝑐 𝑚𝑜𝑑 3329; 
1. 𝑐1 ← 𝑐[23: 8], 𝑐0 ← 𝑐[7: 0]; 
2. 𝑑1 ← 𝑐1 ≫ 3 + 𝑐1 ≫ 5; 
3. 𝑑2 ← 𝑑1 − 𝑑1 ≫ 6; 
4. 𝒬1 ← 𝑑2 ≫ 1; 
5. 𝑠1 ← 𝑐1[5: 0] − 𝒬1[2: 0] ≪ 3; 
6. 𝑠2 ← 𝒬1[3: 0] ≪ 2 + 𝒬1[5: 0]; 
7. 𝑟1 ← 𝑠1[5: 0] − 𝑠2[5: 0]; 
8. 𝑅 ← 𝑟1 ≪ 8 + 𝑐0 − 𝒬1; 
9. 𝑟 = 𝑚𝑜𝑑(𝑅, 3329);  mod ensures that r is smaller than 3329 

10. Return 𝑟 ∈ ℤ3329. 

Modular addition/subtraction and 𝑥/2 modular 

multiplication combined module 

In a single BU, the modular addition and modular 

subtraction operations are used to perform the addition and 

subtraction of two 12-bit input data. To ensure the temporal 

synchronization of the two data streams, the modular addition 

and modular subtraction operations are designed as two 

independent modules. Additionally, the 𝑥/2  operation is 

introduced as an additional step during the execution of 

Algorithm 2. To avoid module redundancy, the 𝑥/2 

operation is embedded within the modular addition and 

subtraction modules, and a modular compensation strategy is 

employed for its design. 

 
(a) Modular addition and 𝑥/2 𝑚𝑜𝑑 𝑞 

 
(b) Modular subtraction and 𝑥/2 𝑚𝑜𝑑 𝑞 

Fig. 6.  Modular Addition/Subtraction and 𝑥/2 𝑚𝑜𝑑 𝑞 Combination 

Module 

Figure 6(a) illustrates the structure of the combined module 

for modular addition and 𝑥/2 modular multiplication. The 

left part of Figure 6 is used to calculate modular addition, the 

shaded part is responsible for executing the 𝑥/2 𝑚𝑜𝑑 𝑞 

operation, the right multiplexer is used to choose the final 

output c according to working mode. Note that, the 

𝑥/2 𝑚𝑜𝑑 𝑞 is needed only during INTT in the BUs when in 

mode signal 01. In this paper, this operation is implemented 

based on (8). 

𝑥/2  𝑚𝑜𝑑 𝑞 = (𝑥 ≫ 1) + 𝑥[0] ⋅ (
𝑞+1

2
)      (8) 

As shown Figure 6,when the least significant bit of x, 𝑥[0], 
is 0, the result of 𝑥/2 𝑚𝑜𝑑 𝑞 can be derived by shifting x to 

the right by one bit. Conversely, when 𝑥[0] is 1, an addition 

operation must be conducted based on the shifted result. 

Because q is a fixed constant, the 𝑥[0] ⋅ [(𝑞 + 1) 2⁄ ] in (8) 

can be efficiently executed using this method, thereby 

avoiding complex multiplication and modular operations. 

Using a similar approach, we design the modular 

subtraction module as shown in Figure 6(b). The details are 

similar to those of the modular addition and will not be 

repeated here. 

C. Optimization of PWM Scheduling 

In Kyber algorithm implementation, PWM module is used 

to calculate ℎ̂  in (4). To optimize the implementation of 

PWM module, Xing [7] converted (4) into (9) applying 

factorization techniques, reducing the number of 

multiplication operations from 5 to 4, which significantly 

decreases DSP resource consumption and enhancing 

computational efficiency. 

