

Optimized Implementation of Multi-channel

Parallel Polynomial Multipliers for Crystal-Kyber

Yihao Zhang, Xiaoting Hu, Hanpeng Zhu, Zelong Dai

Abstract—In the lattice-based post-quantum crypto scheme

Crystal-Kyber, efficient implementation of polynomial multipli-

cation is crucial to achieve high-performance system. This paper

proposes an efficient multi-channel parallel polynomial

multiplication accelerator designed to optimize the execution

speed of polynomial multiplication. Specifically, it presents a

novel butterfly computing unit that integrates 32 parallel

butterfly units and employs a low-complexity Barrett modular

reduction algorithm to reduce computational complexity. To

further optimize performance, a cross-multiplexing architecture

is utilized to construct the PWM hardware structure, effectively

enhancing resource utilization and reducing computation cycles.

In addition, during the butterfly processing unit stage, a

dynamic data output mechanism is employed to simplify the

RAM access control logic and improve memory access efficiency.

Experimental results demonstrate that the proposed scheme

completes NTT, INTT, and PWM operations in 58, 58, and 29

clock cycles, respectively. Compared with other schemes, the

total number of clock cycles is significantly reduced, which is

valuable for implementing efficient lattice-based post-quantum

cryptographic system.

Index Terms—polynomial multiplication, Crystal-Kyber,

butterfly operation, number theoretic transform, post-quantum

cryptography

I. INTRODUCTION

HE rapid development of quantum computing technol-

ogy has presented unprecedented challenges to tradi-

tional public key cryptography systems. Quantum computers,

employing the Shor algorithm [1], can efficiently solve com-

plex problems such as large integer factorization and discrete

logarithm in polynomial time, thereby posing a significant se-

curity threat to existing encryption standards. In response to

this challenge, NIST launched their PQC project in 2016 with

a global call for proposals. The goal was to solicit, evaluate

and standardize new cryptographic algorithms designed to be

secure against the threat of quantum computing. Following

six years of rigorous evaluation, on August 13, 2024, NIST

officially standardized CRYSTALS-Kyber as FIPS 203 to

enhance resilience against quantum computer attacks [2].

Manuscript received March 21, 2025; revised August 16, 2025.

This work was supported by the Doctoral Fund Project of Jiangsu Normal
University of China under Grant 20XSRX014.

Yihao Zhang is a postgraduate student of the College of Computer Science

and Technology, Jiangsu Normal University, Xuzhou 221000, China (e-mail:
zyh20230601@jsnu.edu.cn).

Xiaoting Hu is a lecturer of the College of Computer Science and Tech-

nology, Jiangsu Normal University, Xuzhou 221000, China (corresponding
author. e-mail: hxt@jsnu.edu.cn).

Hanpeng Zhu is a postgraduate student of the College of Computer
Science and Technology, Jiangsu Normal University, Xuzhou 221000, China

(e-mail: 2020230596@jsnu.edu.cn).

Zelong Dai is a postgraduate student of the College of Computer Science
and Technology, Jiangsu Normal University, Xuzhou 221000, China (e-mail:

2020220553@jsnu.edu.cn).

Although the Kyber algorithm offers notable security

advantages, its implementation requires a substantial number

of complex polynomial multiplication operations, leading to

considerable resource consumption in hardware applications

[3], [4], [5]. Consequently, optimizing computing speed and

resource utilization within constrained hardware environ-

ments has emerged as a critical issue.

In recent years, extensive research has been conducted to

optimize the implementation of the Kyber algorithm. Li [6]

and Xing [7] utilize Barrett modular reduction to construct

basic butterfly units, thereby enhancing the computational

efficiency of these units. Bisheh-Niasar proposed a register-

free butterfly cell based on the K2-RED modular reduction

algorithm and applied it to four parallel NTT running units,

resulting in a high-speed design [8], [9]. Lü enhanced the K2-

RED algorithm and subsequently designed a new butterfly

computing unit. This new computing unit not only supports

Number Theoretical Transform (NTT) and its inverse (INTT)

operations but also can efficiently handle Point-Wise

Multiplication (PWM) operations [10]. In terms of storage

optimization, Chen implemented a ping-pong structure to

store polynomial coefficients and a pipeline architecture to

reduce the resource consumption of butterfly computing units

[11]. Yang shortened the computation cycle of critical opera-

tions by executing multiple butterfly units in parallel and

enhanced memory access efficiency by optimizing multi-

RAM channel storage [12]. Li explored a memory access

scheme suitable for parallel processing through data reuse

and memory grouping techniques and proposed a reconfigu-

rable, high-speed, and area-efficient polynomial multiplica-

tion accelerator [13]. Dang designed a double butterfly

structure to optimize the control circuit, reduce clock waiting

times, and facilitate pointwise multiplication through inter-

leaved iterations of pipelines [14]. Li introduced a novel Split

Radix DGT algorithm that employs the Split Radix technique

to diminish computational complexity while preserving the

transformation length of the DGT. This algorithm achieves a

reduction in multiplication operations by a minimum of 10%

compared to the most recent NTT algorithm for a polynomial

length of 128. Additionally, a specialized flow replacement

network was developed to minimize idle periods and enable

full pipeline operation [15]. Ni proposed an optimized

modular multiplication architecture that integrates K2-RED

with lookup table algorithms [16]. Nguyen initially proposed

a non-memory-based iterative NTT architecture, utilizing

double butterfly cells for NTT/INTT and PWM operations,

and designed configurable reordering cells capable of

rearranging coefficients at each NTT/INTT stage [17].

