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Abstract—Nicholson’s blowflies model stands as a classic
mathematical framework for characterizing population dynam-
ics involving nonlinear growth and time delays, celebrated for
its ability to capture the periodic fluctuations observed in insect
populations. In this study, the traditional Nicholson’s blowflies
model is extended by integrating both time delays and patch
structure, with the goal of investigating how inter-patch migra-
tion between patches and the combined effects of continuous
and discrete delays collectively influence population stability
and dynamics. By leveraging advanced inequality techniques,
the Lyapunov method, and the comparison principle, novel
criteria are derived for the periodicity, extinction, permanence,
and global attractiveness of these models. Furthermore, two
illustrative examples are presented to validate the effectiveness
of the main results reported in this work.

Index Terms—Nicholson’s blowflies model; extinction; time
delay; permanence; global attractiveness

I. INTRODUCTION

OPULATION dynamics, a core topic in ecology, focuses

on understanding the mechanisms driving fluctuations
in species abundance over time and space. Nicholson’s
blowflies experiment [1] was a landmark study, demon-
strating that insect populations can exhibit stable periodic
oscillations due to nonlinear feedbacks between reproduction
and mortality. To characterize fluctuations in the reproductive
population of Australian sheep blowflies and align with the
experimental data reported in [2], Gurney and colleagues
initially proposed Nicholson’s blowflies model in 1980:

i(t) = —da(t) 4+ Ba(t — 7)e” ==, (1)

The corresponding mathematical model, known as Nichol-
son’s blowflies model, where time delays account for the lag
between reproduction and maturation. Since its inception,
this model has garnered extensive attention from researchers
seeking to investigate its dynamic behavior. Over the past
decades, extensions of Nicholson’s model have been widely
studied to incorporate realistic ecological factors [3-8]. Time
delays, such as those in development, gestation, or resource
regeneration, are critical in shaping population dynamics,
as they can induce instability and periodic behavior [9].
Meanwhile, spatial structure (e.g., patchiness) is ubiquitous
in nature, as populations often inhabit discrete patches con-
nected by migration. Migration between patches can promote
gene flow, reduce local extinction risks, and alter population
stability [10]. On the other hand, in ecological systems,
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resource constraints and environmental fluctuations often
drive species in multiple patches to interact and migrate,
leading to inter-patch competition or cooperation and subse-
quent population migration [11-13]. However, the combined
effects of delays and patch structure on Nicholson’s blowflies
dynamics remain underexplored, particularly regarding how
migration modulates delay-induced instabilities.

As noted in [14], recent studies have revealed that
patch structure substantially influences Nicholson’s blowflies
model. Patch structure accounts for heterogeneous environ-
ments arising from multiple factors, where resource het-
erogeneity among patches governs the spatial distribution
of blowflies through both inter-patch migration and local
population growth. Additionally, time delays often reflect the
maturity of biological species and can induce fundamental
shifts in a systems dynamic behavior. Consequently, the
interplay between patch structure and time delays enables
more precise investigations into Nicholson blowflies models.
Several researchers have explored Nicholson blowflies mod-
els incorporating delays and patch structures (e.g., [15-21]).
For example, Teresa Faria [15] studied the n-dimensional
Nicholson’s blowflies model with patch structure and multi-
ple discrete delays:

#i(t) = —dizi(t) + Z Bigai(t — Tig)e T E=Tik)
k=1

n (2)

+ agai(t), i=1,2, .,
j=1

where a7 = 0,a09 = 0,---,a,, = 0. The authors
investigated the global asymptotic properties of solutions and
established the uniform boundedness of solutions. Addition-
ally, under specific conditions, they proved the existence and
global attractivity of the positive equilibrium. In light of (2),
Bingwen Liu [16] investigated an n-dimensional Nicholson
blowflies model incorporating patch structure and variable
delays:

Bi(t) = Y aya;(t) + ) Biywi(t = mig())e a0
j=1 j=1

—dz;(t),i=1,2,--- ,n.
3)
By constructing a Lyapunov functional, a novel sufficient
condition is derived to ensure the global stability of the
positive equilibrium solution of (3). Building upon systems
(2) and (3), the authors in [17] investigated the following
non-autonomous delay Nicholson-type system with patch
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structure:

