
 

  

Abstract—Traditional Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) method relying on 

Euclidean distance is often misrepresenting maritime spatial 

relationships, leading to inaccurate clustering. Therefore, this 

study aimed to integrate Haversine formula with DBSCAN 

algorithm to enhance ship encounter detection using Automatic 

Identification System (AIS) data. The application of Haversine 

formula ensured more precise geodesic distance measurement 

to improve clustering accuracy in ship encounter detection and 

collision risk assessment. The results showed that clustering 

evaluation using Silhouette Index and Davies-Bouldin Index 

(DBI) confirmed the superiority of DBSCAN-Haversine over 

DBSCAN-Euclidean in structuring well-separated clusters. 

Specifically, silhouette scores ranged from 0.240 to 0.310 and 

DBI values were between 1.037 and 1.335. An event-based 

evaluation also validated DBSCAN-Haversine by simulating 

ship movements and computing Collision Risk Index (CRI), 

showing the capability to detect high-risk encounter that 

DBSCAN-Euclidean misclassified as outliers. This study 

showed the importance of compliance with International 

Regulations for Preventing Collisions at Sea (COLREGs) in 

ship encounter scenarios. The results showed that DBSCAN-

Haversine provided a more reliable method for early warning 

systems and maritime traffic management, ensuring safer 

navigation in dense ship traffic regions. 

 
Index Terms— Automatic Identification System, Ship 

Encounter Detection, Haversine Formula, DBSCAN, Collision 

Risk Assessment 

 

I. INTRODUCTION 

HIP accidents in Indonesian waters are one of the main 

challenges in maintaining maritime safety. A significant 

effort that has been made to reduce these risks is through the 

mandatory use and activation of Automatic Identification 

System (AIS), as stipulated in the Minister of Transportation 

Regulation Number PM 7 of 2019. AIS plays a significant 

role in providing essential navigation data to monitor ship 

movements and support maritime safety control. The system 
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automatically transmits dynamic data, such as ship location, 

speed, and course, as well as static data, including name and 

identification [1]. Additionally, the extensive coverage of 

AIS enables more comprehensive monitoring of ship 

activities in Indonesian waters. The real-time data 

transmission also enhances the effectiveness of maritime 

surveillance and safety control. 

A critical element in ship collision risk analysis is 

Collision Risk Index (CRI). This index serves as an 

indicator of the potential for ship collision based on the 

interaction between two or more ship at sea. CRI ranging 

from 0 to 1 helps in evaluating the level of collision risk, 

where higher values indicate greater potential risk [2], [3]. 

The initial step during calculation is the detection of ship 

encounter, where traditional methods such as sliding 

windows are used. However, several challenges have been 

faced in determining the correct window size. Methods that 

are extremely small or large can cause inaccurate detection 

[4], [5]. In this context, Density-based clustering methods, 

such as Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN), are a relevant option for addressing 

the issues. DBSCAN clusters ship that is in a certain 

distance from each other, showing the potential for 

encounter [6]. Many studies have used traditional DBSCAN 

methods with Euclidean distance metric, which may not be 

sufficiently effective in managing data with complex 

patterns such as AIS data [7], [8]. Regarding geospatial data 

such as latitude and longitude, Euclidean distance has 

limitations due to the inability to consider the curvature of 

the Earth, leading to inaccurate distance measurements [9]. 

To address the limitations of traditional methods, this study 

proposed the integration of Haversine formula into 

DBSCAN clustering process to improve the accuracy of 

ship encounter detection. Haversine formula has been 

proven effective in measuring geodesic distances in various 

geospatial applications, specifically in the context of 

navigation and accident detection [10]. This formula 

considers the curvature of the Earth, leading to more precise 

distance measurements, which are crucial in ship trajectory 

analysis and collision risk evaluation [11], [12]. Therefore, 

the application of Haversine formula in DBSCAN is 

expected to provide more accurate results in detecting ship 

encounter and improving collision risk evaluation based on 

AIS data. 

 

II. RELATED WORK 

The use of AIS data has revolutionized maritime safety 

and traffic management by enabling real-time tracking and 

analysis of ship positions, speeds, and courses. AIS provides 
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comprehensive coverage of maritime traffic, facilitating 

enhanced situational awareness and risk assessment. 

Furthermore, the integration of satellite AIS (SAIS) has 

extended ship tracking capabilities beyond coastal regions, 

offering critical insights into offshore collision risk, 

including marine wildlife [13]. These data are essential in 

collision risk modeling. For example, Pan [14] showed that 

using AIS data in assessing collision probabilities between 

ship and structures like bridges improved ship traffic 

management and waterway design. Bakdi et al. [15] also 

used AIS data to identify risk associated with ship 

interactions, including collision with fixed offshore 

platforms. This shows the significant role of AIS in 

developing robust models to predict and mitigate maritime 

accidents. 