The main contributions of our work can be summarized as

follows:

1) We propose an architecture to accelerate polynomial

multiplication within the Kyber algorithm. This

architecture employs 32 Butterfly Units (BU) and

T

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

schedules the butterfly operation modules with

parallel pipelining, achieving dynamic scheduling

during the execution of NTT, INTT, and PWM

operations.

2) We optimize PWM implementation by developing a

runtime-reconfigurable core composed of four cross-

multiplexing basic BUs, optimizing time efficiency

in terms of area-time performance for polynomial

multiplication.

3) Through the optimization of the scheduling mecha-

nism for the output cache of the data storage and

processing unit, we realize compact control logic,

thus reducing the occupation of additional resources.

The remainder of this paper is organized as follows:

Section II introduces the notations used in this paper, the

Kyber public-key cryptography, and polynomial multiplica-

tion based on number-theoretic transforms. Section III

presents our design, including the PWM architecture with

multi-path parallel operations and the scheduling scheme

under a constant structure. Section IV provides the

implementation results and comparisons with state-of-the-art

works. Finally, Section V concludes the paper.

II. PRELIMINARIES

Kyber is a lattice-based encryption algorithm whose

security is based on the Module Learning with Errors (MLWE)

problem. The Kyber public key encryption scheme, as shown

in Figure 1, consists of three core algorithms: key generation,

encryption, and decryption.

In the key generation stage, first select matrix 𝐴̂ and

private key 𝑠 from the uniform distribution and binomial

distribution, respectively. Subsequently, the product of 𝐴̂

and ŝ is calculated in the NTT domain, and noise 𝑒̂ is

added to the result to generate the public key 𝑝𝑘, which is

𝑝𝑘 = 𝐴̂ ∘ 𝑠̂ + 𝑒̂.

The encryption process can be described as three steps: 1)

Calculate 𝑣 = 𝑡̂𝑇 ∘ 𝑟̂ + 𝑒2 + 𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑚, 1) , where

𝑚 represents the message, 𝑒2 represents the noise, 𝑡̂𝑇 is

the transpose of the public key vector, and 𝑟̂ is the value on

the NTT field generated through binomial distribution; 2)

Calculate 𝑢 = 𝐴̂𝑇 ∘ 𝑟̂ + 𝑒1, where at is the transpose of 𝐴̂𝑇

in the key generation stage, and 𝑒1 is the noise vector; 3)

Compress 𝑢 and 𝑣 to generate ciphertext ct. Namely 𝑐𝑡 =
(𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑢, 𝑑𝑢) || 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑣, 𝑑𝑣)).

The decryption process calculates the product of the

private key 𝑠̂ and the matrix 𝑢 to recover the approximate

value of the vector 𝑣, and then decrypts the original message,

that is, 𝑚 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑣 − ŝ𝑇𝑢, 1).

Fig. 1. Kyber Public Key Encryption Structure

In Kyber's encryption process, operations on polynomial

rings are the core. This polynomial ring is defined as 𝑅𝑞 =

ℤ𝑞[𝑥]/(𝑥𝑛 + 1) , where ℤ𝑞 The integer ring representing

modulus 𝑞 , 𝑥𝑛 + 1 is an irreducible polynomial. Under

these conditions, the coefficients of the polynomial are

limited to the range of modulus 𝑞, which means that addition

and subtraction operations are relatively simple, but

multiplication rules are more complex. Matrix encryption and

homomorphic operations rely on efficient multiplication over

polynomial rings [18]. To optimize the efficiency of

polynomial multiplication, Kyber typically employs poly-

nomial multiplication operations based on NTT.

Polynomial multiplication based on NTT mainly includes

three types of operations: the NTT operation that maps

polynomial coefficients to the NTT domain, the point wise

multiplication operation PWM, and the inverse NTT

operation INTT on the elements in the NTT domain. The

main advantage of NTT based polynomial multiplication is

that it can reduce the complexity of polynomial multiplication

from direct convolution calculation to more efficient

coefficient point multiplication. For example, suppose a 256-

degree polynomial 𝑓(𝑥) = 𝑓0 + 𝑓1𝑥 + ⋯ + 𝑓255𝑥255 , then

the NTT transformation of 𝑓 can be expressed as (1):

NTT(𝑓) = 𝑓 = 𝑓0 + 𝑓1𝛸 + ⋯ + 𝑓255𝑋255 (1)

where 𝑓2𝑖 and 𝑓2𝑖+1 (𝑖 = 0, . . . ,127) are defined as,

𝑓2𝑖 = ∑ 𝑓2𝑗𝜔(2𝑏𝑟7(𝑖)+1)𝑗127
𝑗=0 (2)

𝑓2𝑖+1 = ∑ 𝑓2𝑗+1𝜔(2𝑏𝑟7(𝑖)+1)𝑗127
𝑗=0 (3)

with 𝜔 is a primitive 256th root of unity and 𝑏𝑟7(𝑖) is a 7-

bit bit reverse operation on i.

PWM is the multiplication operation of ℤ3329[𝑥]/(𝑋2 −

𝜔(2𝑏𝑟7(𝑖)+1)) on the ring. Assuming PWM multiplication is

denoted as ℎ̂ = (𝑓 ∘ 𝑔̂), ℎ̂ can be calculated by (4).

{
ℎ̂2𝑖 = 𝑓2𝑖 ∙ 𝑔̂2𝑖 + 𝑓2𝑖+1 ∙ 𝑔̂2𝑖+1 ∙ 𝜔(2𝑏𝑟7(𝑖)+1)

ℎ̂2𝑖+1 = 𝑔̂2𝑖 ∙ 𝑓2𝑖+1 + 𝑓2𝑖 ∙ 𝑔̂2𝑖+1
 (4)

Compared to traditional multiplication, the multiplication

method based on NTT transform reduces the operational

complexity from 𝑂(𝑛2) to 𝑂(𝑛 𝑙𝑜𝑔 𝑛) . This not only

simplifies the process of polynomial multiplication but also

improves the efficiency of the entire encryption algorithm.