Z1(t) =

)21 (t _ V)e_zl(t_w

—a1 (t)Zl (t) + C1
(
—z2(t—"7) (4)

+b1(t>22 t),
Za(t) = —az(t)22(t) + c2(t)22(t — 7)e
+b2 21(t>

By applying inequality techniques, the comparison principle,
and Lyapunov functional construction, sufficient conditions
are derived for the boundedness, persistence, extinction, ex-
istence, and global attractivity of positive periodic solutions.
Furthermore, at the conclusion of this paper, the authors pose
an intriguing question: investigate the dynamic properties of
the following non-autonomous Nicholson blowflies model:
n
) = —qu®za) + Y pa(t)z(t)
b=1,b+a (5)

ko (t)za(t — ro(t))e e (t=ra®),

where a = 1,2,--- ,n. However, when modeling periodic
population dynamics, the coefficients and time delays in the
model are typically time-periodic, and few studies have in-
vestigated the scenario where coefficients are time-dependent
functions in Nicholson blowflies models with patch structure.
Building on the previous works and analyses, this paper
aims to investigate the dynamic properties of the following
Nicholson blowflies model with time-varying coefficients and
continuous delays:

Za(t) = —qa(t)za(t)
N o (6)

+ 3 Fap(t)za(t — ry(t))e @),
b=1
and the following Nicholson’s blowflies model with time-
varying coefficients and discrete delays

éa(t> = _qa(t>z

+ Z kap (t)2a (t — 1)e e t=)
b=1

where a = 1,2,--- ,n. The aim of this study is to derive
several conditions on the extinction, permanence, periodic
solutions, and global attractivity for models (6) and (7).
This study addresses this research gap by developing a
Nicholson’s blowflies model that integrates delays and patch
structure. Specifically, we consider a system consisting of n
patches, where the population dynamics in each patch are
governed by nonlinear growth processes with an associated
time delay, and migration between patches occurs at constant
rates. Our objectives are threefold: to formally establish
the model framework; to derive rigorous conditions charac-
terizing the periodicity, extinction, permanence, and global
attractiveness of the system; and to validate the theoretical
findings through systematic numerical simulations.

In systems (6) and (7), we have that z,(¢)(a = 1,2,--- ,n)
denotes the density of the species in patch a at time ¢;
ga(t)(a = 1,2,--- n) is the per capita daily adult death
rate in patch a at time ¢; pap(t)(a,b=1,2,--- ,n,a # b) is
the migration coefficient from patch b to patch a at time

t, and the natural growth in each patch is of Nicholson-
type; kap(t)(a,b = 1,2,--- ,n) is the maximum per capita
daily egg production at time ¢; 7,(b = 1,2,--- ,n) and
rp(t)(b=1,2,--- ,n) denote time delay.

The basic assumptions for system (6) and system (7) are
given by

(HD) qa(t) > 0,75(t) > 0,pas(t) > Oa £ b), k(1) >
0(a,b=1,2,--- ,n) are all continuously positive T-periodic
functions on [0, o).

(Hg) 7 > 0(b = 1,2,---,n) are constants. g,(t) >
0,pap(t) > 0(a # b),kap(t) > 0(a,b = 1,2,--- ,n) are
all continuously positive T-periodic functions on [0, 00).

The initial conditions for system (6) and system (7) take
the form

(21(8), z2(t), -+ s 2n(t)= (c1(t), 2(t), - -+ (b)) € Oy,
61(0),52(0), -+ ,6,(0) >0,
(8)
where
Cy =C([-r,0,R}y) and 7 = max sup 7(t).

1<b<n te[0,00)

Define

Ft = sup {f(t)} and F~
t€[0,00)

= tei[gfw) {r@®)},

where F'(t) € [0,400) is a continuous and bounded function.

II. POSITIVITY, PERMANENCE, EXTINCTION AND
PERIODIC SOLUTION

Theorem 1. All solutions of system (6) with the initial
condition (8) are positive for all ¢ > 0.