The application of DBSCAN algorithm in maritime 

navigation and ship encounter detection has gained 

significant traction. This is because of the ability to identify 

clusters of varying shapes and sizes without requiring a 

predefined number of clusters. The characteristics are 

particularly advantageous in analyzing complex maritime 

traffic patterns. In this context, several studies have reported 

the effectiveness of DBSCAN in identifying multiship 

encounter and detecting potential collision risk in dense 

maritime environments. Zhen and Shi [16] used DBSCAN 

to detect ship encounter in close proximity in surveillance 

waters, facilitating more accurate identification of potential 

collision scenarios. Additionally, DBSCAN has been used 

for trajectory clustering to analyze ship movement patterns, 

which is valuable for optimizing maritime traffic 

management. Widyantara et al. [17] showed the capability 

of DBSCAN to automatically determine the number of 

clusters based on data density, enhancing the analysis of 

ship behaviors. Algorithm resilience to noise and 

adaptability to irregular datasets, standard in AIS data, 

enhances the application in anomaly detection and 

situational awareness [18], [19], [20]. 

The integration of Haversine formula with DBSCAN 

algorithm represents a significant advancement in geospatial 

and maritime applications, particularly for clustering ship 

trajectories and detecting encounter. Haversine formula 

accurately calculates the great-circle distance between two 

points on the Earth's surface based on latitude and longitude. 

This analysis effectively accounts for the Earth's curvature, 

an aspect that traditional distance metrics such as Euclidean 

distance fail to consider. The accuracy is essential in 

maritime for safety, where ship travels over large distance. 

Sharmila and Sabarish [21] showed that using Haversine 

formula in DBSCAN significantly enhanced clustering 

performance for spatial trajectory data, providing more 

accurate results compared to Euclidean and Hausdorff 

methods. Several studies have shown the effectiveness of 

Haversine formula in improving the accuracy of distance-

based clustering algorithm for geospatial applications. 

Roberts-Licklider [22] compared various distance metrics, 

including Haversine, Euclidean, and Manhattan methods, in 

optimizing treatment facility regions. The results showed the 

advantages of using Haversine formula for geographic data, 

indicating the effectiveness in enhancing clustering 

accuracy. Additionally, Wells and Kumar [23] applied 

Haversine formula in air traffic management to convert 

latitude and longitude points into straight-line distances, 

showing the versatility and importance of ensuring accurate 

distance calculations for safety across various domains. 

Based on the literature, Haversine formula is proven to 

have the ability to measure distance considering the 

curvature of the Earth, serving as a relevant and essential 

tool in distance-based ship encounter detection as well as 

clustering using DBSCAN with AIS data. The ability of this 

formula to provide accurate distance calculations, 

specifically at long distances, ensures that the influence of 

the Earth's curvature is considered, which is particularly 

important in a maritime context. Therefore, the application 

of Haversine formula in DBSCAN offers an effective 

methodological solution for ship encounter detection and 

collision risk evaluation, using AIS data more accurately. 

III. METHOD 

A. Data 

In this study, AIS data used were obtained by the remote-

based station (RBS) at the Faculty of Engineering, Udayana 

University. This dataset included the maritime region of 

ALKI II, which comprised the Lombok Strait and the 

surroundings. Attributes extracted and analyzed from AIS 

data included Message Timestamp, MMSI, Latitude, 

Longitude, Heading, Course Over Ground (COG), and 

Speed Over Ground (SOG). The Message Timestamp 

showed the time at which AIS message was transmitted by 

ship. Latitude and Longitude provided the geographic 

coordinates of ship location, while Heading indicated 

directional orientation in degrees. COG represents the actual 

travel direction of ship, and SOG measures the ship's true 

movement speed over water in knots. This study also 

incorporated a comparative analysis [7], using haversine 

distance formula to enhance DBSCAN clustering results, 

compared with the use of Euclidean distance in the previous 

study. The comparative method served to validate the 

improvements achieved in clustering outcomes in AIS data 

analysis. 

 

B. Proposed Method 

The proposed method in this study incorporates the 

Haversine formula into the DBSCAN clustering algorithm 

to enhance the accuracy of ship encounter detection using 

AIS data, as illustrated in Fig. 1. The system, developed in 

Python, follows a structured sequence comprising AIS data 

acquisition, preprocessing, and geodesic distance calculation 

to ensure accurate spatial representation. By accounting for 

the Earth’s curvature, the Haversine formula enables precise 

distance measurements, which are crucial in maritime 

navigation. These geodesic distances are then utilized in the 

DBSCAN algorithm to detect potential ship encounters 

based on spatial proximity. In the final stage, the CRI is 

computed to quantify the severity of each identified 

encounter. By integrating spatial accuracy with density-

based clustering, the proposed method enables reliable 

detection of ship interactions and supports proactive 

maritime risk assessment, contributing to improved 

situational awareness and safety in high-traffic sea regions. 
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The proposed method in Fig. 1 shows a structured 

