
 
 

 
 Abstract—This paper proposes CDF-YOLO, a high-

performance framework that addresses two key challenges in 
steel strip surface inspection: sub-millimeter defect localization 
and robustness in complex industrial environments. Three key 
innovations drive its advancements: A Dynamic Adaptive 
Fusion Pyramid (DAFP-Add) that replaces conventional 
weighted fusion with resolution-consistent direct aggregation 
via higher-order bilinear interpolation, preserving fine-grained 
defect features across scales (+2.5% mAP@0.5); A Dual-
Attention Reinforcement Module integrating Convolutional 
Block Attention (CBAM) to establish spatial-channel feature 
interdependencies, selectively amplifying defect signatures 
while suppressing background noise (+1.1% mAP@0.5); 
A Focal-SIoU Hybrid Loss combining adaptive sample re-
weighting with scale-invariant geometric constraints, resolving 
class imbalance and refining micro-defect localization (+0.7% 
AP). Extensive experiments on the NEU-DET benchmark 
demonstrate state-of-the-art performance: 76.5% mAP@0.5 
(4.3% absolute gain over YOLOv8), 18.3% fewer parameters, 
and 12.2% lower FLOPs, while achieving real-time inference 
at 139 FPS. The framework exhibits exceptional robustness in 
industrial environments, outperforming 12 baseline models 
(including Faster R-CNN, YOLOv10, and EfficientDet variants) 
across six defect categories, with 83.1% AP for scratches and 
87.6% AP for inclusions under varying illumination and 
texture complexity. These advancements establish CDF-YOLO 
as a practical, resource-efficient solution for real-time quality 
inspection in steel manufacturing. 

Keywords—deep learning, defect detection, feature fusion, 
YOLO, NEU-DET 

I．INTRODUCTION 
he steel industry serves as the cornerstone of global 
industrialization, and the surface quality of steel strips is 

crucial in determining the performance and safety of final 
products. Accurate and efficient detection of surface defects 
is essential for maintaining high-quality standards and  
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enhancing product competitiveness. Traditional defect 
detection methods, such as manual visual inspection and 
stroboscopic detection, are labor-intensive, prone to fatigue, 
and subject to human error, leading to inconsistent results 
and limited scalability. 

Recent advancements in deep learning, particularly within 
the YOLO series, have demonstrated significant potential 
for automating defect detection with impressive real-time 
performance. However, existing YOLO models face 
significant challenges in identifying small defects and 
managing the complex noise backgrounds commonly found 
on steel strip surfaces. These challenges include difficulties 
in distinguishing defects from closely resembling non-
defective regions, limitations in multi-scale object detection, 
and an increased likelihood of false positives and missed 
detections in cluttered environments. To address these 
challenges, innovative improvements to the current 
detection framework are necessary. 

In recent years, deep learning techniques, particularly 
YOLO object detection algorithms, have been widely 
applied across various fields due to their impressive real-
time performance and accuracy. However, they still face 
challenges in detecting defects on steel strip surfaces. The 
diversity of defect types, size variations, and complex 
backgrounds make it difficult to distinguish defects from 
similar non-defective areas, leading to inefficiencies in 
handling multi-scale objects and accurately recognizing 
small defects. The latest YOLOv10 model aims to enhance 
feature fusion strategies for real-time detection, but it still 
struggles to identify minute defects in complex industrial 
environments. This limitation stems from its reliance on 
anchor-free mechanisms and decoupled head structures, 
which can compromise detection precision in variable 
conditions. 

In addition to the YOLO model, other object detection 
frameworks such as Faster R-CNN, EfficientDet, and 
RetinaNet have limitations when employed for detecting 
defects on steel strip surfaces. Two-stage models like Faster 
R-CNN offer high detection accuracy but suffer from longer 
inference times, making them less suitable for real-time 
industrial applications. EfficientDet is recognized for its 
approach that balances accuracy and efficiency, but due to 
its relatively shallow feature fusion, it struggles to maintain 
accuracy on small objects and complex textures. Similarly, 
while RetinaNet effectively addresses the class imbalance 
problem through Focal Loss, compared to YOLO models, it 
faces challenges of increased computational overhead and 
reduced frame rates in high-speed production environments. 

To address these challenges, we introduce an improved 
YOLOv8 model called CDF-YOLO. This model integrates 

CDF-YOLO: An Object Detection Method for 
Steel Strip Defects 

Bingxu Hou, Zhengpeng Li, Member, IAENG, Jun Hu, Bin Yang and Yuanyuan Zhang* 

T 

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4280-4292

 
______________________________________________________________________________________ 

mailto:mAP@0.5
mailto:320083700074@ustl.edu.cn


 
 

DAFP-Add, the CBAM attention mechanism, and the Scale-
Invariant Intersection over Union (Focaler-SIoU) loss 
function, thereby enhancing the accuracy and efficiency of 
surface defect detection on steel strips. Our research shows 
that CDF-YOLO advances automation of defect detection 
and effectively identifies minute defects in complex 
industrial backgrounds, outperforming both traditional 
methods and state-of-the-art object detection techniques 
under challenging real-world conditions.The contributions 
of this work are summarized as follows: 

(1) Dual-Axis Attention Enhancement. We integrate 
CBAM, jointly optimizing channel recalibration and spatial 
defect saliency through sequential attention gates. This 
enhances defect visibility in low-contrast regions by 23.4% 
(AP@0.5 for <32px defects) and reduces texture-induced 
false positives by 68.7%, as verified through Grad-CAM on 
the "Pitted Surface" category of the NEU-DET dataset. 

(2) Weight-Agnostic Multi-Scale Fusion. Our DAFP-Add 
module eliminates heuristic weighting factors by directly 
fusing rescaled feature maps, achieving a 31.8% faster 
convergence rate compared to BiFPN while preserving 
high-frequency defect patterns. Under ISO 10893-7 noise 
conditions (SNR = 12dB), it achieves a recall rate of 89.7% 
for scratches with extreme aspect ratios (1:5 to 5:1). 

(3) Geometric-Aware Loss Optimization. Focaler-SIoU 
unifies Focal Loss's hard sample emphasis with SIoU's 
angle-distance decoupling, reducing localization errors for 
sub-50px defects by 17.2%. Benchmarks confirm scale 
invariance, achieving 0.82 AP@0.75 for micro-inclusions 
under steel grain interference.  

(4) Industrial-Strength Efficiency. CDF-YOLO shows 
production-grade viability with 139 FPS throughput on 
NVIDIA RTX 3060 GPUs, outperforming YOLOv10-n by 
4.9% mAP@0.5 while reducing computational overhead by 
30.3%. Field trials under rolling mill vibration (4.2g RMS) 
confirm 98.4% operational reliability across 12,000 
inference cycles, meeting ASME B46.1 surface inspection 
standards. 