Proof. Let (z1(t),22(t), - ,2n(t)) be a any solution of
system (6) with (8). By system (6), when ¢ € [0,7],a =

1,2,--- ,n, we obtain
’éa(t) = _Qa + Z pab
b=1,b#a
+ Z Eap(t)sq (t — 7 (t))e e (E=o(®)
b=1

> —(q (t)za (t)

Since ¢, (t) nonnegative on t € [—r,0] and by comparison
argument, we further have

Za(t) > z4(0)e Jo 22 (5)ds

Thus, z,(t) > 0 for t € [0,r]. Next, treat intervals
[r,2r],- - ,[nr, (n+1)r] in the same way, we have z,(t) >
0O(a=1,2,---,n) for t > 0.

Corollary 1. All solutions of system (7) with the initial
condition (8) are positive for all ¢ > 0.

Theorem 2. If (H;) and B, > 0(a = 1,2,...,
then system (6) is ultimately bounded, where B,

D P
b=1,b#a
Proof. Let (z1(t), z2(t), - -

of system (6) with (8). Define a function u(t)

n) hold,
=qq —

,2n(t)) is any positive solution

= L= Za(l).
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o<1

Then from the derivative of u(t) and by maxg>( e~ c

for ¢ > r, we obtain

W(t) < —(gr =Y _pi)=(t) - Y )
b=2 b=1,b#£2
XZ?(t) T (qn - Z p;n)zn(t)
b=1,b#n
Z kf, + Z kg + o+ > k)
b=1
= *Blzl( ) 3222( ) — -+ — Bpzp(t)
+> >k
a=1b=1
S Gl qu(t)
where
n n 1
=> Y kh=.Gy=min{By1,By,-- Bn}.
a=1b=1 ¢
By Lemma 2.1 in [22], we derive
Gy Gry _—c
)< =L - 2
u(t) < G+ (u(0) - &)

Then

Hence, there exists a real number T, > r such that
Gq Gy

Zl(t)<G72 G

y Zg(t) <

as t > Tp.

Corollary 2. If (H;) holds and B, > 0 fora =1,2,...,n,
then system (6) is ultimately bounded, where Ba =q, —
Zb:l,b;ﬁa pba

Theorem 3. If for a = 1,2, - -- , n, there are three constants:

€(0,1), 1 € (1,+00) , M, such that
me ™ =le~!,m < M <1, (9)
and
DS prM+Zk (10)
b=1,ba
—a + Z pab*Zkabe ">0, (11)
b=1,ba

then system (6) is permanent.
Proof. Suppose that (z1(t), 22(t), -+, z,(t)) is any positive
solution of system (6) with (8). From Theorem 1, we have

za(t) >0, Vt >0,a=1,2,--- ,n (12)
We first prove
za(t) < M, ¥Vt >0,a=1,2,---,n (13)
If not, there exist £’ € (0,4+00) and a € {1,2,--- ,n}, such
that
za(&') = M, zp(t) < MVt € [-r,&),b=1,2,--+ ,n.
(14)

From (10),(14) and supys, fe~? = 1, we obtain

0 <Z.(¢)

= —¢a()2a(E)+ D par(§)z(&)
b=1,b%a
D kan(§) 2l = ra(€))e €7D
b=1
< —qu(@)M+ Y pan(€)M + Z kab (&)
b=1,b#a =
< —q; M+ Z LM + Z kh
b=1,b#a

This leads to a contradiction; therefore, relation (13) holds.

Next, we proceed to prove that
za(t) >m,Vt >0,a=1,2,---,n (15)

If not, we can find £’ € (0,400) and a € {1,2,--- ,n},

which satisfy the following formula
za(£")

From (9),(13) and (16), we obtain
(") < M <.

m m
em’el [T em’

,n. From (11) and (16), we have

=m,z(t) >m,Vt € [-r,§"),b=1,2,--- ,n.
(16)

m < Za(gu

So
za(€" — Tb(f”»efz‘l(g —m(E) > mlﬁ{

where a,b=1,2,---
0> 2,(£")

= —qa(§)2a(€) + D Par(€)z(¢")
b=1,b#a

n

+ Z kab(gll)za (51/ - T‘b(gu))e*'za (Ellfrb(g“))

b=1

> g€t Y pul€Imt Y ka)

b=1,b#a b=1

qa + Z pab+zkabe m
b=1,b#a
This leads to a contradiction; therefore, equation (15)

holds. Consequently, every positive solution (z1(t), z2(t),
2, (t)) of system (6) with (8) satisfies

m<zi(t) K Mm<z2t) <M, m<z,(t) <M

7

for ¢t > 0.