Algorithms 1 and 2 outline the specific processes of NTT and

INTT as utilized in the Kyber algorithm.

Algorithm 1: Forward Transform NTT

Input：𝑓 = (𝑓0, 𝑓1, ⋯ , 𝑓𝑛−1), 𝜔, 𝑞;

Output：𝑁𝑇𝑇(𝑓);

1. for 𝑖 = 𝑙𝑜𝑔2 𝑛 downto 1 do

2. 𝑚 ← 2𝑖 , 𝑟 ← 0

3. for 𝑘 = 0 to 𝑛 − 1 by m do

4. 𝜔 ← 𝑅𝑂𝑀[𝑟 + 𝑏𝑟7(𝑚/2)]
5. for 𝑗 = 0 to 𝑚/2 − 1 do

6. 𝑢 ← 𝑓𝑗+𝑘; 𝑡 ← 𝜔 ∙ 𝑓𝑗+𝑘+𝑚/2

7. 𝑓𝑗+𝑘 ← 𝑢 + 𝑡; 𝑓𝑗+𝑘+𝑚/2 ← 𝑢 − 𝑡

8. end for

9. 𝑟 ← 𝑟 + 1

10. end for

11. end for

12. Return NTT(𝑓).

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

Algorithm 2: Inverse transformation INTT

Input：𝑓 = (𝑓0, 𝑓1, ⋯ , 𝑓𝑛−1), 𝜔−1, 𝑞;

Output：𝐼𝑁𝑇𝑇(𝑓);

1. for 𝑖 = 1 to 𝑙𝑜𝑔2 𝑛 do

2. 𝑚 ← 2𝑖 , 𝑟 ← 0

3. for 𝑘 = 0 to 𝑛 − 1 by m do

4. 𝜔 ← 𝑅𝑂𝑀[𝑟 + 𝑏𝑟7(𝑚/2)]
5. for 𝑗 = 0 to 𝑚/2 − 1 do

6. 𝑢 ← (𝑓𝑗+𝑘 + 𝑓𝑗+𝑘+𝑚/2)/2;

 𝑡 ← (𝑓𝑗+𝑘 − 𝑓𝑗+𝑘+𝑚/2)/2

7. 𝑓𝑗+𝑘 ← 𝑢; 𝑓𝑗+𝑘+𝑚/2 ← 𝜔 ∙ 𝑡

8. end for

9. 𝑟 ← 𝑟 + 1

10. end for

11. end for

12. Return INTT(𝑓).

III. POLYNOMIAL MULTIPLICATION UNIT BASED ON

MULTI-CHANNEL PARALLEL NTT

IMPLEMENTATION

A. Overall Architecture

Fig. 2. Polynomial Multiplication Unit Based On NTT

The polynomial multiplication unit, based on the multi-

channel parallel NTT implementation presented in this article,

is illustrated in Figure 2. It comprises a butterfly operation

processing module, an address generator, memory, and a

control unit. The butterfly operation unit serves as the core

component, significantly enhancing data processing speed.

Within this structure, the butterfly operation processing

module contains 32 BUs, specifically designed for the

parallel processing of high-complexity computational tasks,

which integrate NTT, INTT, and PWM modules. The Buffer

module is intended to store polynomial coefficients and cache

intermediate results throughout the iteration process.

Furthermore, the pre-calculated value of ω is stored in the

ROM module, which allows rapid retrieval and output to the

butterfly operation module during calculations. The control

unit oversees the input and output operations of the butterfly

operation processing module and ensures that data read from

RAM in each clock cycle is accurately directed to this module,

synchronized with the twiddle factor obtained from ROM.

Concurrently, state variables and state machine control are

utilized to generate mapping addresses, update data

transmission statuses, and guarantee the coordinated

operation of the overall structure. In summary, the poly-

nomial multiplication architecture employs a loosely coupled

structural design, enabling flexible execution of NTT, INTT,

and PWM operations according to varying parameter

configurations, thereby facilitating efficient polynomial

multiplication calculations.

B. Butterfly Unit

As illustrated in Figure 2, the butterfly operation

processing module comprises 32 independent BUs. Each BU,

as shown in Figure 3, consists of a modular addition module,

a modular subtraction module, multiple cache registers, a

DSP multiplier, and a module reduction unit, which are

utilized to perform NTT, INTT, and PWM transformations.

𝑓𝑜𝑟𝑤𝑎𝑟𝑑 NTT ∶ 𝑈 = (𝑢 + 𝑡𝜔) 𝑚𝑜𝑑 𝑞;

𝑇 = (𝑢 − 𝑡𝜔) 𝑚𝑜𝑑 𝑞 (5)

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 NTT ∶ 𝑈 = (𝑢 + 𝑡) 𝑚𝑜𝑑 𝑞;

𝑇 = (𝑢 − 𝑡)𝜔 𝑚𝑜𝑑 𝑞 (6)

NTT transformation and INTT transformation are illustrated

in (5) and (6).

In the forward NTT pipeline operation, the modular

multiplication is initially executed over four clock cycles (as

illustrated in the shaded part of Figure 3), followed by the

modular addition and subtraction operation, which requires

one clock cycle. The sequence of operations for INTT is

reversed; it begins with the modular addition and subtraction

module, followed by the modular multiplication operation. To

facilitate synchronous data transfer between modules, several

cache registers are implemented. Specifically, in both NTT

and INTT, the outputs U and T necessitate five clock cycles.