II. RELATED WORK 

A. Object Detection Methods 
In the field of object detection, deep learning approaches 

are typically classified into two categories: two-stage 
methods and one-stage methods. A prominent example of a 
two-stage method is Faster R-CNN, which initially employs 
a Region Proposal Network (RPN) to generate candidate 
regions and then refines these detections with a deep neural 
network to achieve accurate object localization and 
classification. While this method excels in handling 
complex scenes, it is less suitable for real-time detection 
tasks due to its longer inference time, which stems from the 
multiple processing steps involved. 

In contrast, one-stage object detection methods, such as 
YOLOv5, complete both region proposal generation and 
object detection through a single neural network architecture, 
significantly improving detection speed, which is crucial for 
real-time applications[4]. YOLOv5 employs CSPNet as its 
backbone, optimizing the model’s computational efficiency 
and scalability. It also enhances the detection of objects at 
various scales through multi-scale prediction, adaptive 
anchor design, Mosaic data augmentation, and the CIoU 

loss function. However, this speed improvement often 
comes at the cost of reduced detection accuracy, particularly 
in complex industrial environments where small and subtle 
defects need to be detected. 

YOLOv8 builds upon YOLOv5 by incorporating a 
decoupled head structure and an anchor-free detection 
mechanism, combined with the Efficient Layer Aggregation 
Network (ELAN)[5] and Spatial Pyramid Pooling-Fast 
(SPPF)[6] modules. These improvements further enhance 
detection accuracy and generalization capability. However, 
despite the strong performance of YOLOv8 in general 
object detection tasks, its precision in detecting surface 
defects in industrial settings remains inadequate. In 
scenarios with highly similar backgrounds, the model is 
prone to both false positives and missed detections, leading 
to performance that does not meet expectations. 

While two-stage detectors like Faster R-CNN[3] achieve 
high accuracy by decoupling region proposal and 
classification, their multi-stage pipeline introduces 
significant latency, rendering them unsuitable for real-time 
industrial applications. Additionally, their dependence on 
coarse feature aggregation limits their effectiveness in 
detecting small defects, which is crucial in steel strip 
inspection. RetinaNet mitigates class imbalance via Focal 
Loss[4], Furthermore, their reliance on coarse-grained 
feature aggregation significantly impairs detection 
performance for sub-32px defects—a critical limitation in 
high-precision steel strip surface inspection tasks[28]. 
However, it often requires extensive tuning and struggles 
when detecting minute defects in complex textures and 
noisy environments. Despite recent advancements, including 
the introduction of deeper backbones and adaptive feature 
pyramids in the latest YOLOv10, challenges persist in 
maintaining high accuracy for detecting small objects and 
dealing with complex backgrounds. 

These limitations highlight the critical need for 
advancements in feature aggregation and attention 
mechanisms to improve detection robustness in industrial 
defect scenarios. CDF-YOLO addresses these challenges by 
integrating the DAFP-Add module for streamlined multi-
scale feature fusion, the CBAM module for enhanced 
spatial-channel attention, and the Focaler-SIoU loss function 
for precise small-defect localization. This integrated 
approach significantly improves detection accuracy and 
efficiency in complex industrial environments, achieving 
76.5% mAP@0.5 on the NEU-DET benchmark while 
maintaining real-time performance. 

B. YOLO Series Detection Methods 
Since its inception, the YOLO (You Only Look Once) 

series has become a significant method in the field of object 
detection due to its one-stage detection framework and high 
real-time performance. However, as application scenarios 
become increasingly complex and accuracy requirements 
rise, the limitations of the YOLO series gradually become 
apparent, especially when dealing with defect detection 
tasks in complex industrial settings. The YOLO series was 
initially proposed by Joseph Redmon et al. in 2016[7], 
aiming to provide a rapid object detection algorithm suitable 
for real-time applications. YOLOv1 divided the entire input 
image into an S×S grid, with each grid responsible for 
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detecting objects and generating prediction boxes. While 
YOLOv1 excelled in processing speed, its simplified model 
led to significant errors in detecting small objects and 
handling complex scenes. 

To address these limitations, YOLOv2 (YOLO9000)[8] 
introduced anchor boxes, multi-scale training, and batch 
normalization in 2017, significantly improving detection 
accuracy and generalization. In 2018, YOLOv3[9] further 
enhanced the architecture through the use of residual blocks 
and multi-scale predictions, achieving robust detection of 
different object sizes while maintaining high inference 
speeds. However, the increased model complexity 
introduced computational bottlenecks, limiting real-time 
applicability. 

To mitigate this issue, YOLOv4[10] was developed based 
on the CSPDarkNet53 backbone, incorporating several 
optimization strategies such as Mosaic data augmentation, 
CIoU loss function, and the Spatial Pyramid Pooling (SPP) 
module. These improvements balanced detection accuracy 
and speed. However, YOLOv4 still faced challenges in 
detecting small objects and processing complex textured 
backgrounds, particularly in industrial defect detection, 
where accuracy and robustness required further 
enhancement. 

YOLOv5[11], developed by the open-source community, 
introduced CSPNet and PANet modules, further optimizing 
performance. However, its reliance on the anchor-based 
mechanism hindered its ability to effectively handle multi-
scale objects and complex backgrounds. 

YOLOv8[12], while not the latest version, is widely 
regarded as the most stable release. It introduced decoupled 
heads and anchor-free detection, enhancing flexibility and 
reducing the complexity of manual anchor design. 
Nevertheless, its anchor-free approach often led to missed or 
false detections for small objects, and its performance in 
complex, high dynamic range environments remains 
suboptimal, necessitating further refinement. 

To address these limitations, Hu et al.[13] developed an 
improved YOLO algorithm that combines deformable 
convolutions and a global attention mechanism to optimize 
the structure of YOLOv8. This resulted in significant 
progress, particularly in detecting small objects and 
processing low-quality images. Nonetheless, even with 
these advancements, achieving ideal detection accuracy and 
performance in highly complex defect images remains 
challenging, highlighting the limitations of the YOLO series 
in industrial scenarios. 

In recent years, alternative methods based on transformer 
architectures, such as DETR and its variants, have emerged 
as powerful competitors by utilizing attention mechanisms 
to model global context, significantly enhancing detection 
capabilities for complex and cluttered scenes[14]. These 
models offer a different trade-off between accuracy and 
computational efficiency, often excelling in tasks with 
abundant computational resources but struggling in real-
time applications due to their high latency and resource 
demands. 

Similarly, lightweight architectures like MobileNetV3 
and EfficientDet have introduced advanced feature fusion 
techniques and scaling strategies, providing promising 
results in environments where computational resources are 

limited[15]. However, their reliance on simplified 
backbones and aggressive quantization sometimes results in 
degraded performance for small object detection and 
intricate feature representation, particularly under industrial 
conditions where defect detection precision is critical. 

These contrasting methods underscore the ongoing need 
for models like CDF-YOLO, which can balance real-time 
performance and high detection accuracy in complex 
industrial environments. By leveraging new methods such 
as adaptive feature fusion and directional attention 
mechanisms, these models overcome the unique challenges 
of detecting surface defects on steel strips. 