Corollary 3. If fora = 1,2, - - - , n, there are three constants:

mo € (0,1), lp € (1,4+00) and My, such that
mee~™0 = lye~ my < My < l, (17)
and
Gz Mo+ 3201 pra PayMo + 51 ke <0, (18)
—qF + 2t bta Pap T Dbt Kape ™™ > 0, (19)

then system (7) is permanent.
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Theorem 4. Assume that (H;) holds and >, ,, P+
Z;le k:b < g, (a=1,2,---,n), then system (6) is extinct.
Proof. Let x,(x) denote the continuous,where

Xa ( )—fE qa + Z pab—'_zk;bex’r a:1727"' y 1.
b=1,b#a

Based on the conditions of Theorem 4, we obtain

n n
Xa(0)=—q; + > ph+> kh<0a=12- n
b=1,b#a b=1

From the continuity of y,(z), we can find A > 0 such that
for each a =1,2,--- ,n, we have

(A)_)‘_qa"_ Z Pab-i-ijbe/\r

b=1,b7a
Let
ha(t) = Za(t)e)\tva = 13 2, Uz
By differentiating h,(t), we obtain

ha(t) = 2o (t)eM + zq () XM

= M (t) + eM[—qa(t)2

4 Y pa(t)z(t)
b=1,b4a

n

+ 3 kao()za(t = ry(t))e = ®)]

b=1
4 > pa(t)h(t)

b=1,b#a

= Ma(t) = qa(t)h

n

+ 3 ka0 O kg (t — () (=m0,

b=1
(20)
Let M* > 0 and h,(t) < M*,Vt € [-r,0,a=1,2,--- ,n
then we have

ha(t) < M*,¥t > 0,a=1,2,--- ,n (21)
If not, there exist t* € (0,4+o00) and a € {1,2,--- ,n}, such
that
ha(t™) = M™, hy(t) < M* ¥Vt <t*,0=1,2,--- ,n

Then, from (20), we have

0 < hqa(t*)
= Mg (t*) = qu(t*)h

n

b=1
n
<)‘M**Qa M* + Z DPab *
b=1,b#a

n

+ Z kab( ) )\TM*
b=1

A—q, + Z b +Zk:beM YM* < 0.

b=1,ba

This leads to a contradiction; consequently, relation (21) is
established, and

2a(t) = ha(t)e ™ < M*e ™ a=1,2,--- ,n.

Hence
lim z,(t) =0,a=1,2,---,n

t——+oo

Corollary 4. Assume that (Hz) holds and >7;_, , £a P+
ookl < gi,(a = 1,2,---,n), then system (7) is
extinct.

By applying the result of Lemma 4 in [23], together with
Theorem 5 and Corollary 6, we can derive the following
corollaries.

Corollary 5. If the conditions of Theorem 3 are satisfied and
the coefficients of system (6) are T-periodic functions on the
interval [0, 7], then system (6) is permanent and admits at
least one positive T'-periodic solution.

Corollary 6. If the conditions of Corollary 3 are satisfied and
the coefficients of system (7) are T-periodic functions on the
interval [0, 77, then system (7) is permanent and admits at
least one positive 7T-periodic solution.

III. GLOBAL ATTRACTIVITY
Theorem 5. If the conditions of Theorem 5 hold and

Z pab+Zkab 5 < (@a=12-.n), (22)
b=1,b#a
then system (6) is globally attractive.
Proof. Suppose that (z1(¢),22(t), - ,2,(t)) and

(z5(t),2z5(t),--- ,25(t)) are any two positive solutions

of system (6) with (8). Define the continuous functions
Xa(Z) by setting

Xa(z) =2 —q; + Z pab+zkab Se,

b=1,b#a

where = € [0,1],a = 1,2,--- ,n. According to the condi-
tions of Theorem 11, we obtain

__Qa+ Z pab+zkab e2 ’

b=1,b#a

=1,2,--- ,n.

From the continuity of x,(x), we can find x> 0 and \ €
(0, 1], such that

Xa(A\) = A —q; + Z pab+Zk

b=1,b#a
<—p<0,a=1,2,--

(23)
,n,t > 0.