In the PWM algorithm, due to the collaboration of multiple

modular multiplications, the results of the intermediate

modular multiplications are directly output to M for buffering

over four clock cycles. Figure 4 illustrates each phase of the

single BU pipeline.

Fig. 3. Single BU Structure

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

Fig. 4. BU Pipeline

In the BU, the input ports u and t receive 12-bit coefficients,

while the twiddle port synchronously acquires the twiddle

factor (𝜔) from the ROM. Based on the mode signal, data

flows along a designated path to execute the corresponding

function, with the processed data ultimately being output

through the U and T/M ports. The mode signal is configured

to 00, 01, and 10, which correspond to the single BU mode

configurations in NTT, INTT, and PWM operations,

respectively. We utilize the DSP multiplier of the FPGA chip

to carry out 12×12 bits multiplication and apply the low-

complexity Barrett algorithm to reduce the multiplication

result to the NTT domain, as elaborated below.

24-bit low-complexity Barrett modular reduction

In the realization of polynomial multiplication, modular

reduction operation (handled by REDUCE module in Figure

3) is the most time-consuming operation. To optimize this

operation, the following low-complexity, high-efficiency

Barrett modular reduction algorithm is adopted in this paper.

In the Kyber algorithm, since the modulus q of NTT

satisfies the specific form 𝑞 = 𝑘 × 2𝑚 + 1, where k = 13 and

m = 8, the 24-bit result of the multiplication operation in the

shaded part of Figure 3 can be represented as 𝑐 = 𝑐1 ⋅ 28 +
𝑐0 , where 𝑐0 = 𝑐[7: 0] represents the lower 8 bits of 𝑐 ,

𝑐1 = 𝑐[23: 8] represents the upper 16 bits. 𝑐 𝑚𝑜𝑑 𝑞 can be

converted into (7):

𝑐 𝑚𝑜𝑑 𝑞 = (𝑐1 ⋅ 2𝑚 + 𝑐0) 𝑚𝑜𝑑 𝑞

 ≡ (𝑐1 ⋅ 2𝑚 𝑚𝑜𝑑 (𝑞 − 1) − ⌊
𝑐1⋅2𝑚

𝑞−1
⌋ + 𝑐0) 𝑚𝑜𝑑 𝑞

 ≡ ((𝑐1 ⋅ 2𝑚 𝑚𝑜𝑑 (𝑘 ⋅ 2𝑚)) − ⌊
𝑐1⋅2𝑚

𝑞−1
⌋ + 𝑐0) 𝑚𝑜𝑑𝑞

 = (𝑟1 ⋅ 2𝑚 − 𝒬1 + 𝑐0)𝑚𝑜𝑑 𝑞 (7)

where 𝒬1 = ⌊𝑐1/𝑘⌋ , 𝑟1 = 𝑐1 𝑚𝑜𝑑 𝑘 . This transformation

converts the modulo q operation into a modulo k operation.

Because k is much smaller than q, the computational

complexity is significantly reduced.

In order to minimize the complexity of hardware

implementation, we further simplified the calculation of 𝒬1

and 𝑟1.

From equation (7), 𝑟1 is the remainder of 𝑐1 divided by

k, and 𝒬1 is the quotient. 𝒬1 and 𝑟1 can be respectively

rewritten as:

𝒬1 = ⌊
𝑐1⋅(216/13)

216 ⌋, 𝑟1 = 𝑐1 − 𝒬1 ⋅13.

This can be further simplified using the fact that as

13 = 23 + 22 + 1 and 216 13⁄ = (2−3 + 2−5) (1 −
2−6) 215. By this conversion, 𝒬1 and 𝑟1 can be computed

using addition, subtraction, and shift operations, thereby

minimizing hardware complexity to the greatest extent

possible. The specific low-complexity Barrett modular

reduction process is detailed in Algorithm 3 as follows.
Figure 5 shows an illustration of the modular reduction

structure. In this structure, we utilize fast carry logic element

CARRY4 to implement multi-bit addition and subtraction. In

this implementation, multiple LUT6 units are employed to

handle multi-bit XOR operations, multiple CARRY4 units is

used to generate look-ahead multiple parallel carry signals

which effectively avoids the delay caused by cascading in

traditional carry chains.

Fig. 5. Modular Reduction Structure

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

Algorithm 3: Low-Complexity Barrett Modular Reduction

Input : 𝑐 = 𝑎 ⋅ 𝑏 ∈ [0: 224);
Output ∶ 𝑟 ≡ 𝑐 𝑚𝑜𝑑 3329;
1. 𝑐1 ← 𝑐[23: 8], 𝑐0 ← 𝑐[7: 0];
2. 𝑑1 ← 𝑐1 ≫ 3 + 𝑐1 ≫ 5;
3. 𝑑2 ← 𝑑1 − 𝑑1 ≫ 6;
4. 𝒬1 ← 𝑑2 ≫ 1;
5. 𝑠1 ← 𝑐1[5: 0] − 𝒬1[2: 0] ≪ 3;
6. 𝑠2 ← 𝒬1[3: 0] ≪ 2 + 𝒬1[5: 0];
7. 𝑟1 ← 𝑠1[5: 0] − 𝑠2[5: 0];
8. 𝑅 ← 𝑟1 ≪ 8 + 𝑐0 − 𝒬1;
9. 𝑟 = 𝑚𝑜𝑑(𝑅, 3329); mod ensures that r is smaller than 3329

10. Return 𝑟 ∈ ℤ3329.

Modular addition/subtraction and 𝑥/2 modular

multiplication combined module

In a single BU, the modular addition and modular

subtraction operations are used to perform the addition and

subtraction of two 12-bit input data. To ensure the temporal

synchronization of the two data streams, the modular addition

and modular subtraction operations are designed as two

independent modules. Additionally, the 𝑥/2 operation is

introduced as an additional step during the execution of

Algorithm 2. To avoid module redundancy, the 𝑥/2

operation is embedded within the modular addition and

subtraction modules, and a modular compensation strategy is

employed for its design.