framework for maritime collision risk assessment using AIS 

data, integrating ship encounter detection with DBSCAN 

clustering and Collision Risk Index (CRI) computation. AIS 

data are collected in real time from Remote-Based Station 

(RBS) devices, with NMEA message decoding to extract 

static and dynamic ship attributes. In the encounter detection 

stage, inter-ship distances are computed using the Haversine 

formula, ensuring accurate estimation by considering the 

Earth’s curvature. These geodesic distances are then utilized 

in DBSCAN clustering to group nearby ships as potential 

encounters. The main contribution of this study is the 

integration of the Haversine formula into DBSCAN to 

enhance detection accuracy. During risk assessment, ships in 

each cluster are designated as own ship (OS) and target ship 

(TS), and encounter situations are determined based on 

relative bearings. CRI values are subsequently calculated for 

each OS–TS pair, incorporating relative distance, Time to 

Closest Point of Approach (TCPA), and Distance to Closest 

Point of Approach (DCPA). This systematic approach 

enables early warning issuance when collision threats are 

detected, supporting proactive navigation and improving 

maritime safety through precise spatial analysis and 

quantitative risk evaluation. 

 

C. Incorporating Haversine Formula to DBSCAN for 

Encounter Detection  

DBSCAN algorithm is a robust, density-based clustering 

method commonly used to identify arbitrary-shaped clusters 

in spatial data [24], [25]. It is particularly effective in 

applications where dataset contains noise and the number of 

clusters is previously determined. The algorithm operates by 

exploring dataset, categorizing each point as a core, border, 

or noise point. In comparison, core point has a minimum 

number of other points ( ) in a specified radius ( ). Border 

point has fewer   in   but is in the neighborhood of a core 

point. Meanwhile, noise point is neither core nor border 

[26]. The core mechanism of DBSCAN can be described 

through Equations (1) and (2). 

 

 (1) 

Where  is the -neighborhood of , 

defined as : 

 

(2) 

 

 is the dataset containing all points. A point  is a border 

point when it is not a core point but is in the neighborhood 

of a core point. Point that is neither core nor border is 

classified as noise, which does not belong to any cluster and 

is typically considered outliers in the dataset. 

Integrating the Haversine formula into DBSCAN is 

crucial for accurate maritime geospatial distance 

measurement. The formula computes great-circle distances 

between two points on a sphere using their longitudes and 

latitudes, ensuring precise geodesic calculations [27]. This 

adaptation is vital for defining the ε parameter in DBSCAN 

when applied to geographic coordinates. Equation (3) 

illustrates the Haversine formula’s application in 

determining distances across the Earth’s curved surface with 

improved spatial accuracy [28]. 

 

   (3) 

 

Where  ,  and ,  are the latitudes and longitudes of 

two points in radians, and  is the Earth’s radius, the 

Haversine formula accurately calculates the shortest 

distance over the Earth’s surface. Its simplicity and 

precision make it essential for geographic distance 

estimation. Integrating Haversine into DBSCAN replaces 

the distance calculation in Equation (2) with the Haversine 

distance in Equation (4), redefining the ε-neighborhood for 

geospatial datasets. Algorithm 1 outlines this integration, 

detailing steps to detect ship encounters using spatial 

proximity and geodesic distance within AIS-derived 

datasets, thereby enhancing maritime encounter detection 

accuracy. 

 

  (4) 

 
Fig. 1.  Proposed method. 
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Algorithm 1. DBSCAN Clustering with Haversine Distance. 

1 Input: 

: Array of geographic coordinates  

: Radius of neighborhood (in nautical mile) 

: Minimum number of points required to form a dense region  

Output: 

: Array of cluster labels for each point in  

Definitions: 

 : Computes the great-circle distance between two points on the Earth's surface via Eq. (9). 

Procedure: 

Convert Coordinates: For each point in , convert latitude and longitude from degrees to radians. 

2 Initialize Distance Matrix: 

Let  be the number of points in . 

Initialize  as matrix filled with zeros.    

3 Compute Distances: 

For  

For  

 . 

 . 

End For 

End For 

4 Apply DBSCAN: 
Initialize all points as 'unclassified'. 

For each point : 

If point  is 'unclassified': 

retrieve all points within from point  in  

If : 

Label point  as ‘noise’. 

Else: 

Label point  with the new cluster ID. 

For each point  in : 

If point  in ‘noise’: 

Label point  with the new cluster ID. 

If point  is 'unclassified': 

Label point  with the new cluster ID. 

retrieve all points within from point . 

If : 

Add  to . 

End If 

End If 

End For 

End If 

End If 

Increment the cluster ID. 

End For 

5 Return  

 

D. Encounter Situation  

International Regulations for Preventing Collision at Sea 

(COLREGs), established by the International Maritime 

Organization (IMO) in 1972, are designed to enhance 

maritime safety by delineating protocols to mitigate ship 

collisions. These comprehensive regulations specify 

navigational guidelines, including protocols for ship right of 

way, overtaking procedures, as well as the roles and 

responsibilities of ship in various maritime scenarios [29]. 