{
ℎ̂2𝑖 = 𝑓̂2𝑖 ∙ 𝑔2𝑖 + 𝑓̂2𝑖+1 ∙ 𝑔2𝑖+1 ∙ 𝜔(2𝑏𝑟7(𝑖)+1)

ℎ̂2𝑖+1 = (𝑓̂2𝑖+1 + 𝑓̂2𝑖)(𝑔̂2𝑖 + 𝑔2𝑖+1) − (𝑓̂2𝑖 ∙ 𝑔2𝑖 + 𝑓̂2𝑖+1 ∙ 𝑔2𝑖+1)
  (9) 

Building upon (9), this paper presents a novel PWM 

hardware architecture, as illustrated in Figure 7. This 

architecture reconfigures the original 32 BUs into 8 sets of 

binomial multiplication units, each of which is referred as a 

“Core”, as illustrated within the dashed box in Figure 7. Each 

Core comprises 4 BUs, with each unit configured to operate 

in mode 10. To enhance resource utilization and 

computational efficiency, a cross-multiplexing mechanism is 

employed to control and coordinate the operations among the 

various BUs in each Core. Additionally, we introduce 

modular addition/subtraction modules and cache registers 

that collaborate with the BUs to execute multiplication 

operations on a set of polynomial coefficients. 

The computation process in a Core is divided into three 

stages: Stage 0, Stage 1, and Stage 2. The operations 

performed at each stage are as follows: 

Stage 0：𝑀1 = 𝑓2𝑖 ∙ 𝑔̂2𝑖, 𝑀2 = 𝑓2𝑖+1 ∙ 𝑔̂2𝑖+1, 

𝑎0  = 𝑓2𝑖+1 + 𝑓2𝑖 , 𝑎1 = 𝑔̂2𝑖 + 𝑔̂2𝑖+1; 

Stage 1：𝑎2  = 𝑀1 + 𝑀2, 𝑀3 = 𝑀2 ∙ 𝜔𝑟𝑒𝑣𝑙𝑜𝑔 𝑛−1(2𝑖+1), 

𝑀0 = 𝑎0 ∙ 𝑎1; 

Stage 2：ℎ̂2𝑖 = 𝑀1 + 𝑀3, ℎ̂2𝑖+1 = 𝑎2 − 𝑀0. 

Note that the operations in the BU require four clock cycles 

to complete, while the modular addition operation only 

requires two clock cycles, therefore, 2-level registers need to 

be added after modular addition for synchronization. 

In addition, in our implementation, a dual-clock preload 

cache mechanism is employed for the preprocessing of input 

data, which takes two clock cycles. Subsequently, the loaded 

data is divided into four groups and fed sequentially into eight 

Cores over the course of four clock cycles. These eight Cores 

then process date in pipeline. Finally, the PWM module takes 

a total of 29 clock cycles to complete the entire operation. 

Compared to the 56 clock cycles reported in the current 

optimal literature [13], our approach achieves a 48% 

reduction in clock count, thereby significantly enhancing data 

processing speed. 
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Fig. 7.  PWM Module 

D. Storage Solutions 

In Kyber's NTT/INTT algorithm, a degree-256 polynomial 

is decomposed into two degree-128 polynomials for 

independent operations, requiring seven rounds of butterfly 

operations. Since distinct polynomial coefficients are needed 

in each round, the strategies for storing and controlling 

coefficient read-write operations significantly impact the 

algorithm's overall performance. For instance, in an 8-point 

NTT operation shown in Figure 8, the accessed coefficient 

pairs differ in each round. In the first round, the pairs are (0,4), 

(2,6), (1,5), and (3,7). In the second round, they are (0,2), 

(4,6), (1,3), and (5,7). Finally, in the third round, the pairs are 

(0,1), (4,5), (2,3), and (6,7). To implement the NTT operation, 

effective storage and control strategies must be designed to 

ensure accurate data read/write operations, with processed 

data stored at specific locations for correct and efficient 

retrieval in subsequent rounds. A single buffer is insufficient 

due to risks of data overwriting. 