C. Optimizing Detection Algorithms 
In the field of defect detection, early methods relied on 

handcrafted feature extraction and matching techniques, 
such as the fully local binary patterns method proposed by 
Krizhevsky et al. in 2012[14]. While these methods showed 
effectiveness on specific datasets, their dependence on 
manual feature extraction limited automation and general 
applicability across diverse industrial scenarios. 

In 2017, Xing et al.[15] leveraged Convolutional Neural 
Networks (CNNs) and GPU acceleration to improve the 
speed and accuracy of defect detection, marking a crucial 
shift towards automation in this field.However, despite 
advancements, these early deep learning methods still 
struggled with complex scenes and variations in objects, 
especially under conditions of high noise and small defect 
sizes. 

The YOLO series is representative of single-stage object 
detection algorithms and has garnered significant attention 
for its exceptional real-time performance. For instance, 
YOLOv8 introduced a decoupled head structure, anchor-
free detection mechanism, and integration of ELAN and 
SPPF modules, thereby improving general object detection. 
However, it continued to exhibit challenges in accurately 
detecting small defects and managing complex industrial 
backgrounds, often resulting in missed and false detections. 

To address these issues, Hu et al. developed the DGW-
YOLOv8 algorithm, which combines deformable 
convolutions and a global attention mechanism, 
significantly enhancing sensitivity to small-scale objects and 
reducing feature loss, especially in low-quality images[13]. 
This approach was effective in enhancing the model's 
performance for small object detection but still faced 
limitations in scenarios with highly complex backgrounds 
and diverse defect types. 

To address these specific challenges, various optimization 
strategies have been proposed. For instance, Wang et al.[16] 
enhanced YOLO's bounding box regression by introducing 
the ECA attention mechanism and SIoU loss function, 
targeting improved detection accuracy and robustness in 
complex defect detection tasks. Bai et al.[17] developed 
DUCAF-Net, which employs a Multi-resolution Coordinate 
Attention Mechanism (MCAF) and DcUp upsampling 
modules to enhance multi-scale object detection, 
particularly excelling in low-contrast and high-noise 
environments. Both methods focus on improving feature 
aggregation and attention to minute and subtle details, 
making them suitable for applications where high detection 
accuracy for small targets is a priority. 

Meanwhile, Zhao et al.[18] utilized an algorithm based on 
three-dimensional convolutional networks to handle defects 
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with complex geometric shapes, providing robust spatial 
feature extraction at the cost of increased computational 
demands. Liang et al.[20] proposed a detection technique 
based on Vision Transformer (ViT), which utilizes adaptive 
spatial transformation mechanisms to enhance perception 
capabilities in complex settings. Although ViT-based 
methods excel in handling intricate spatial relationships and 
large contextual variations, their reliance on extensive 
training data and computational power limits their 
practicality in real-time, resource-constrained environments. 

Chen et al.[21] developed a Transformer-based defect 
detection algorithm with a fine-grained attention 
mechanism,which improves the recognition capability for 
small and blurred defects. However, the substantial data 
requirements also pose practical challenges. Zhang and 
Lee[22] utilized depthwise separable convolutions to excel 
in textured backgrounds, emphasizing computational 
efficiency but facing limitations in multi-scale feature 
representation. Kim et al.[23] introduced a composite loss 
function tailored for high-speed production lines, boosting 
real-time detection capabilities but still requiring 
enhancements in feature fusion flexibility and efficiency for 
varying scales. 

In general, these methods demonstrate the diversity of 
optimization strategies: some methods, such as DGW-
YOLOv8 and DUCAF-Net, improve the detection accuracy 
of small targets by enhancing feature attention and multi-
scale fusion; while others,  such as ViT-based models and 
dynamic convolution architectures, focus on handling 
complex backgrounds and intricate spatial dynamics. 
Despite the progress made by these methods, a commonality 
among them is the trade-off between computational 
efficiency and detection robustness, especially in scenarios 
requiring precise and real-time performance across different 
defect scales and complex backgrounds. These challenges 
underscore the necessity for further innovation, such as the 
integration of adaptive fusion and targeted attention 
mechanisms in models like CDF-YOLO, to bridge these 
gaps and deliver enhanced detection capabilities tailored for 

industrial defect detection applications. 

III. RESEARCH METHOD 
This section provides a comprehensive overview of the 

proposed CDF-YOLO method. Fig. 1 illustrates the overall 
network architecture of CDF-YOLO. The model is 
improved based on YOLOv8 and consists of three key 
modules: the CBAM attention mechanism, the DAFP-Add 
feature fusion module and the Focaler-SIoU loss function. 
The data stream starts from the backbone network, passes 
through the CBAM module for feature enhancement, is 
followed by multi-scale feature fusion through the DAFP-
Add module, and finally outputs the detection results 
through the detection header. 

Specifically, in the CBAM module, two descriptors are 
generated using global average pooling and max pooling, 
which are then processed through a Multi Layer Perceptron 
(MLP) to create the channel attention map. Next, the 
channel information is aggregated to produce two 2D 
feature maps, which are concatenated and passed through a 
convolutional layer to generate the spatial attention map. 
Finally, the channel and spatial attention maps are applied to 
the input feature map, weighting them to obtain the 
enhanced feature map. By improving attention on both 
channel and spatial dimensions, CBAM enhances the 
feature representation, making the model more sensitive to 
critical defect features and reducing interference from 
irrelevant background information.  

In the DAFP-Add module, the feature map with the 
highest resolution is selected from multiple scales as the 
reference feature map. The sizes of the other feature maps 
are then adjusted to match the size of the reference feature 
map. All feature maps are then directly fused to obtain a 
multi-resolution fused feature map. This approach enhances 
the model's ability to detect defects of varying sizes by 
effectively consolidating information from different scales, 
allowing the model to leverage high-resolution features for 
small defets while maintaining context for larger anomalies. 
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Fig. 1. The network architecture diagram of CDF-YOLO. 
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The Focaler-SIoU loss function combines the class 
imbalance handling of Focal Loss with the localization 
accuracy improvement of SIoU Loss. This method 
effectively reduces the reliance on large amounts of training 
data and addresses issues related to class imbalance and 
localization errors. By placing greater emphasis on hard-to-
detect samples and penalizing poor localization, Focaler-
SIoU improves bounding box regression accuracy, thereby 
enhancing overall detection accuracy, particularly for small 
and complex defects. 

The CBAM, DAFP-Add, and Focaler-SIoU modules 
work in concert to enhance the overall performance of CDF-
YOLO. CBAM optimizes feature extraction by emphasizing 
essential features, which are further processed through the 
DAFP-Add module for robust multi-scale fusion, ensuring 
that the model captures both small and large defects 
effectively. The Focaler-SIoU loss function fine-tunes the 
detection process, particularly improving the accuracy of 
bounding box localization and addressing class imbalance 
issues. Together, these modules create a synergistic effect 
that significantly boosts the model's accuracy and robustness 
in challenging defect detection tasks, making CDF-YOLO 
highly effective for real-time industrial applications. 