The five main rules of COLREGs related to collision 

avoidance are Rule 13 – Overtaking, Rule 14 - Head-on 

Situation, Rule 15 - Crossing Situation, Rule 16 - Action by 

Give-way Ship, Rule 17 - Action by Stand-on Ship [30]. 

Generally, the calculation of encounter situation includes 

determining the relative bearing angle (φ) between OS and 

TS to assess the risk of collision and plan avoidance 

maneuvers [31]. Ship encounter is typically classified into 

three distinct types, namely head-on, overtaking, and 

crossing, which are differentiated by the relative directions. 

Specifically, crossing encounter is further categorized into 

two subtypes based on the position from which the give-way 

ship methods, either crossing behind (from the stern) or in 

front of (from the bow) [32], [33]. Table 1 shows ship 

encounter categories and relative direction criteria. 

 

E. Collision Risk Index 

CRI quantifies the likelihood of maritime collisions, 

assigning values between 0 and 1, where higher values 

signify increased risk [34]. This index is integral to collision 

avoidance system, facilitating timely interventions when 

thresholds are exceeded [35]. Additionally, CRI 

incorporates multiple parameters such as Distance to Closest 

Point of Approach (DCPA), Time to Closest Point of 

Approach (TCPA), relative distance, bearing angles, and 

TABLE I 
SHIP ENCOUNTER SITUATION CATEGORIES 

Encounter situation Criteria  

Overtaking  
Head On  

Crossing give way 

ship passing at bow 
 

 
Crossing give way 

ship passing at stern 
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speed ratios of included ship. In maritime safety 

assessments, DCPA and TCPA are integral in the evaluation 

of potential collision risks between ships. DCPA represents 

the minimum predicted distance between two converging 

ships, while TCPA indicates the estimated time until closest 

method occurs [36]. In this study, the parameters used are 

relative distance (D), DCPA, and TCPA referring to the 

basic CRI formula [37], [38] as shown in Equation (5). 

 

 

(5) 

 

Where Ds denotes the minimal safe distance considered 

necessary for proactive navigation, while Ts encapsulates 

the time required for detecting collision risks, making 

decisive avoidance maneuvers, and steering adjustments. 

The coefficients a_1, a_2, and a_3 serve as weighted factors, 

which prioritize the significance of environmental visibility, 

ship dimensions, and the prevailing conditions of the 

navigational waters. The relative distance between ship at 

any given moment is determined using Equation (6), while 

DCPA and TCPA are quantified by Equations (7) and (8), 

respectively [39], [40]. 

 

 
(6) 

 

Where 𝑥 and 𝑦 denote the coordinates of the target ship 

(TS) and own ship (OS), respectively. 

 

 (7) 

 

(8) 

 

Where φR represents the relative bearing, α_T the target 

ship’s course angle, and vR is the relative speed. 

 

F. Encounter Detection Evaluation 

Cluster evaluation metrics are essential in assessing the 

quality of clustering results [41], particularly in applications 

including ship encounter detection, where the accuracy of 

groupings has direct implications for maritime safety. In this 

study, two widely recognized cluster validation indexes, 

Silhouette Index and Davies-Bouldin Index (DBI), are used 

to measure clustering effectiveness. These indexes assess 

both cluster cohesion and separation, which are fundamental 

in determining whether ship clusters represent actual 

navigational interactions. High cohesion and well-defined 

separation suggest that ship encounter is correctly identified, 

enabling more precise collision risk analysis and supporting 

reliable early-warning system in maritime traffic 

monitoring. 

 

Silhouette Index 

Silhouette Index measures how well each data point fits in 

the assigned cluster by evaluating cohesion (similarity of 

data points in cluster) and separation (distinction between 

clusters) [42], [43]. In this study, Silhouette coefficient for a 

data point 𝑖 is defined in Equation (9). 

 

 

(9) 

 

Where 𝑎(𝑖) is the average distance between data point 𝑖 
and all other points in the same cluster, showing cohesion. 

𝑏(𝑖) denotes the average distance from point 𝑖 to all points in 

the nearest neighboring cluster, indicating separation.  

Silhouette score, defined in Equation (9), evaluates the 

compactness and separation of clusters, with values ranging 

from -1 to 1. Values close to 1 indicate that data points are 

well-matched to their cluster and poorly related to 

neighboring cluster. Meanwhile, values close to 0 suggest 

overlapping cluster and negative scores signal potential 

misclassification. This suggests that a higher Silhouette 

score represents a stronger and more coherent clustering 

structure. 

 

Davies-Bouldin Index (DBI) 

DBI evaluates clustering performance based on the 

compactness of each cluster and the degree of separation 

[44]. Meanwhile, DBI formula is shown in Equation (10). 

 

 

(10) 

 

Where N is the number of clusters. σ_i and σ_j represent 

the average intra-cluster distances (compactness) for cluster 

i and j, respectively. d_ij is the distance between cluster 

centroids i and j (separation). A lower DBI value suggests 

better clustering, indicating compactness and well-

separation. 