(a) Modular addition and 𝑥/2 𝑚𝑜𝑑 𝑞

(b) Modular subtraction and 𝑥/2 𝑚𝑜𝑑 𝑞

Fig. 6. Modular Addition/Subtraction and 𝑥/2 𝑚𝑜𝑑 𝑞 Combination

Module

Figure 6(a) illustrates the structure of the combined module

for modular addition and 𝑥/2 modular multiplication. The

left part of Figure 6 is used to calculate modular addition, the

shaded part is responsible for executing the 𝑥/2 𝑚𝑜𝑑 𝑞

operation, the right multiplexer is used to choose the final

output c according to working mode. Note that, the

𝑥/2 𝑚𝑜𝑑 𝑞 is needed only during INTT in the BUs when in

mode signal 01. In this paper, this operation is implemented

based on (8).

𝑥/2 𝑚𝑜𝑑 𝑞 = (𝑥 ≫ 1) + 𝑥[0] ⋅ (
𝑞+1

2
) (8)

As shown Figure 6,when the least significant bit of x, 𝑥[0],
is 0, the result of 𝑥/2 𝑚𝑜𝑑 𝑞 can be derived by shifting x to

the right by one bit. Conversely, when 𝑥[0] is 1, an addition

operation must be conducted based on the shifted result.

Because q is a fixed constant, the 𝑥[0] ⋅ [(𝑞 + 1) 2⁄] in (8)

can be efficiently executed using this method, thereby

avoiding complex multiplication and modular operations.

Using a similar approach, we design the modular

subtraction module as shown in Figure 6(b). The details are

similar to those of the modular addition and will not be

repeated here.

C. Optimization of PWM Scheduling

In Kyber algorithm implementation, PWM module is used

to calculate ℎ̂ in (4). To optimize the implementation of

PWM module, Xing [7] converted (4) into (9) applying

factorization techniques, reducing the number of

multiplication operations from 5 to 4, which significantly

decreases DSP resource consumption and enhancing

computational efficiency.

{
ℎ̂2𝑖 = 𝑓̂2𝑖 ∙ 𝑔2𝑖 + 𝑓̂2𝑖+1 ∙ 𝑔2𝑖+1 ∙ 𝜔(2𝑏𝑟7(𝑖)+1)

ℎ̂2𝑖+1 = (𝑓̂2𝑖+1 + 𝑓̂2𝑖)(𝑔̂2𝑖 + 𝑔2𝑖+1) − (𝑓̂2𝑖 ∙ 𝑔2𝑖 + 𝑓̂2𝑖+1 ∙ 𝑔2𝑖+1)
 (9)

Building upon (9), this paper presents a novel PWM

hardware architecture, as illustrated in Figure 7. This

architecture reconfigures the original 32 BUs into 8 sets of

binomial multiplication units, each of which is referred as a

“Core”, as illustrated within the dashed box in Figure 7. Each

Core comprises 4 BUs, with each unit configured to operate

in mode 10. To enhance resource utilization and

computational efficiency, a cross-multiplexing mechanism is

employed to control and coordinate the operations among the

various BUs in each Core. Additionally, we introduce

modular addition/subtraction modules and cache registers

that collaborate with the BUs to execute multiplication

operations on a set of polynomial coefficients.

The computation process in a Core is divided into three

stages: Stage 0, Stage 1, and Stage 2. The operations

performed at each stage are as follows:

Stage 0：𝑀1 = 𝑓2𝑖 ∙ 𝑔̂2𝑖, 𝑀2 = 𝑓2𝑖+1 ∙ 𝑔̂2𝑖+1,

𝑎0 = 𝑓2𝑖+1 + 𝑓2𝑖 , 𝑎1 = 𝑔̂2𝑖 + 𝑔̂2𝑖+1;

Stage 1：𝑎2 = 𝑀1 + 𝑀2, 𝑀3 = 𝑀2 ∙ 𝜔𝑟𝑒𝑣𝑙𝑜𝑔 𝑛−1(2𝑖+1),

𝑀0 = 𝑎0 ∙ 𝑎1;

Stage 2：ℎ̂2𝑖 = 𝑀1 + 𝑀3, ℎ̂2𝑖+1 = 𝑎2 − 𝑀0.

Note that the operations in the BU require four clock cycles

to complete, while the modular addition operation only

requires two clock cycles, therefore, 2-level registers need to

be added after modular addition for synchronization.

In addition, in our implementation, a dual-clock preload

cache mechanism is employed for the preprocessing of input

data, which takes two clock cycles. Subsequently, the loaded

data is divided into four groups and fed sequentially into eight

Cores over the course of four clock cycles. These eight Cores

then process date in pipeline. Finally, the PWM module takes

a total of 29 clock cycles to complete the entire operation.

Compared to the 56 clock cycles reported in the current

optimal literature [13], our approach achieves a 48%

reduction in clock count, thereby significantly enhancing data

processing speed.