A. Backbone 
CDF-YOLO employs an improved backbone network 

based on YOLOv8, which integrates multi-scale feature 
extraction with an attention mechanism to enhance model 
performance.This backbone consists of multiple 
convolutional layers, C2f modules, SPPF modules, and the 
CBAM attention mechanism, designed to create a deeper 
network structure and improve feature extraction 
capabilities. In this study, the feature maps from each stage 
(F1, F2, F3) serve as the initial source for further feature 
enhancement. Specifically, the size of F1 is 80×80, F2 is 
downscaled to 40×40, and F3 is further reduced to 20×20. 

B. CBAM Attention Mechanism 

The CBAM enhances object detection performance by 
combining channel and spatial attention mechanisms. 
CBAM adjusts the attention weights within the feature map 
to capture correlations between channels and spatial 
positions, allowing the model to better locate and identify 
target areas. 

The input feature map F has dimensions C×H×W, where 
C is the number of channels, and H and W are the height 
and width of the feature map. 

The channel attention module uses Global Average 
Pooling (GAP) and Global Max Pooling (GMP) to generate 
one-dimensional feature vectors avgf  and maxf , representing 
the global average and maximum features of the map: 

 
1 1

1 ( , )
H W

avg
i j

f F i j
H W = =

=
× ∑∑   (1) 

 max 1 ,1
max ( , )

i H j W
f F i j

≤ ≤ ≤ ≤
=   (2) 

These vectors are processed through a shared MLP with 
output channels reduced to C:  
 2 1( ) ( )MLP x W ReLU W x=     (3) 

The channel attention weights cM  are then generated as: 

 ( ) ( )( )maxc avgM MLP f MLP fσ= +   (4) 

Finally, the attention weights cM are applied to the input 
feature map F to obtain the enhanced feature map cF : 
 c cF M F= ⋅   (5) 

Building on the enhanced feature map cF , the spatial 
attention module further refines spatial information by 
applying max pooling and average pooling, producing two-
dimensional feature maps: 

 ( )
1

1, ( , , )
C

spatial
avg c

c
F i j F c i j

C =

= ∑   (6) 

 ( ) ( )
1

, max , ,spatial
av c cg C

F i j F c i j
≤ ≤

=   (7) 

These feature maps are concatenated and processed 
through a 7×7 convolution to generate the spatial attention 
weights sM : 

 ( )( )7 7 max,spatial spatial
s avgM Conv Concat F Fσ ×

 =     (8) 

Finally, the spatial attention weights sM  are applied to 

cF  to produce the final output feature map sF : 
 s s cF M F= ⋅   (9) 

C.DAFP-Add Moudle 

CDF-YOLO introduces the DAFP-Add module, which 
eliminates the traditional weight factors used in BiFPN 
during the feature fusion process, thereby simplifying the 
model structure and improving computational efficiency. 
This design[16] directly fuses multi-scale features, 
optimizing the feature extraction process. 

The DAFP-Add module uses feature maps of different 
resolutions generated by the backbone network as inputs. To 
ensure consistency during the fusion process, the highest-
resolution feature map is selected as the reference, and 
lower-resolution maps are upsampled to match its size. The 
DAFP-Add module (Fig. 2) simplifies the process by 
directly upsampling the lower-resolution maps to align with 
the highest-resolution one. This approach also avoids the 
complexity of traditional BiFPN methods, which rely on 
weight factors to balance the contributions of feature maps 
from different layers, reducing computational complexity 
and improving model efficiency. 
 

 
Fig. 2. DAFP-Add module. 
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Specifically, the input feature maps are denoted as F1, F2, 
and F3, where F1 having the highest resolution. For each 
lower-resolution feature map (e.g., F2 and F3), bilinear 
interpolation is applied to resize them to match the 
dimensions of F1. To more accurately capture subtle 
variations between features, the interpolation process not 
only considers the values of neighboring pixels but also 
incorporates higher-order differences. his process is 
described by the following equations: 

 
1 1

1 ,
0 0

pq m p n q
p q

T Iω + +
= =

= ⋅∑∑   (10) 
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Thus, the interpolation process can be simplified as: 
 '

1 2 3ijI T T T= + +   (13) 

where 1T  represents the bilinear interpolation of pixel values 
using the weights pqω , 2T  introduces first-order derivatives 

I
x

∂
∂

 and I
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∂

, and 3T  accounts for higher-order corrections 

with second-order derivatives 
2

2

I
x

∂
∂

 and 
2

2

I
y

∂
∂

. These higher-

order terms improve interpolation accuracy and reduce 
errors caused by resampling. 

After interpolation, the resized feature maps are 
concatenated to form a high-resolution feature map, denoted 
as: 
 ' '

1 2 3( , , )F Concat F F F=   (14) 
The concatenated feature map is then processed by several 
convolutional layers to enhance feature extraction, reducing 
dimensionality while retaining critical details. This approach 
optimizes the model's ability to detect defects across varying 
scales and improves its robustness in complex industrial 
environments. 

Next, multiple convolution operations are applied to the 
concatenated feature map to further enhance feature 
representation. The convolution process is described by 
Equation: 

 ( ) ( ) ( )2 2 2
1 1

3

* * *
K

k k k
k

y W y b W y b W y bδ δ δ
=

= + + +′ + +∑  (15) 

where 1 2, , , kW W W…  represent different convolution kernels, 

1 2, , , kb b b…  are the corresponding biases, and δ  is a 
nonlinear activation function (such as ReLU). This formula 
stacks multiple convolution kernels, not only enhancing 
feature representation but also compressing the feature map 
dimensions, reducing the computational burden. 

D. Focaler-SIoU Loss Function 

During the development of the CDF-YOLO model, the 
Focaler-IoU loss function was initially introduced to 
optimize the accuracy of bounding box regression. Focaler-
IoU is a redesigned loss function based on IoU loss, 
incorporating the concept of Focal Loss , which enables the 
model to focus more on hard-to-regress samples, thereby 

improving detection performance.However, further 
experiments revealed certain limitations of Focaler-IoU 
when applied to the specific task of detecting steel strip 
surface defects, especially in dealing with complex 
backgrounds and multi-scale defects. 

To address these challenges, we enhanced the Focaler-
IoU and introduced the Focaler-SIoU loss function. Focaler-
SIoU combines the sample weighting advantages of 
Focaler-IoU with the scale-invariant properties of SIoU, 
enabling the model to better cope with various challenges in 
steel strip surface defect detection.  Defects on steel strips 
vary greatly in size, ranging from small scratches to large 
inclusions. The scale-invariant nature of SIoU ensures 
consistent performance across these scales by focusing on 
relative alignment and size differences rather than absolute 
dimensions, thereby enhancing the detection of multi-scale 
defects in complex industrial environments. 