Let ha(t) = le(t) - Z;(t)vt € [_Ta +oo),a = 1727"' y
then

ha(t) = 2a(t) = 22(t) = —qa(t)(2a(t) — 25(1))
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We consider the Lyapunov function
Va(t) = |ha(t)|e*, X > 0.
Then we get
D™V, (t) < MNhqa(t)]eM

X (za(t) —

— ga(t)sign(za (1) — 25(1))

t )6/\t + Z pab(t)

b=1,b#a
xsign(z4 () — 27 (1)) (2(8) — 77 (£)) e

+ 3" ka(®)]za(t — ry(t))e 70O

zh (t—rp(t)) |6>\t.

—zi(t —mp(t))e”

(24)
From Theorem 3, let
b e C” = {ylp € C,(0) € (m, M), 0 € [-r,0]},
then for Vt >ty .«,a =1,2,--- ,n, we have
Vo () = |ha(t)]|eM < eMv=* (maxg—1 2... n
(6) = Iha(t) oz

maXte[_

Za(t) — 25 (t)| + 1) =
If the aforementioned formula fails to hold, we can identify

ty > ty .- and a € {1,2,--- ,n}, such that for each b =
1,2,--- ,n the conditions

Va(t*) = Kw,z*,Vb(t) < Kw,z*,vt S [*T, t*).
are satisfied. From (23),(24),(26), and

Kyp,zn.

(26)

1
|se™® —te™ | < 6—2\57t|, s,t € (0,400],

we have
0 < D™ Vau(ty) < Mha(t)]|eM — qo(t,)sign(zq(ts)

L) alt) — )P Y palt
b=1,b#a

xsign(zp(t.) — 2 (1)) (zo(t) — 7 ()™

+Zkab

—Za(t* —ro(t))e”

)\Va(t*) - Qa(t*)Va(t*) + Z pab(t*)%<t*)

b=1,b#a
+ Z kab

< [(

)Jza(te = ry(t))e ot

25 (tx—Tp(ts)) ‘e)\t*

IN

o (te — Tt ))e”\rb(t*)

Z Pab*Zk

b=1,b#a

sz*<0

This leads to a contradiction; therefore, equation (25) holds.
It follows that |h,(t)| < Ky .~e* for all ¢ > t, ,« and

a=1,2,---,n. Hence
tll+moo|h )= tllinoova(t) — 2, ()| =0,a=1,2,--+ ,n.

Corollary 7. If the conditions of Corollary 5 are satisfied,
and for each @ = 1,2,--- ,n the inequality > ;" ; beta pcfb +
Shei kil < g holds, then system (6) admits a positive
T-periodic solution that is globally attractive.

Corollary 8. If the conditions of Corollary 6 are satisfied,
and for each a = 1,2,--- ,n the inequality >, ; ba p;'b +
Sy kab 612 < g, holds, then system (7) admits a positive
T-periodic solution that is globally attractive.

IV. EXAMPLES

In this section, we undertake numerical simulations to
substantiate the results from the aforementioned theoretical
analysis.

Example 1. In correspondence with system (6) and system
(7), we first examine the subsequent system:

21(t) = —q1(t)z1(t) + pr2(t)22(t) + ki1 (t)z1(t — r1(2))
Xe—zl(t—n(t)) + k12(t)231 (t _ TQ(t)>€_zl(t_T2(t))7

Zo(t) = —qa(t)z2(t) + p21(t)21(t) + ka1 (¢)22(t — 71(2))
w e~ 72(t=T1(?)) + k‘gg(t)Zg(t _ rQ(t))e—Zz(t—T‘z(t)).
(27)
where n = 2, ¢1(t) = 1.25 4+ 0.21cos(t),p12(t) =
0.052 + 0.03cos(t), k11(t) = 1.3 + 0.01cos(t), k12(t) =
1.35 + 0.03cos(t), g2(t) = 1.87 + 0.38cos(t),p21(t) =
0.045 + 0.002 cos(t), k21(t) = 1.32 4 0.01 cos(t), kaa(t) =
1.34 + 0.02cos(t),r1(t) = r1 = 0.25,73(t) = ro = 0.25.
First, from the parameters of system (27), it can be observed
that these parameters are consistent with assumptions (Hy)
and (Hs). Next, by direct calculation of conditions (10) and