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

Fig. 7. PWM Module

D. Storage Solutions

In Kyber's NTT/INTT algorithm, a degree-256 polynomial

is decomposed into two degree-128 polynomials for

independent operations, requiring seven rounds of butterfly

operations. Since distinct polynomial coefficients are needed

in each round, the strategies for storing and controlling

coefficient read-write operations significantly impact the

algorithm's overall performance. For instance, in an 8-point

NTT operation shown in Figure 8, the accessed coefficient

pairs differ in each round. In the first round, the pairs are (0,4),

(2,6), (1,5), and (3,7). In the second round, they are (0,2),

(4,6), (1,3), and (5,7). Finally, in the third round, the pairs are

(0,1), (4,5), (2,3), and (6,7). To implement the NTT operation,

effective storage and control strategies must be designed to

ensure accurate data read/write operations, with processed

data stored at specific locations for correct and efficient

retrieval in subsequent rounds. A single buffer is insufficient

due to risks of data overwriting.

Fig. 8. 8-point NTT Butterfly Operation

To address the limitation of single buffer, we adopt a

double buffer mechanism in the output stage of the butterfly

computing unit. Specifically, the first buffer stores data

processed in the previous clock cycle. In the subsequent cycle,

this data is transferred to the second buffers while the second

Algorithm 4: RAM Read Address

Input ：stage, mode, cycle_counter (clct);

Output：raddr;

1. WHEN (mode = NTT) Begin

2. while (clct = (stage << 3) || (stage << 3 + 1)

|| (stage << 3+ 2) || (stage << 3 + 3))

3. raddr = (stage = 0) ?

(clct [1] +(clct [0] ? 2 : 0)) : clct [1:0];

4. End

5. WHEN (mode = INTT) Begin

6. while(clct = (stage << 3) || (stage << 3 + 1)

||(stage << 3+ 2) || (stage << 3 + 3))

7. raddr = (stage = 5) ?

(clct [1]+(clct [0] ? 2: 0)) : clct [1:0];

8. End

9. Return raddr;

Algorithm 5: RAM Write Address

Input ：stage, mode, raddr, cycle_counter (clct);

Output：waddr;

1. waddr_shift_reg[5:0] <= 0;

2. waddr_shift_reg[0] <= raddr;

3. FOR (i = 1; i < 6; i = i + 1)

4. waddr_shift_reg[i] <= waddr_shift_reg[i-1];

5. WHEN (mode = NTT || INTT) Begin

6. IF (stage = 0)

7. while (clct == 6 || clct == 7)

8. waddr = waddr_shift_reg[5];

9. ELSE IF

10. while (clct = (6 + stage << 3) || (7 + stage << 3)

||(stage << 3) || (stage << 3+ 1)|| 56 || 57)

11. waddr = waddr_shift_reg[5];

12. End

13. Return waddr;

buffers simultaneously receives new data from the current

cycle’s processing. This dual-buffering mechanism allows

data from two consecutive clock cycles to be output

a

a 3

a 5

a

a

a 2

a

a

A

A

A 5

A

A 3

A 2

A

A

round 0 round 1 round 2

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

synchronously, ensuring an uninterrupted data stream,

eliminating the inherent data overwriting problem of single

buffer, and ensuring that the output results maintain the

correct coefficient order for subsequent read operations.

This mode facilitates a flexible transformation between

output and temporary data at the output port, controlled by

state variables, thereby ensuring that the output results

conform to the required coefficient arrangement order for the

following reading operation.

Furthermore, to maintain the accuracy of read and write

addresses at each stage, we propose an address generation

method based on the value of the current computational stage

and cycle counter. The detailed process for generating read

and write addresses using this method is outlined in

Algorithm 4 and Algorithm 5.

In the address generation process, during the read address

generation phase, the read address is determined based on the

specific number of bits of the cycle counter value. The output

state of the read and write address is controlled by the stage

and counter signal. Given that the addresses corresponding to

read and write operations exhibit consistency within the same

stage, the address generator employs a shift register-based

caching strategy to temporarily store the generated read

address information. After the data is read, there are five

delay cycles required to implement the butterfly operation.

Once the butterfly operation is completed, the address value

cached in the shift register will be officially passed to the

write address terminal to ensure accurate data addressing

during storage and operation. Figure 9 shows the RAM

read/write control mechanism during the NTT phase as an

example to elucidate this process.

Fig. 9. NTT's RAM Read Write Control

While reading and writing polynomial coefficients, we

consolidate the twiddle factors to enhance parallel processing

efficiency. The power term of 𝜔𝑘 makes up the twiddle

factor. These values are typically precalculated and stored to

increase computational performance.

For 0 ≤ 𝑘 ≤ (𝑛/2) − 1 and 𝑛 = 256, the twiddle factor

for NTT and INTT are 𝜔𝑘 and 𝜔−𝑘 respectively. Since the

multiplication group created by 𝜔𝑘 is symmetric in group

theory, 𝜔−𝑘 can be represented by 𝜔𝑘 . Given 𝜔𝑛/2 ≡

 −1 (𝑚𝑜𝑑 𝑞), we have 𝜔−𝑘 = −𝜔(𝑛/2)−𝑘.

Figure 10 shows the twiddle factors required in different

stages of NTT computation. In this figure, a rectangle block

represents a twiddle factor and the number on the left side in,

while the number on the right side is the hexadecimal

representation of the twiddle factor. The stage numbers on the

left denote the twiddle factors utilized in the respective NTT

period. The number in the upper right corner of each cube

indicates its depth, which represents the number of twiddle

factors needed for one clock cycle during single stage.

Various block styles denote the quantity of BUs that a

singular twiddle factor needs to encompass within a single

clock cycle. As shown in the figure, different stages need

different numbers of twiddle factors. For example, during

stage 0, only one twiddle factor 64:6C1 is needed and it will

be loaded into 32 BUs and reused cyclically over 4 clock

cycles in the operation at this stage. During stage 5, 32

distinct twiddle factors are needed. Each clock cycle requires

the retrieval of eight distinct twiddle factors, with each factor

encompassing four BUs.