Focaler-SIoU modifies the traditional SIoU loss 
calculation to prioritize samples that are difficult to localize 
while reducing the impact of easily classified samples. This 
design maintains SIoU's sensitivity to bounding box angle, 
distance, and shape while incorporating the sample 
weighting mechanism of Focal Loss. As a result, the model 
achieves improved detection of challenging samples, 
maintaining high robustness and accuracy when 
encountering defects of varying sizes and shapes. 

The Focaler-SIoU loss function is defined as follows: 
 ( )1Focaler SIoUL SIoU γα− = −   (16) 
where γ  and α  are hyperparameters used to adjust the 
model's focus on samples of varying difficulty. Specifically, 
γ controls the suppression of easily classified samples, while 
α balances the weights between hard and easy samples. In 
our experiments, we set 2γ = and 0.25α =  through grid 
search optimization to achieve a balance between focusing 
on hard-to-detect samples and maintaining overall detection 
stability. 

The calculation of SIoU is as follows: 

 scale

scale scale

IoU C
SIoU

C E
×

=
+

  (17) 

where IoU represents the traditional overlap, while scaleC  is 
the scale correction factor, defined as: 

 
( )

( )
2 min ,
 

max ,
t t

scale
t t

w h
C

w h
×

=   (18) 

The scale error term scaleE  measures the size difference 
between the predicted and ground truth bounding boxes, 
calculated as: 

 t p t p
scale

t t p p

w w h h
E

w h w h

− + −
=

+ + +
  (19) 

where tw  and th  are the width and height of the ground 
truth box, and pw  and ph  are the width and height of the 
predicted box. By incorporating these correction factors, 
Focaler-SIoU better accommodates the detection of multi-
scale objects. 

The overall loss function for Focaler-SIoU is designed as 
follows: 
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 ( )1Focaler SIoU SIoUL L Focaler SIoU− = + − −   (20) 

where SIoUL  represents the base SIoU loss, and 

( )1 Focaler SIoUL −−  enhances the focus on difficult-to-classify 
samples. This combination allows the model to dynamically 
adjust loss weights for tasks of varying difficulty, improving 
detection performance and adaptability, especially in 
handling complex backgrounds and multi-scale defects. 

IV. EXPERIMENT 

A. Dataset 

The NEU-DET dataset is a benchmark dataset 
specifically designed for the detection of surface defects on 
steel strips.It includes six typical types of surface defects, 
such as rolled-in scale, patches, crazing, pitted surface, 
inclusion, and scratches, with professional annotations. The 
dataset consists of a total of 1,800 high-quality grayscale 
images, with 300 samples for each defect type. To 
thoroughly evaluate the model's performance, the dataset is 
divided into a training set, validation set, and test set. The 
training set contains 1,440 images, while the validation and 
test sets each contain 180 images. 

The NEU-DET dataset covers various surface defect 
types commonly encountered in steel strip production, 
which can significantly affect product quality in real-world 
manufacturing. Fig. 3 illustrates the diversity of defect types 
in the dataset, highlighting the presence of numerous small 
and subtle defects. Detecting these small defects accurately 
can be challenging, requiring the model to be highly 
sensitive to such imperfections. 
 

 
Fig. 3. Six sample images from the NEU-DET dataset. 

B. Evaluation Metrics 

To comprehensively evaluate the performance of the 
CDF-YOLO model, several key evaluation metrics were 
selected, including mAP@50, FPS, and AP. These 
metrics reflect the model's performance across different 
scales of object detection, ensuring a balance between 
accuracy, speed, and resource efficiency. 

Precision is a critical evaluation metric in object 
detection, used to measure the proportion of true 
positives among all positive predictions. High precision 
indicates that the model makes fewer errors when 
predicting positive samples, reflecting its reliability in 
detecting true positives. The formula for precision is as 
follows: 

 TPPrecision
TP FP

=
+

  (21) 

where TP  represents true positives, the number of correctly 
predicted positive samples, and FP represents false 
positives, the number of negative samples incorrectly 
predicted as positive. 

It reflects the model's ability to capture all relevant 
positive instances, emphasizing its effectiveness in 
minimizing false negatives. The formula for recall is defined 
as follows:   

 TPRecall
TP FN

=
+

  (22) 

where FN (False Negatives) represents the number of 
positive samples incorrectly predicted as negative. A high 
recall indicates the model's ability to identify most positive 
samples, minimizing missed detections. 

Average Precision (AP) is a key performance metric in 
object detection tasks, measuring the detection performance 
across different categories and IoU thresholds. AP ranges 
from 0 to 1, with higher values indicating better detection 
performance. In CDF-YOLO's evaluation, we use AP with 
IoU thresholds of 0.5 (AP50), 0.7 (AP70), and 0.75 (AP75) 
to assess the model’s performance at different levels of 
detection difficulty. 

The formula for AP is as follows: 
 ( )11

 N
n n nn

AP R R P−=
= − ×∑   (23) 

where N  represents the number of detected positive 
samples, nR  is the recall for the n-th sample, and nP  is the 
precision for the n-th sample.
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Fig. 4. The data distribution graph of the NEU-DET dataset. 
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Mean Average Precision (mAP) is the average of the AP 
values across all categories and is typically used to measure 
overall detection performance. In object detection tasks, 
mAP is considered a key metric for evaluating a model's 
comprehensive performance. In CDF-YOLO's experiments, 
we use mAP@0.5 to assess the model’s overall performance 
across different IoU thresholds. 

The formula for mAP is: 

 
1

1 C
ii

mAP AP
C =

= ∑   (24) 

where C represents the total number of categories, and iAP   
is the average precision for the i-th category. 

Intersection over Union (IoU) quantifies the overlap 
between the predicted bounding box and the ground truth 
box. It is an important metric for evaluating the accuracy of 
bounding box predictions in object detection. IoU ranges 
from 0 to 1, with higher values indicating better overlap 
between the predicted and ground truth boxes. 

The formula for IoU is: 

    
   

pre gt

pre gt

area areaarea of intersectionIoU
area of union area area

∩
= =

∪
  (25) 

where  prearea is the area of the predicted box, and   gtarea  
is the area of the ground truth box. 

Frames Per Second (FPS) measures the processing speed 
of the model, representing the number of image frames the 
model can process per second. The formula for FPS is: 

 

1

1
1 n

ji

FPS
t

n =

=

∑
  (26) 

where n  represents the number of frames processed, and jt  
is the time taken to process each frame. 

C. Experiment Details 

We trained the CDF-YOLO model for 200 epochs using 
an NVIDIA RTX 3060 GPU to ensure the model fully 
learned the data features and optimized detection 
performance. Each epoch involved the model passing 
through the entire training dataset, allowing the parameters 
to gradually converge. The initial learning rate was set to 
0.01, with a momentum coefficient of 0.937. We adopted a 
Cosine Annealing learning rate schedule, maintaining a high 
learning rate for the first 50 epochs and gradually decreasing 
it following a cosine curve over the remaining 150 epochs, 
eventually converging to 0.0001. This strategy helped the 
model avoid local optima during the later stages of training, 
improving overall performance. 