 
Fig. 8.  8-point NTT Butterfly Operation 

To address the limitation of single buffer, we adopt a 

double buffer mechanism in the output stage of the butterfly 

computing unit. Specifically, the first buffer stores data 

processed in the previous clock cycle. In the subsequent cycle, 

this data is transferred to the second buffers while the second 

Algorithm 4: RAM Read Address  

Input ：stage, mode, cycle_counter (clct); 

Output：raddr; 

1. WHEN ( mode = NTT ) Begin 

2. while ( clct = (stage << 3) || ( stage << 3 + 1)  

|| (stage << 3+ 2) || (stage << 3 + 3) ) 

3.   raddr = (stage = 0) ? 

(clct [1] +( clct [0] ? 2 : 0)) : clct [1:0]; 

4. End 

5. WHEN ( mode = INTT ) Begin 

6. while( clct = (stage << 3) || (stage << 3 + 1)  

||(stage << 3+ 2) || (stage << 3 + 3) ) 

7.   raddr = (stage = 5) ? 

(clct [1]+( clct [0] ? 2: 0)) : clct [1:0]; 

8. End 

9. Return raddr; 

 

Algorithm 5: RAM Write Address  

Input ：stage, mode, raddr, cycle_counter (clct); 

Output：waddr; 

1. waddr_shift_reg[5:0] <= 0; 

2. waddr_shift_reg[0] <= raddr; 

3. FOR ( i = 1; i < 6; i = i + 1) 

4.   waddr_shift_reg[i] <= waddr_shift_reg[i-1]; 

5. WHEN ( mode = NTT || INTT ) Begin 

6. IF ( stage = 0 ) 

7.   while ( clct == 6 || clct == 7) 

8.     waddr = waddr_shift_reg[5]; 

9. ELSE IF 

10.   while ( clct = (6 + stage << 3) || (7 + stage << 3) 

||(stage << 3) || (stage << 3+ 1 )|| 56 || 57) 

11.     waddr = waddr_shift_reg[5]; 

12. End 

13. Return waddr; 

buffers simultaneously receives new data from the current 

cycle’s processing. This dual-buffering mechanism allows 

data from two consecutive clock cycles to be output 
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synchronously, ensuring an uninterrupted data stream, 

eliminating the inherent data overwriting problem of single 

buffer, and ensuring that the output results maintain the 

correct coefficient order for subsequent read operations. 

This mode facilitates a flexible transformation between 

output and temporary data at the output port, controlled by 

state variables, thereby ensuring that the output results 

conform to the required coefficient arrangement order for the 

following reading operation. 

Furthermore, to maintain the accuracy of read and write 

addresses at each stage, we propose an address generation 

method based on the value of the current computational stage 

and cycle counter. The detailed process for generating read 

and write addresses using this method is outlined in 

Algorithm 4 and Algorithm 5. 

In the address generation process, during the read address 

generation phase, the read address is determined based on the 

specific number of bits of the cycle counter value. The output 

state of the read and write address is controlled by the stage 

and counter signal. Given that the addresses corresponding to 

read and write operations exhibit consistency within the same 

stage, the address generator employs a shift register-based 

caching strategy to temporarily store the generated read 

address information. After the data is read, there are five 

delay cycles required to implement the butterfly operation. 

Once the butterfly operation is completed, the address value 

cached in the shift register will be officially passed to the 

write address terminal to ensure accurate data addressing 

during storage and operation. Figure 9 shows the RAM 

read/write control mechanism during the NTT phase as an 

example to elucidate this process. 

 
Fig. 9.  NTT's RAM Read Write Control 

While reading and writing polynomial coefficients, we 

consolidate the twiddle factors to enhance parallel processing 

efficiency. The power term of 𝜔𝑘  makes up the twiddle 

factor. These values are typically precalculated and stored to 

increase computational performance. 