Fig. 10. Example of twiddle factor grouping

Ⅳ. Experimental Results and Analysis

To validate the optimization scheme proposed in this

article, we implemented the design on the Artix-7 FPGA

platform using the Xilinx Vivado 2018.3 software suite. To

ensure consistency in area assessment, we employed Slice

Equivalent Cost (SEC) as a metric. According to [13] and [19],

a DSP48E1 and a 36-KB BRAM are equivalent to 102.4 and

196.2 SLICE, respectively. The area is expressed as SECs =

BRAM × 200 + DSPs × 100 + SLICE, where SLICE is

defined as SLICE = LUTs × 0.25 + FFs × 0.125. The Area

Time Product (ATP) objectively reflects the relationship

between resource consumption and algorithm performance,

with lower values indicating a better balance between the two

under constrained conditions. The specific ATP is expressed

as ATP = Area(SECs) × Time(PLMult), which includes 2

NTT, 1 INTT, and 1 PWM.

The resource usage of different polynomial multiplication

modules is shown in Table Ⅰ. The control unit uses a serial

execution mode, whereas the NTT unit and one BU use a

pipelined implementation. Both ROM storage and multi-

channel buffer RAM use a parallel implementation.

A single BU necessitates multiplication, modular addition,

and modular subtraction operations (as specified in Table I),

leading to substantial resource consumption. The NTT unit

exhibits higher overall resource usage due to its multi-BU

cooperative architecture for polynomial multiplication.

Conversely, the control unit consumes minimal resources

under low-complexity control schemes, as its primary

functions are generating counters, addresses, and control

signals.

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

TABLE I

MODULE RESOURCE CONSUMPTION

Module LUTs FFs DSPs

NTT Unit 9711 7112 32

Single BU 224 114 1

Control Unit 54 21 0

ROM 524 0 0

Buffer(RAM) 772 3840 0

Table II presents the implementation results of the NTT

accelerator based on the Kyber algorithm, alongside a

comparison with state-of-the-art polynomial multiplication

accelerators. Experimental results demonstrate that the

proposed NTT core accelerator outperforms existing

implementations in polynomial multiplication (PLMult),

achieving at least 32.3% fewer clock cycles and 40.3%

shorter execution time. This yields the shortest PLMult clock

cycles among all schemes, exhibiting significant advantages

in overall runtime performance.

In contrast to Scheme [6], a 32-channel multi-channel BU

architecture is proposed for concurrent data processing, with

enhanced the PWM processing flow via a cross-multiplexing

structure. The improved PWM operation can be executed in

29 clock cycles, significantly reducing clock cycle usage

relative to traditional techniques. Although the clock cycle

counts for individual NTT and INTT operations in our design

are marginally more than those documented in [6], the latter

necessitates supplementary clock cycles for PWM operations,

resulting in an extended overall execution duration. The

operational duration of this study has been significantly

diminished by 60.2%, and ATP has been reduced by 63.5%

relative to the findings in [6]. In comparison to Scheme [16],

which demonstrates the highest overall efficiency, this study

attains a moderate increase in ATP while incurring a

significant decrease in operation time. Compared to Scheme

[17], which demonstrates minimal resource consumption, the

proposed design increases resource usage but reduces latency

by 90.3% and improves ATP by 35.8%, achieving a

synergistic enhancement in speed and comprehensive

performance.

This work demonstrates significant enhancements in two

key metrics: ATP and operational time, as illustrated in Figure

11. This improvement incurs a higher resource consumption

cost. Among all the evaluated schemes, the operational time

was reduced to its minimum, achieving a speed that was 40.4%

faster than the suboptimal design [13]. Parallel computing

and pipeline optimization techniques ensure that ATP

performance surpasses most comparable schemes, such as [6],

[13], and [14].

In summary, the proposed solution significantly enhances

the computational efficiency of PLMult, achieving a

reduction in computation time of at least 40.3% and a 24%

decrease in the time required for a single NTT operation

compared to the previously fastest solution. By maintaining a

high operating frequency, this scheme effectively utilizes

resources to attain optimal Time values in the comprehensive

evaluation.

Fig. 11. Comprehensive performance comparison

Ⅴ. CONCLUSION

With the advent of the quantum computing era, lattice-

based cryptography has garnered significant attention due to

its potential for post-quantum security. This article optimizes

butterfly operations by employing a cross-multiplexing

architecture and integrates pipeline technology to achieve an

efficient design of BUs at the hardware level. Furthermore,

the operations of NTT, INTT, and PWM have been

accelerated through a 32-channel parallel processing

mechanism. The implementation technique proposed in this

research provides significant benefits in improving

processing speed and possesses tremendous applicability in

postquantum cryptography.