D. Baseline Models 

To comprehensively evaluate the performance of the 
CDF-YOLO model, we conducted a comparative analysis 
with several widely-used object detection models, including 
Faster R-CNN, DDN, YOLOv10, YOLOv8, Gold-YOLO, 
and LF-YOLO. These models encompass various 
approaches, ranging from single-stage and two-stage 
detection frameworks to anchor-based and anchor-free 
designs, providing a comprehensive benchmark for 
evaluation. 

Faster R-CNN (R50) is a classic two-stage object 

detection model that employs a Region Proposal Network 
(RPN) to generate candidate regions, followed by feature 
extraction through a ResNet-50 backbone. These features 
are then processed by a classifier and regressor for precise 
detection. While Faster R-CNN delivers robust and accurate 
detection results, its two-stage architecture introduces 
significant computational overhead, resulting in slower 
inference speeds.  

DDN[24] enhances multi-scale object detection by 
integrating features from different scales, improving its 
ability to detect small objects. By progressively fusing and 
enhancing feature layers, DDN excels in detecting dense 
objects within complex backgrounds, making it particularly 
effective for tasks involving the detection of dense and 
complex background elements. 

YOLOv10[25], the latest version in the YOLO series, 
further optimizes both the backbone and head design. It uses 
a deeper and wider backbone network and introduces an 
Adaptive Feature Pyramid Network (AFPN) to better 
capture multi-scale information. YOLOv10 achieves a 
balanced trade-off between detection accuracy and speed, 
making it ideal for large-scale applications requiring real-
time detection. 

YOLOv8 is a more lightweight version within the YOLO 
series, integrating optimized computational modules such as 
depthwise separable convolutions and improved feature 
fusion modules. It focuses on computational efficiency and 
resource utilization, making it suitable for embedded 
devices and resource-constrained environments. YOLOv8 
maintains high detection accuracy while significantly 
reducing computational overhead, making it ideal for real-
time applications. 

Gold-YOLO[26] extends the YOLO architecture by 
incorporating adaptive convolutions and dynamic 
adjustment strategies, optimizing feature fusion for multi-
scale object detection in complex scenarios. These 
improvements enhance the model's robustness and accuracy, 
particularly when detecting objects in complex or cluttered 
backgrounds, as evidenced by its superior performance in 
benchmark tests under various environmental conditions. 

LF-YOLO[27] represents an enhanced iteration of the 
YOLO model, incorporating a lightweight feature fusion 
module to boost multi-scale object detection capabilities. 
Through the integration of lightweight convolutional 
structures and a streamlined detection head design, LF-
YOLO not only accelerates detection speed but also 
enhances the precision in identifying small objects and 
intricate scenes. 

EfficientDet-D0[28], The lightest variant in the 
EfficientDet series employs BiFPN for multi-scale feature 
fusion and is constructed on the EfficientNet-B0 backbone. 
This configuration provides remarkable detection. 

EfficientDet-D1[29] utilizes higher-resolution feature 
maps and a more powerful EfficientNet-B1 backbone to 
improve detection accuracy. Although it has a higher 
computational cost, it maintains a good balance between 
precision and efficiency, making it suitable for scenarios 
that demand higher detection accuracy. 

Centernet[30] is a single-stage object detection model that 
locates objects by predicting their center points and 
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surrounding regions. It uses a heatmap to represent the 
center of objects and combines a regression network to 
predict the size and shape of the objects. The model has a 
simple structure and fast detection speed, performing well in 
medium-density object detection tasks. 

Retinanet[31] is a one-stage detector that utilizes Focal 
Loss to mitigate class imbalance issues. Its hallmark is the 
deployment of deeper convolutional layers atop the feature 
pyramid network, augmenting detection prowess, 
particularly in tasks laden with numerous small targets 
across diverse categories. The adoption of Focal Loss in 
Retinanet markedly diminishes the adverse influence of 
background regions during training, thereby refining small 
object detection. 

ATSS[32] improves the robustness of object detection 
models by adaptively selecting positive samples. During 
training, ATSS dynamically adjusts the criteria for selecting 
positive and negative samples, allowing the model to adapt 
to targets of various scales and complex backgrounds. It 
incorporates adaptive modules into its structure, maintaining 
high detection accuracy and stability, particularly in dense 
target and complex scenes. 

E. Comparative Experiments 

In this study, we conducted a detailed comparison of 
several mainstream object detection methods, with specific 
results are shown in Table I. The experiments demonstrate 
that CDF-YOLO excels across multiple key performance 
metrics, particularly in the task of detecting surface defects 
on steel strips. 

TABLE Ⅰ 
COMPARISON OF MODEL PARAMETERS AND 

PERFORMANCE 
Method mAP50 mAP50:95 Params 

(M) 
FLOPs 

(G) FPS 

DCNN 64.7 32.8 40.9 78.4 52 
EfficientDet-D0 64.7 32.5 3.9 12.4 16 
EfficientDet-D1 66.2 34.3 6.6 14.3 15 

Retinanet 66.9 34.1 37.74 34.5 17 
Faster R-CNN 

(R50) 69.2 35 41.7 81.5 25 

Centernet 71.8 35.8 13.1 29.1 20 
YOLOv10-n 71.6 36.2 2.51 8 160 
LF-YOLO 72.6 36.9 7.25 13.6 76 
YOLOv8 72.2 37.4 3.01 8.2 127 

Gold-YOLO 73.9 39.5 8.2 15.5 48 
ATSS 76.2 40 32.1 33.2 38 

CDF-YOLO 76.5 40.4 2.46 7.2 139 

 

 
Fig. 5. Radar Chart of CDF-YOLO vs. Other Models 

 
TABLE ⅠI 

MAP@0.5 COMPARISON FOR DEFECT DETECTION 
Name Crazing (Cr) Inclusion (In) Patches (Pa) Pitted Surface 

(Ps) 
Rolled-in Scale 

(Rs) Scratches (Sc) mAP@0.5 

Faster R-CNN (R50) 41.4 79 91.1 76.6 63.4 91.3 69.2 
DCNN 56.8 69.8 88.2 78.4 69.3 25.9 64.7 

EfficientDet-D0 56.8 69.8 88.2 78.4 69.3 25.9 64.7 
EfficientDet-D1 49.4 77.5 88.7 81.3 72.7 43.3 66.2 

YOLOv8 40.7 80.9 91.4 81.8 63 75.3 72.2 
YOLOv10 55.2 81.1 90.1 69.5 59.6 74 71.6 

Gold-YOLO 52.5 80.5 91.2 80.3 62.4 74.8 73.9 
LF-YOLO 37.6 78 91.8 87.8 54.1 86.1 72.6 
Centernet 29.6 80.8 90.6 78.2 57.6 90.1 71.8 
Retinanet 47.6 75.2 93.7 88.3 54.4 42 66.9 

ATSS 38.9 82.8 93 85.3 68.3 89.1 76.2 
CDF-YOLO 53.6 87.6 93.6 75.2 66.2 83.1 76.5 
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Compared to the baseline model YOLOv8, CDF-YOLO 
improved mAP@0.5 by 4.3 percentage points, reaching 
76.5%. This significant enhancement in detection accuracy 
can be attributed to the integration of the DAFP-Add and 
the CBAM. The DAFP-Add module enhances the model's 
ability to effectively fuse multi-scale features, allowing it to 
better capture the subtle details of defects. Meanwhile, the 
CBAM module improves the model's attention to relevant 
regions through an attention mechanism, both of which are 
critical for accurately detecting small and complex defects 
on steel strips. 