For 0 ≤ 𝑘 ≤ (𝑛/2) − 1 and 𝑛 = 256, the twiddle factor 

for NTT and INTT are 𝜔𝑘 and 𝜔−𝑘 respectively. Since the 

multiplication group created by 𝜔𝑘  is symmetric in group 

theory, 𝜔−𝑘  can be represented by 𝜔𝑘 . Given 𝜔𝑛/2 ≡

 −1 (𝑚𝑜𝑑 𝑞), we have 𝜔−𝑘 =  −𝜔(𝑛/2)−𝑘.  

Figure 10 shows the twiddle factors required in different 

stages of NTT computation. In this figure, a rectangle block 

represents a twiddle factor and the number on the left side in, 

while the number on the right side is the hexadecimal 

representation of the twiddle factor. The stage numbers on the 

left denote the twiddle factors utilized in the respective NTT 

period. The number in the upper right corner of each cube 

indicates its depth, which represents the number of twiddle 

factors needed for one clock cycle during single stage. 

Various block styles denote the quantity of BUs that a 

singular twiddle factor needs to encompass within a single 

clock cycle. As shown in the figure, different stages need 

different numbers of twiddle factors. For example, during 

stage 0, only one twiddle factor 64:6C1 is needed and it will 

be loaded into 32 BUs and reused cyclically over 4 clock 

cycles in the operation at this stage. During stage 5, 32 

distinct twiddle factors are needed. Each clock cycle requires 

the retrieval of eight distinct twiddle factors, with each factor 

encompassing four BUs. 

 
Fig. 10.  Example of twiddle factor grouping 

Ⅳ. Experimental Results and Analysis 

To validate the optimization scheme proposed in this 

article, we implemented the design on the Artix-7 FPGA 

platform using the Xilinx Vivado 2018.3 software suite. To 

ensure consistency in area assessment, we employed Slice 

Equivalent Cost (SEC) as a metric. According to [13] and [19], 

a DSP48E1 and a 36-KB BRAM are equivalent to 102.4 and 

196.2 SLICE, respectively. The area is expressed as SECs = 

BRAM × 200 + DSPs × 100 + SLICE, where SLICE is 

defined as SLICE = LUTs × 0.25 + FFs × 0.125. The Area 

Time Product (ATP) objectively reflects the relationship 

between resource consumption and algorithm performance, 

with lower values indicating a better balance between the two 

under constrained conditions. The specific ATP is expressed 

as ATP = Area(SECs) × Time(PLMult), which includes 2 

NTT, 1 INTT, and 1 PWM. 

The resource usage of different polynomial multiplication 

modules is shown in Table Ⅰ. The control unit uses a serial 

execution mode, whereas the NTT unit and one BU use a 

pipelined implementation. Both ROM storage and multi-

channel buffer RAM use a parallel implementation. 

A single BU necessitates multiplication, modular addition, 

and modular subtraction operations (as specified in Table I), 

leading to substantial resource consumption. The NTT unit 

exhibits higher overall resource usage due to its multi-BU 

cooperative architecture for polynomial multiplication. 

Conversely, the control unit consumes minimal resources 

under low-complexity control schemes, as its primary 

functions are generating counters, addresses, and control 

signals. 
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TABLE I  

MODULE RESOURCE CONSUMPTION 

Module LUTs FFs DSPs 

NTT Unit 9711 7112 32 

Single BU 224 114 1 

Control Unit 54 21 0 

ROM 524 0 0 

Buffer(RAM) 772 3840 0 

Table II presents the implementation results of the NTT 

accelerator based on the Kyber algorithm, alongside a 

comparison with state-of-the-art polynomial multiplication 

accelerators. Experimental results demonstrate that the 

proposed NTT core accelerator outperforms existing 

implementations in polynomial multiplication (PLMult), 

achieving at least 32.3% fewer clock cycles and 40.3% 

shorter execution time. This yields the shortest PLMult clock 

cycles among all schemes, exhibiting significant advantages 

in overall runtime performance. 