Regarding ship encounter detection, Silhouette Index and 

DBI are essential in determining the reliability of clustering 

structure. A high Silhouette score ensures that ship 

encounter is well-grouped and distinct from non-

encountering types. Meanwhile, a low DBI value confirms 

that identified cluster is compact and well-separated, 

reducing noise and false positives in ship encounter analysis. 

 

IV. RESULT AND DISCUSSION 

A. Ship Encounter Detection Using DBSCAN with 

Haversine Formula 

This section presents the results of ship encounter 

detection using the DBSCAN clustering algorithm, 

enhanced by the Haversine formula to account for geodesic 

distance. AIS data from vessels navigating the Lombok 

Strait—a region characterized by high-density maritime 

traffic—was selected as the experimental dataset. As 

illustrated in Fig. 2, the proposed detection framework 

consists of several key stages: AIS data preprocessing, 

distance computation using the Haversine formula, spatial 

clustering using DBSCAN, and post-clustering evaluation. 

This approach enables the identification of meaningful ship 

encounter groups with improved accuracy, facilitating more 

reliable maritime collision risk assessments.
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Fig. 2 shows the results of decoding AIS data received at 

RBS (Fig. 2 (a)), cleaning the data (Fig. 2 (b)), and 

clustering using DBSCAN and Haversine formula (Fig. 2 

(c)). The data cleaning stage included removing records of 

ship with a speed of zero and port regions, thereby focusing 

the analysis exclusively on active ship navigating in open 

waters. The clustering of AIS data was conducted after 

cleaning, leading to four distinct clusters. These included 

cluster 0, 1, 2, and 3, as shown in Fig. 2(c). Ship that did not 

meet the clustering criteria were classified as outlier and 

grouped into cluster "-1". Each identified cluster represented 

encounter scenario, where ship is grouped based on 

closeness as a predefined distance threshold. By measuring 

in nautical miles, this threshold ensures that ship in 

proximity is flagged as potential encounter, facilitating the 

detection of potential maritime interactions. 

Table 2 presents the experimental results of ship 

encounter detection using DBSCAN-Haversine with varying 

minimum epsilon values, expressed in nautical miles (nm). 

A nautical mile—equivalent to one minute of latitude or 

approximately 1.852 kilometers—is the standard unit for 

maritime distance measurement due to its alignment with 

the Earth's spherical geometry. This unit ensures geodetic 

consistency in evaluating spatial proximity between ship. 

The use of multiple epsilon thresholds allows for the 

assessment of clustering sensitivity and outlier 

identification. 

The experimental results in Table 2 show the effects of 

varying minimum epsilon values on the number of cluster, 

outliers, and cluster membership size in ship encounter 

detection. According to maritime safety principles [7], the 

clustering process must meet certain conditions, (1) each 

cluster must contain a minimum of two ships, (2) the 

number of noise points (outliers) should be minimized, and 

(3) the number of ships in each cluster should remain in a 

reasonable limit to avoid misidentifying potential encounter. 

At a minimum epsilon of 3 nm, the number of cluster 

ranges from 2 to 4, with each containing two to three ships. 

This suggests that a 3 nm epsilon effectively separates ship 

into distinct clusters, showing realistic encounter scenarios 

of close proximity. When the epsilon increases to 4 or 5 nm, 

the number of clusters decreases while the size of the largest 

cluster increases. The result indicates that ship at greater 

distances is grouped together as part of the same encounter. 

However, there is a reduction in the granularity needed for 

detecting smaller-scale encounter. Studies in maritime safety 

emphasize the importance of maintaining a distance of 1 to 

2 nautical miles between ships to prevent collisions, 

particularly for smaller sizes used during fishing activities 

[40]. In adverse weather or poor visibility, a minimum 

distance of 2 nautical miles is recommended to ensure safe 

maneuvering [41]. Therefore, the selection of 3 nautical 

miles as the minimum epsilon is both practical and in line 

with the established safety standards, ensuring encounter 

detection is both accurate and adheres to recognized safe 

distance guidelines. 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 2.  Ship encounter detection results using DBSCAN with Haversine formula (a) AIS data received (b) AIS data after cleaning (c) clustering result 

using DBSCAN-Haversine. 
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B. Collision Risk Assessment 

Collision risk assessment is the stage conducted after ship 

encounter detection. At this stage, risk of a potential 

collision is measured using CRI. Beyond CRI value, 

additional essential information is also provided, including 

details of the ship encounter situation, relative distances 

between ship, and DCPA and TCPA. These metrics provide 

a comprehensive understanding of collision and help 

quantify risk associated with each situation. In this study, 

experiment was carried out to evaluate how effectively the 

proposed framework correlated with ship distance-based 

risk assessment. 