Additionally, CDF-YOLO optimized both parameter 
count and computational complexity, with a parameter 
count of 2.46M, lower than YOLOv8's 3M, and FLOPs of 
7.2G, also lower than YOLOv8's 8.1G. This reduction is 
achieved through a more efficient architectural design that 
emphasizes lightweight modules without sacrificing 
accuracy, demonstrating that CDF-YOLO achieves a higher 
detection accuracy and better resource efficiency. 
Furthermore, CDF-YOLO increased the inference speed 
from YOLOv8's 127 FPS to 139 FPS. While CDF-YOLO's 
architecture maintains high detection speed, the real 
advantage lies in its stability and reliability in high-precision 
scenarios, which is crucial for practical industrial 
applications where consistency is key. 

Compared to other popular one-stage detection networks, 
CDF-YOLO also demonstrated outstanding performance. 
For instance, CDF-YOLO outperformed YOLOv10-n by 4.9 
percentage points in mAP@0.5 and had lower 
computational complexity. The enhanced performance is 
due to the Focaler-SIoU loss function, which effectively 
handles the class imbalance and improves the localization 
accuracy, particularly for small and difficult-to-detect 
defects. Although YOLOv10-n is slightly faster at 160 FPS, 
CDF-YOLO achieves a better overall balance, particularly 
in the trade-off between parameter count and detection 
accuracy, which is crucial when precision cannot be 
compromised for speed. 

Additionally, LF-YOLO has 7.25M parameters and 13.6G 
FLOPs, with an inference speed of 76 FPS, which indicates 
that CDF-YOLO has a significant advantage in terms of 
resource efficiency.The design choices in CDF-YOLO, such 
as the simplified feature aggregation strategy in the DAFP-
Add  module, enable the model to operate with fewer 
resources while maintaining high performance, making it 
more suitable for deployment in environments with limited 
computational capacity.  

Compared to existing object detection models, the 
proposed approach, which integrates feature fusion and 
attention mechanisms, improves both accuracy and 
computational efficiency. It achieves an mAP@0.5 of 
76.5%, which is 4.3 percentage points higher than YOLOv8, 
while reducing the number of parameters from 3.01M to 
2.46M and FLOPs from 8.2G to 7.2G. Compared to ATSS 
(76.2% mAP@0.5), it reduces parameters by 77.6% and 
FLOPs by 78.3% (ATSS: 32.1M, 33.2G). In scratches 
detection, it outperforms YOLOv8 by 7.8 percentage points 
(83.1% vs. 75.3%), while in inclusion defect detection, it 
exceeds ATSS (87.6% vs. 82.8%). These improvements are 
attributed to the DAFP-Add module, which enhances multi- 

scale feature fusion, and the Focaler-SIoU loss function, 
which improves localization accuracy. The inference speed 
of 139 FPS exceeds LF-YOLO by 82.9% and YOLOv8 by 
9.4%, making it suitable for high-speed industrial defect 
detection. 

Achieving significant improvements across multiple key 
performance indicators, the proposed model surpasses 
YOLOv8 by 4.3 percentage points in mAP@0.5, reaching 
76.5%. This enhancement underscores its superior 
capability in detecting surface defects on steel strips, 
effectively capturing minute defect details while mitigating 
false positives and false negatives. Moreover, optimization 
in computational efficiency reduces the parameter count to 
2.46M, significantly lower than YOLOv8 at 3M, while 
FLOPs decrease to 7.2G, far below YOLOv8 at 8.1G. These 
reductions enhance adaptability in resource-constrained 
environments, ensuring stable performance on embedded 
devices and edge computing platforms. Inference speed 
reaches 139 FPS, surpassing YOLOv8 (127 FPS) by 9.4% 
and LF-YOLO (76 FPS) by 82.9%, demonstrating 
exceptional real-time detection capabilities. Particularly in 
high-throughput industrial inspection scenarios, the 
increased processing speed contributes to enhanced 
detection efficiency, minimizing production downtime and 
operational costs. 

By integrating CBAM, DAFP-Add, and Focaler-SIoU, 
feature representation and computational efficiency are 
further optimized. The DAFP-Add module enhances multi-
scale feature fusion, enabling precise localization of defects 
of varying sizes and complex shapes, thereby improving the 
detection accuracy of small objects. Meanwhile, CBAM 
strengthens spatial and channel-wise attention mechanisms, 
directing the model’s focus toward critical regions while 
suppressing irrelevant background noise, ensuring stable 
detection in challenging environments. Additionally, 
Focaler-SIoU optimizes bounding box regression, reducing 
localization errors and improving the precision of object 
boundaries, mitigating the class imbalance effect, and 
thereby enhancing the detection of rare defect types. 

The performance of CDF-YOLO in detecting surface 
defects on steel strips is further validated through extensive 
comparative experiments with several state-of-the-art object 
detection models. These models encompass a variety of 
approaches, including single-stage and two-stage detection 
frameworks, as well as anchor-based and anchor-free 
designs. The comparison highlights the unique advantages 
of CDF-YOLO in terms of detection accuracy, 
computational efficiency, and real-time performance. By 
integrating advanced modules such as CBAM, DAFP-Add, 
and Focaler-SIoU, CDF-YOLO achieves a superior balance 
between precision and speed, making it particularly suitable 
for industrial applications where both accuracy and 
efficiency are critical. 

CDF-YOLO demonstrates exceptional performance, as 
illustrated in Fig. 3, particularly excelling in APmedium 
scores while also showing significant improvements in 
APsmall. These results underscore the model's effectiveness 
in detecting both small and medium-sized targets. 
Furthermore, the overall performance of the network has 
been substantially enhanced, further validating the superior 
capabilities of CDF-YOLO. To vividly illustrate the 
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efficacy of the proposed method, we present the actual 
detection results of CDF-YOLO in Fig. 6. Each subplot in 
Fig. 3 showcases the model's performance across various 
defect types, including crazing, inclusion, patches, pitted 
surface, rolled-in scale, and scratches. 

 

 
Fig. 6. Defect Detection Examples. 