In contrast to Scheme [6], a 32-channel multi-channel BU 

architecture is proposed for concurrent data processing, with 

enhanced the PWM processing flow via a cross-multiplexing 

structure. The improved PWM operation can be executed in 

29 clock cycles, significantly reducing clock cycle usage 

relative to traditional techniques. Although the clock cycle 

counts for individual NTT and INTT operations in our design 

are marginally more than those documented in [6], the latter 

necessitates supplementary clock cycles for PWM operations, 

resulting in an extended overall execution duration. The 

operational duration of this study has been significantly 

diminished by 60.2%, and ATP has been reduced by 63.5% 

relative to the findings in [6]. In comparison to Scheme [16], 

which demonstrates the highest overall efficiency, this study 

attains a moderate increase in ATP while incurring a 

significant decrease in operation time. Compared to Scheme 

[17], which demonstrates minimal resource consumption, the 

proposed design increases resource usage but reduces latency 

by 90.3% and improves ATP by 35.8%, achieving a 

synergistic enhancement in speed and comprehensive 

performance.  

This work demonstrates significant enhancements in two 

key metrics: ATP and operational time, as illustrated in Figure 

11. This improvement incurs a higher resource consumption 

cost. Among all the evaluated schemes, the operational time 

was reduced to its minimum, achieving a speed that was 40.4% 

faster than the suboptimal design [13]. Parallel computing 

and pipeline optimization techniques ensure that ATP 

performance surpasses most comparable schemes, such as [6], 

[13], and [14]. 

In summary, the proposed solution significantly enhances 

the computational efficiency of PLMult, achieving a 

reduction in computation time of at least 40.3% and a 24% 

decrease in the time required for a single NTT operation 

compared to the previously fastest solution. By maintaining a 

high operating frequency, this scheme effectively utilizes 

resources to attain optimal Time values in the comprehensive 

evaluation. 

 

Fig. 11.  Comprehensive performance comparison 

Ⅴ. CONCLUSION 

With the advent of the quantum computing era, lattice-

based cryptography has garnered significant attention due to 

its potential for post-quantum security. This article optimizes 

butterfly operations by employing a cross-multiplexing 

architecture and integrates pipeline technology to achieve an 

efficient design of BUs at the hardware level. Furthermore, 

the operations of NTT, INTT, and PWM have been 

accelerated through a 32-channel parallel processing 

mechanism. The implementation technique proposed in this 

research provides significant benefits in improving 

processing speed and possesses tremendous applicability in 

postquantum cryptography. 

TABLE II  

COMPREHENSIVE COMPARISON BETWEEN THE IMPLEMENTATION RESULTS OF NTT AND PREVIOUS WORK 

Work 
Freq 

[MHz] 
LUTs FFs BRAMs DSPs SECs 

Latency(cc) and Time(μs) 
ATP 

NTT INTT PWM PLMult 

[6] 175 8428 3979 11 32 8003 44/0.25 49/0.28 163/0.93 300/1.71 13685 

[7] 161 1579 1058 3 2 1327 512/3.18 576/3.58 256/1.59 1856/11.53 15300 

[9] 115 737 290 4 6 1621 474/4.12 602/5.23 1289/11.21 2839/24.68 40006 

[13] 273 4619 4166 8 16 4875 84/0.31 84/0.31 56/0.21 308/1.14 5558 

[14] 229 880 999 1.5 2 845 448/1.96 448/1.96 256/1.12 1600/7.00 5915 

[16] 300 1154 1031 0 2 617 456/1.52 456/1.52 265/0.88 1633/5.44 3356 

[17] 227 1005 559 0 2 522 448/1.97 448/1.97 256/1.13 1640/7.04 3675 

This work 303 11061 10973 0 32 7337 58/0.19 58/0.19 29/0.09 203/0.68 4989 
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