Fig. 4 shows the application of collision risk assessment 

based on the ship encounter detection results. Each cluster 

from Fig. 2 is analyzed by forming OS (own ship) and TS 

(target ship) pairs. For clusters with more than two ships, all 

possible pairwise evaluations are performed—for example, 

ships 1, 2, and 3 are assessed as pairs (1-2), (2-3), and (1-3). 

In Cluster 0 (Fig. 4a), ships are spaced apart with a CRI of 

0.302, indicating a low-risk overtaking scenario. Cluster 1 

(Fig. 4b) shows a passing encounter with a CRI of 0.410, 

where the give-way ship passes astern appropriately. In 

Cluster 2 (Fig. 4c), a short TCPA (0.008) and negative 

DCPA (-3.070) point to an imminent collision threat, even 

though the CRI is moderate (0.195). Cluster 3 (Fig. 6d) 

reveals a moderate CRI of 0.513, requiring navigational 

caution. This cluster-based approach enables thorough risk 

evaluation in multi-ship encounters. 

 

C. Comparison of Ship Encounter Detection Method 

This section presents a comparative analysis of ship 

encounter detection using DBSCAN with two different 

distance metrics: the Haversine formula and traditional 

Euclidean distance. The objective is to assess each method's 

effectiveness in identifying ship clusters based on AIS data 

from the study by Liu et al. [7]. Each figure (Fig. 5 to Fig. 8) 

shows clustering outcomes of both methods across different 

experimental datasets. The visual comparison emphasizes 

how the distance metric influences the formation of ship 

clusters and the detection of encounter patterns. The analysis 

reveals that DBSCAN with the Haversine formula 

consistently captures more relevant encounter scenarios, 

particularly in spatial configurations where accurate distance 

representation is essential. In contrast, the Euclidean-based 

approach exhibits limitations in these maritime datasets, 

leading to less representative clustering outcomes. This 

comparative evaluation highlights the advantage of using 

geodesic-based clustering for improving encounter detection 

fidelity in maritime traffic analysis. 

Fig. 5 shows the clustering results from an experiment 

where two ships are in encounter situation, with a relative 

distance of 2.420 nautical miles. DBSCAN-Haversine 

method successfully classifies ship as a cluster, showing a 

realistic overtaking encounter. In comparison, Euclidean-

based DBSCAN fails to cluster, incorrectly treating ship as 

outliers. This shows the advantage of Haversine in capturing 

maritime spatial relationships more accurately. 

Fig. 6 shows another overtaking scenario with a relative 

distance of 2.612 nautical miles. DBSCAN-Haversine 

detects a valid cluster, where DBSCAN-Euclidean 

misclassifies one ship as an outlier. This supports the results 

that Euclidean metric may underestimate the spatial 

proximity of ships on curved geographic coordinates, which 

can lead to missed encounter detections. 

In Fig. 7, clustering structure differs more significantly. 

DBSCAN-Haversine groups four ships into a single cluster 

with a maximum inter-ship distance of 3.851 nautical miles, 

identifying a broader encounter event. Meanwhile, 

DBSCAN-Euclidean splits the group into two smaller 

clusters, each comprising two members. These results 

technically meet encounter detection criteria, although 

Haversine-based allows for a more comprehensive risk 

assessment by including all related ship in a single 

interaction group. 

Fig. 8 presents a scenario where both methods produce 

similar results, forming comparable clusters. The results 

suggest that under certain spatial configurations, Euclidean 

distance can suffice. However, the case is the exception 

TABLE II 

CLUSTERING RESULTS USING DBSCAN-HAVERSINE WITH VARIOUS MINIMUM EPSILON VALUES  

Minimum 

    epsilon 

 

 

 

Data 

 

3 nm 4 nm 5 nm 

Number 

of clusters 

Numbe

r of most 

members 

in the 

cluster 

Number 

of outliers 

Number 

of clusters 

Number 

of most 

members in 

the cluster 

Number 

of outliers 

Number 

of Cluster 

Numbe

r of most 

members 
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rather than the norm across the evaluated datasets. 

In Euclidean-based experiment conducted in this study, 

the minimum epsilon was tested between 0 and 1 to 

determine an optimal value for ship encounter detection. 

The closest value to meeting the detection requirements was 

0.05, which was used for this study. This experiment 

showed the challenge of selecting an appropriate epsilon in 

Euclidean-based methods, requiring significant tuning to 

correlate with the needs of maritime navigation, compared 

to Haversine that directly showed geodesic distances. 

Haversine formula shows clear advantages in determining 

the minimum epsilon according to actual geodesic distances, 

serving as a more accurate and robust method for distance-

based ship collision risk analysis using AIS data. Although 

Euclidean distance remains a viable method due to the wide 

application in other studies, application in ship encounter 

detection requires further optimization. This includes careful 

tuning of the epsilon parameter to adequately meet the 

specific demands of maritime safety applications. 