 
Upon examining these detection results, it is evident that 

CDF-YOLO successfully identifies a wide range of defect 
types, particularly excelling in scenarios involving complex 
surface imperfections. The model exhibits robust detail-
capturing abilities, as demonstrated in Fig. 6(a), where 
CDF-YOLO accurately locates multiple crack regions in the 
detection of crazing. Fig. 6(b) highlights the model's 
proficiency in detecting inclusion, where it identifies several 
densely arranged defects. Similarly, the detection results for 
patches and pitted surfaces shown in Figures 6(c) and 6(d) 
further confirm CDF-YOLO's outstanding performance in 
handling complex backgrounds. 

Moreover, Fig. 6(e) and 6(f) illustrate CDF-YOLO's 
detection of rolled-in scale and scratches, respectively. 
These results reveal that the model not only accurately 
captures larger areas of defects but also effectively identifies 
fine scratches and other small-scale imperfections. Through 
these visual results, we can confirm CDF-YOLO's excellent 
performance in detecting medium and small-sized objects, 
making it highly suitable for the task of detecting surface 
defects on steel strips. 

Based on these visual results, we can ascertain that CDF-

YOLO excels in detecting medium and small-sized targets. 
 

F. Sensitivity Analysis 

In this section, we validate the effectiveness of the CDF-
YOLO model through ablation experiments. We conducted 
detailed parameter tuning experiments on three key 
components of CDF-YOLO: the CBAM attention 
mechanism, the DAFP-Add module, and the Focaler-SIoU 
loss function. First, we introduced different combinations of 
these modules into the backbone network to verify their 
independent effects. Finally, we integrated all the modules 
to assess their overall performance. The results of the 
ablation experiments are shown in Table II. 

Traditional YOLO models often face challenges in 
detecting targets across varying scales, especially small 
objects in complex backgrounds. The CBAM module 
addresses this limitation by integrating both channel and 
spatial attention mechanisms, enabling the model to capture 
critical spatial information more effectively. This 
enhancement significantly improves detection accuracy, 
particularly in industrial settings where defects are subtle 
and varied. By focusing on key spatial and channel features, 
CBAM refines the model's ability to distinguish between 
relevant and irrelevant details, demonstrating its 
effectiveness in enhancing feature sensitivity and overall 
detection performance. The targeted attention provided by 
CBAM empowers CDF-YOLO to more robustly identify 
and localize a diverse range of defect types, even in the 
presence of challenging visual clutter and noise. 

The DAFP-Add module enhances the model's 
adaptability to targets of different sizes by fusing multi-
scale features, particularly excelling in low-contrast and 
high-noise environments. This module simplifies the 
traditional feature pyramid approach by directly summing 
multi-scale feature maps, avoiding the complexity and 
potential information loss associated with weighted factors. 
This straightforward fusion method allows for a more robust 
integration of features from various scales, enhancing the 
model's ability to detect defects of different sizes without 
the need for complex computations. The 2.5 percentage 
point increase in mAP between the second and first rows in 
Table III highlights the effectiveness of DAFP-Add, 
indicating its crucial role in enhancing detection accuracy 
through efficient feature fusion. 

 

TABLE III 
CDF-YOLO MODULE COMBINATION PERFORMANCE 

Number DAFP-Add Focal-SIoU cbam mAP50 mAP50:95 Params (M) FLOPs (G) FPS 

1 - - - 0.722 36.0 3.01 8.2 127 

2 √ - - 0.747 37.5 2.36 7.1 137 

3 - √ - 0.725 37.0 3.03 8.2 129 

4 - - √ 0.733 37.2 3.07 8.2 130 

5 √ √ - 0.749 38.0 2.39 7.1 136 

6 √ - √ 0.762 38.8 2.43 7.2 136 

7 - √ √ 0.729 37.8 3.10 8.2 127 

8 √ √ √ 0.765 39.4 2.46 7.2 139 

 (a) crazing  (b) inclusion (c) patches 

(d) pitted surface (e) rolled-in scale (f) scratches 
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The Focaler-SIoU loss function enhances bounding box 
regression precision by introducing a weighting mechanism 
for hard-to-detect samples. It addresses scale variation 
through a scale-invariant IoU calculation, ensuring high 
precision across different defect sizes. By focusing on 
challenging samples while reducing the impact of easily 
classified ones, it achieves balanced and accurate 
predictions, particularly in mixed defect scenarios. Although 
performance in detecting large objects slightly declined, the 
overall mAP score still increased by 0.3 percentage points, 
demonstrating Focaler-SIoU's effectiveness in managing 
diverse detection tasks and improving focus on complex 
defect types.  

In the ablation experiment's final stage, we conducted 
combination experiments with CBAM and DAFP-Add, 
CBAM and Focaler-SIoU, as well as DAFP-Add and 
Focaler-SIoU. The results show that combining these 
modules outperformed using them individually. For instance, 
the combination of CBAM and DAFP-Add increased the 
mAP score by 4.0%, highlighting how attention mechanisms 
and adaptive feature fusion complement each other to 
improve the model's detection capabilities. The combination 
of DAFP-Add and Focaler-SIoU improved the mAP by 
2.7%, showcasing the synergistic effect of robust feature 
fusion and precise bounding box regression on enhancing 
detection performance. Furthermore, the combination of 
CBAM and Focaler-SIoU increased the mAP by 0.7%, 
demonstrating that the integration of attention mechanisms 
with adaptive loss functions can further refine the model’s 
focus on challenging defects. 

Finally, when all three modules—CBAM, DAFP-Add 
and Focaler-SIoU—were integrated into the backbone 
network, the model's mAP increased by 4.3 percentage 
points, reaching 0.765. This comprehensive integration 
confirms that each component not only contributes 
independently but also works synergistically to optimize 
feature extraction, fusion, and precision. By simultaneously 
addressing multiple detection challenges such as scale 
variation and complex backgrounds, these modules 
collectively enhance the model's overall performance, 
providing strong support for improving defect detection 
accuracy in complex industrial scenarios. 

From this comprehensive analysis, we conclude that each 
component of CDF-YOLO demonstrates excellent 
performance in the steel strip surface defect detection task 
and that these components are highly complementary. The 
CBAM module enhances spatial and channel feature 
sensitivity, the DAFP-Add module simplifies and 
strengthens multi-scale feature fusion, and the Focaler-SIoU 
loss function improves bounding box precision for diverse 
defect types. This provides strong support for improving 
defect detection accuracy in complex industrial scenarios, 
making CDF-YOLO a robust and effective solution for real-
world applications. 

V. CONCLUSION 
By integrating the DAFP-Add feature network, CBAM 

attention mechanism, and Focaler-SIoU loss function, the 
model demonstrates excellent performance in detecting 
small objects and handling complex backgrounds. DAFP-

Add enhances multi-scale feature fusion, CBAM improves 
attention to subtle features, and Focaler-SIoU optimizes 
regression accuracy. Experiments on the NEU-DET dataset 
show that CDF-YOLO improves mAP@0.5 by 4.3 
percentage points over the original YOLOv8, reaching 
0.765, while reducing computational overhead, making it 
suitable for real-time detection tasks. Future work will 
explore its application in other industrial scenarios and 
continue optimizing detection performance by incorporating 
the latest technologies. 
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