TABLE II

COMPREHENSIVE COMPARISON BETWEEN THE IMPLEMENTATION RESULTS OF NTT AND PREVIOUS WORK

Work
Freq

[MHz]
LUTs FFs BRAMs DSPs SECs

Latency(cc) and Time(μs)
ATP

NTT INTT PWM PLMult

[6] 175 8428 3979 11 32 8003 44/0.25 49/0.28 163/0.93 300/1.71 13685

[7] 161 1579 1058 3 2 1327 512/3.18 576/3.58 256/1.59 1856/11.53 15300

[9] 115 737 290 4 6 1621 474/4.12 602/5.23 1289/11.21 2839/24.68 40006

[13] 273 4619 4166 8 16 4875 84/0.31 84/0.31 56/0.21 308/1.14 5558

[14] 229 880 999 1.5 2 845 448/1.96 448/1.96 256/1.12 1600/7.00 5915

[16] 300 1154 1031 0 2 617 456/1.52 456/1.52 265/0.88 1633/5.44 3356

[17] 227 1005 559 0 2 522 448/1.97 448/1.97 256/1.13 1640/7.04 3675

This work 303 11061 10973 0 32 7337 58/0.19 58/0.19 29/0.09 203/0.68 4989

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

REFERENCES

[1] P. W. Shor, "Algorithms for quantum computation: discrete logarithms

and factoring." Proceedings 35th annual symposium on foundations of

computer science. IEEE, pp124–134, 1994.
[2] National Institute of Standards and Technology (2024) Module-Lattice-

Based Key-Encapsulation Mechanism Standard. (Department of

Commerce, Washington, D.C.), Federal Information Processing
Standards Publication (FIPS) NIST FIPS 203.

[3] Yiming Huang, Miaoqing Huang, Zhongkui Lei and Jiaxuan Wu, "A

pure hardware implementation of CRYSTALS-KYBER PQC
algorithm through resource reuse. " IEICE Electron. Express 17 (2020):

20200234.

[4] A. C. Mert, E. Karabulut, E. Öztürk, E. Savaş and A. Aysu, "An
Extensive Study of Flexible Design Methods for the Number Theoretic

Transform," in IEEE Transactions on Computers, vol. 71, no. 11, pp

2829-2843, 2022.
[5] F. Yaman, A. C. Mert, E. Öztürk and E. Savaş, "A Hardware Accelerator

for Polynomial Multiplication Operation of CRYSTALS-KYBER PQC
Scheme," 2021 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp1020-1025, 2021.

[6] Bin Li, Xiao-Jie Chen, Feng Feng and Qing-Lei Zhou, "FPGA multi-
unit parallel optimization and implementation of post-quantum

cryptography CRYSTALS-Kyber".Journal on Communications, vol.

43, no. 2, pp196-207, 2022.
[7] Yufei Xing and Shuguo Li, "A compact hardware implementation of

CCA-secure key exchange mechanism CRYSTALS-KYBER on

FPGA." IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp328-356, 2021.

[8] M. Bisheh-Niasar, R. Azarderakhsh and M. Mozaffari-Kermani, "High-

Speed NTT-based Polynomial Multiplication Accelerator for Post-
Quantum Cryptography," 2021 IEEE 28th Symposium on Computer

Arithmetic (ARITH), Lyngby, Denmark, pp94-101, 2021.

[9] M. Bisheh-Niasar, R. Azarderakhsh and M. Mozaffari-Kermani,
"Instruction-Set Accelerated Implementation of CRYSTALS-Kyber,"

in IEEE Transactions on Circuits and Systems I: Regular Papers, vol.

68, no. 11, pp4648-4659, 2021.
[10] Shun-Sen Lü, Bin Li, Jia-Qi Zhai, Song-Qi Li and Qing-Lei Zhou,

"FPGA efficient parallel optimization of Crystal-Kyber". Acta

Electronica Sinica, pp1-11, 2024.
[11] Zhao-Hui Chen, Yuan Ma and Ji-Wu Jing, "Hardware optimization and

evaluation for crucial modules of lattice-based cryptography." Acta

Scientiarum Naturalium Universitatis Pekinensis, vol. 57, no. 4, pp595-
604, 2021.

[12] Yang H, Chen R, Wang Q, et al, "Hardware acceleration of NTT-based

polynomial multiplication in CRYSTALS-KYBER." International
Conference on Information Security and Cryptology. Singapore:

Springer Nature Singapore, pp111-129, 2023.

[13] M. Li, J. Tian, X. Hu and Z. Wang, "Reconfigurable and High-
Efficiency Polynomial Multiplication Accelerator for CRYSTALS-

Kyber," in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 42, no. 8, pp2540-2551, 2023.
[14] V. B. Dang, K. Mohajerani and K. Gaj, "High-Speed Hardware

Architectures and FPGA Benchmarking of CRYSTALS-Kyber, NTRU,

and Saber," in IEEE Transactions on Computers, vol. 72, no. 2, pp306-
320, 2023.

[15] G. Li, D. Chen, G. Mao, W. Dai, A. I. Sanka and R. C. C. Cheung,

"Algorithm-Hardware Co-Design of Split-Radix Discrete Galois
Transformation for KyberKEM," in IEEE Transactions on Emerging

Topics in Computing, vol. 11, no. 4, pp824-838, 2023.

[16] Z. Ni, A. Khalid, W. Liu and M. O'Neill, "Towards a Lightweight

CRYSTALS-Kyber in FPGAs: an Ultra-lightweight BRAM-free NTT

Core," 2023 IEEE International Symposium on Circuits and Systems

(ISCAS), Monterey, CA, USA, 2023, pp. 1-5.
[17] T H. Nguyen, D T. Dam, P P. Duong, B. Kieu-Do-Nguyen, C K. Pham

and T T. Hoang, "Efficient Hardware Implementation of the

Lightweight CRYSTALS-Kyber," in IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 72, no. 2, pp610-622, 2025.

[18] Prabhavathi Krishnegowda and Anandaraju M Boregowda, "Fully

Homomorphic Encryption of Floating-Point Matrices for Privacy-
Preserving Image Processing." IAENG International Journal of

Computer Science, vol. 50, no. 4, pp1460-1469, 2023.
[19] 7 Series FPGAs Data Sheet:Overview.(2020).[Online].Available:

https://www.xilinx.com/content/dam/xilinx/support/documents.

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4256-4264

__