 

D. Cluster Index Evaluation of DBSCAN-Haversine vs. 

DBSCAN-Euclidean for Ship Encounter Detection 

The evaluation of clustering results between DBSCAN 

using Haversine formula and Euclidean distance aims to 

determine the effectiveness of each method in producing 

structured and well-separated cluster. In the context of 

encounter detection, well-defined cluster ensures that ship 

included in potential encounter is correctly grouped. 

Meanwhile, ship that is not part of significant interactions 

remain separate. This evaluation is essential for collision 

risk assessment, as the accuracy of clustering directly 

impacts the detection of ship encounter and risk predictions. 

Table IV presents the clustering performance based on 

Silhouette score and DBI, comparing both method. The 

minimum epsilon value for DBSCAN-Haversine is set to 3 

nm, while DBSCAN-Euclidean is 0.05. These values 

represent the optimal distance parameters for each method 

to detect ship encounter effectively. Silhouette score 

evaluates the proper formation of cluster, where higher 

values indicate better-defined cluster. DBI measures cluster 

compactness and separation, with lower values showing 

better clustering performance. 

 

 
 

Fig. 3 presents a comparative visual analysis of the 

clustering performance achieved by DBSCAN using the 

Haversine formula and traditional Euclidean distance, 

corresponding to the evaluation metrics summarized in 

Table IV. The visualizations depict clustering quality 

through two widely recognized indices: the Silhouette Score 

and the DBI. The Silhouette Score assesses cluster cohesion 

and separation, while the DBI evaluates intra-cluster 

compactness and inter-cluster distinction. Higher Silhouette 

Scores and lower DBI values indicate better clustering 

outcomes. Fig. 3 clearly illustrates that the DBSCAN-

Haversine approach consistently outperforms the Euclidean-

based variant, exhibiting improved spatial clustering quality.  

The evaluation results in Table IV and Fig. 3(a) 

demonstrate that the DBSCAN algorithm incorporating the 

Haversine formula consistently outperforms its Euclidean-

based counterpart in clustering ship encounters. DBSCAN-

Haversine achieves higher Silhouette scores, ranging from 

0.240 to 0.310, compared to 0.147 to 0.164 for DBSCAN-

Euclidean. These findings indicate that the Haversine 

distance metric more accurately represents geodesic spatial 

relationships, leading to better-defined and more cohesive 

clusters. In contrast, the Euclidean distance often 

underestimates proximity on a curved surface, leading to 

inaccurate cluster boundaries and frequent misclassification 

of encounter ships. As a result, clustering outcomes based 

on Haversine distance offer improved precision for ship 

encounter detection in maritime spatial analysis. 

 
(a) 

 
(b) 

Fig. 3.  Cluster index evaluation between DBSCAN using Haversine Formula and DBSCAN using Euclidean Distance: (a) Silhouette Score comparison, (b) 

Davies-Bouldin Index (DBI) comparison. 
  

TABLE IV 
CLUSTER INDEX EVALUATION BETWEEN DBSCAN USING HAVERSINE 

FORMULA AND DBSCAN USING EUCLIDEAN DISTANCE  

Data 

Silhouette Score Davis Boudin Index 

Haversine 

Formula 

Euclidean 

Distance 

Haversine 

Formula 

Euclidean 

Distance 

1 0.240 0.164  1.335 1.308 

2 0.310 0.147  1.160  1.170 

3 0.273 0.190  1.037 1.190 

4 0.271 0.161  1.155 1.269 
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As shown in Table IV and Fig. 3(b), DBI results 

demonstrate that DBSCAN employing the Haversine 

distance generally produces more compact and clearly 

separated clusters than its Euclidean-based counterpart. 

While a few instances display marginally higher DBI values 

for the Haversine method, the overall pattern consistently 

reflects greater stability and reliability in clustering 

performance. The minimum DBI attained with the 

Haversine formulation was 1.037, which surpasses the best 

Euclidean outcome of 1.170. Only in a single case did the 

Euclidean method achieve a slightly lower DBI (1.308 

versus 1.335), though this exception is irregular and most 

likely a result of arbitrary parameter tuning for epsilon. By 

incorporating geodesic distance, the Haversine formula 

substantially improves the spatial accuracy of clustering, 

thereby reducing the incidence of noise points and 

misclassified encounters. These findings emphasize the 

robustness of DBSCAN-Haversine, reinforcing its 

suitability for precise ship encounter detection and reliable 

collision risk assessment in maritime contexts. 

 

E. Event-Based Evaluation of DBSCAN-Haversine for 

Practical Ship Encounter Detection  

To validate DBSCAN-Haversine in detecting practical 

ship encounter, an event-based evaluation is conducted 

using real-world AIS data. This simulation assesses ship 

movements in detected cluster to evaluate collision risks. 

The objective is to show that ship cluster identified by 

DBSCAN-Haversine represents meaningful early warnings 

for collision risk. The study focuses on two clusters from 

Fig. 6, which DBSCAN-Haversine identified as encounter 

but are considered outliers by DBSCAN-Euclidean, showing 

the importance of geodesic distance in maritime spatial 

analysis. The simulation generates new coordinate points by 

maintaining the same velocity and direction from the initial 

position, indicating realistic ship movement over time. 