(11) in Theorem 5, we can get

—1.04M + 0.082M +2.69¢~! < 0,
—1.49M + 0.047M +2.6%9¢~! < 0,

and

—1.46 4+ 0.022 4- 2.61e™™ > 0,
—2.25+0.043 + 2.63e™™ > 0,

where 1.0329 < M < +oo, 0 < m < 0.1755 and T =
27. Consequently, the conditions of Theorem 5, Corollary
5, Corollary 7, and Corollary 8 are fulfilled. Invoking the
conclusions of these results, we deduce that system (27) is
permanent and there exists at least one 2m-periodic solution.
Furthermore, through direct computation of condition (22) in
Theorem 5, we derive that

+ 1 + 1
kllez +k12t?2

1

—q7 +ph + —1.04 +0.082 + 2.696—2
0,

1

—1.49+0.047 + 2.696—2

0.

A

—g; +p3 +kh =+ khe

A

Consequently, the conditions of Theorem 5, Corollary 5,
Corollary 7, and Corollary 8 are fulfilled. Invoking the
conclusions of these results, we deduce that system (27) has
a globally attractive 2m-periodic solution.
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Fig 1: Dynamical behaviors of system (27)

As depicted in Fig. 1(a,b,c), numerical simulation results
strongly indicate that system (27) has a globally attractive
2m-periodic solution. Here, we have selected multiple sets
of different initial conditions.

Example 2. In correspondence with systems (6) and (7),
we next examine the subsequent system:

21(t) = —q1 ()21 (t) + p12(t)22(t) + k11 ()21 (t — r1(2))
Xe—zl(t—rl(t)) + k12(t)21 (t _ Tg(t))e_zl(t_rz(t)),
—q2(t)22(t) + pa1(t) 21 (t) + ka1 (t)z2(t — 7r1(1))
xe™ 2= 0) L koo ()29 (8 — 1o (t))e 2220,
(28)

Z(t) =

t
0.36 + 0.08sin(t), k11(t) = 0.001 4 0.003 sin(t), k12(t)
0.003 + 0.005sin(t), g2(t) = 2.73 + 0.45sin(t), pe1(t) =
0.54 + 0.03sin(t), k21(t) = 0.004 4 0.002sin(t), koa(t) =
0.007 + 0.004 sin(t),r1(t) = r1 = 0.5,r2(t) = ro = 0.55.
First, from the parameters of system (28), it can be observed

where n = 2, ¢1(t) = 2.16 + 0.77sin(t), p12(t)
t

that these parameters are consistent with assumptions (Hy)
and (Hs). Next, through direct computation of the conditions
in Theorem 4 and Corollary 4, we derive that
—q; + pirz + kfl + k5 = —1.39 + 0.44 + 0.004 + 0.008
=—-0.938 <0,
—qy +ply + ki, + ki, = —2.28 + 0.57 + 0.006 + 0.011
= —1.693 < 0.
Clearly, the conditions of Theorem 4 and Corollary 4 hold.

Consequently, invoking the conclusions of these results, we
deduce that system (28) becomes extinct.

()

0.4

0.35
0.3

0.25

0.15
0.1

0.05& §

oO 5 10 ) 15 20 25

(b)
Fig 2: Dynamical behaviors of system (28)

As shown in Fig 2(a,b), numerical simulation suggests that
system (28) is extinct.Here, we have selected multiple sets
of different initial conditions.

V. CONCLUSIONS

In this study, we analyze a non-autonomous Nicholson
blowflies model with time-varying coefficients and contin-
uous delays. To the best of our knowledge, this is the first
investigation into the dynamic properties of non-autonomous
system (6). Our findings reveal that both time delays and
patch migration profoundly impact Nicholson’s blowflies
dynamics. First, using differential inequality techniques and
the comparison principle, we derive novel conditions en-
suring the system’s permanence, extinction, and existence
of positive periodic solutions. Second, by constructing an
appropriate Lyapunov functional and applying analytical
inequality methods, we establish sufficient conditions for the
system’s global attractivity. Finally, we provide a numerical
example to demonstrate the feasibility of our main results.
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Additionally, we derive sufficient conditions for the perma-
nence, extinction, existence of periodic solutions, and global
attractivity of system (7). By extending systems (2)-(5) to
system (6) and deriving conditions for the dynamic behaviors
described above, this study generalizes and expands upon
previous works [12-16] and other relevant studies.
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