The event-based evaluation in Fig. 9 simulates the 

movement of two vessels (MMSI: 412175000 and 

477899700) engaged in a head-on encounter. The simulation 

assumes both ships maintain constant COG and SOG 

derived from real AIS data. Ship 1 (blue) proceeds 

northwest at 12.4 knots with a COG of 299.5°, while Ship 2 

(red) moves southeast at 10.6 knots with a COG of 118.94°. 

Successive coordinate points are generated to calculate CRI 

dynamically as the vessels converge. The results reveal a 

steady increase in CRI values, culminating at 0.72, which 

indicates a high-risk situation. The nearly symmetrical 

progression of CRI trends highlights that both vessels 

simultaneously perceive escalating collision risk. In 

accordance with COLREGs Rule 14, both ships are required 

to alter course to starboard to avoid collision. Any delay in 

taking corrective action significantly increases the 

probability of an incident, particularly in congested 

waterways where traffic density amplifies navigational 

complexity and reduces reaction time. 

The event-based evaluation in Fig. 10 presents a crossing 

situation between Ship 1 (MMSI: 412175000) and Ship 2 

(MMSI: 477899700). Ship 1 (blue) travels northwest (COG: 

299.5°) at 12.4 knots, while Ship 2 (red) moves eastward 

(COG: 118.94°) at 10.6 knots. The CRI initially registers a 

low value of 0.38 when ships are distant, but steadily 

increases as proximity grows, reaching a critical peak of 

0.90 at the Closest Point of Approach (CPA). This trend 

highlights the escalating danger and the necessity for early 

evasive maneuvers. The CRI progression also confirms that 

both vessels simultaneously perceive the rising collision 

threat. According to COLREGs Rule 15, in crossing 

situations, the vessel with the other on its starboard side 

must give way. In this case, Ship 2 (red) must take prompt 

action—such as altering course to starboard or reducing 

speed—to avoid crossing ahead of Ship 1 (blue). Failure to 

yield could result in a serious near-collision scenario, 

emphasizing the critical role of accurate encounter 

detection. 

This study confirms that DBSCAN-Haversine 

significantly enhances ship encounter detection by correctly 

clustering maritime encounter misclassified by DBSCAN-

Euclidean. The event-based evaluation validates real-world 

applicability, as ship trajectories and CRI measurements 

show a clear escalation of collision risk in detected cluster. 

The ability to define critical encounter using geodesic 

distance makes DBSCAN-Haversine a superior method for 

maritime safety, providing a more reliable foundation for 

collision risk assessment and early warning system. 

V. CONCLUSION 

In conclusion, this study demonstrated the effectiveness 

of incorporating the Haversine formula into DBSCAN for 

ship encounter detection using AIS data. The results showed 

that DBSCAN-Haversine consistently outperformed the 

Euclidean-based approach by addressing the inherent 

limitations of Euclidean distance in geospatial maritime 

contexts. Cluster quality assessments using Silhouette and 

DBI further validated its superiority, with higher Silhouette 

scores indicating more distinct encounter groupings and 

lower DBI values reflecting greater compactness and 

separation. Collectively, these outcomes highlight the 

robustness of DBSCAN-Haversine as a reliable method for 

maritime collision risk assessment and accurate encounter 

detection. 

The event-based evaluation highlighted the practical 

significance of DBSCAN-Haversine for maritime traffic 

analysis. The movement simulations of detected ship 

clusters validated its ability to provide reliable early 

warnings of collision risk, a critical requirement for 

maritime safety. The observed CRI trends demonstrated that 

DBSCAN-Haversine effectively identified high-risk 

encounter scenarios that DBSCAN-Euclidean frequently 

misclassified as outliers. Moreover, the incorporation of 

COLREGs compliance in the detected encounters 

underscored the necessity of accurate clustering methods to 

support real-time decision-making in navigation and 

collision avoidance. These results affirm the robustness of 

the proposed approach in operational contexts where timely 

detection is vital. Looking forward, further research should 

investigate adaptive parameter tuning of DBSCAN-

Haversine under diverse navigational conditions and explore 

its integration with machine learning techniques to develop 

predictive frameworks for collision risk modeling and 

enhanced maritime traffic management. 
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(a) 

 
(b) 
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(d) 

Fig. 4.  Ship collision risk assessment for each cluster result (a) cluster label 0 (b) cluster label 1 (c) cluster label 2 (d) cluster label 3. 

 
(a) 

 
(b) 

Fig. 6.  Comparison of ship encounter detection results on Dataset 2: (a) DBSCAN-Haversine, (b) DBSCAN-Euclidean. 

 

 
(a) 

 
(b) 

Fig. 5.  Comparison of ship encounter detection results on Dataset 1: (a) DBSCAN-Haversine, (b) DBSCAN-Euclidean. 
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Fig. 9.  Simulated ship trajectories and Collision Risk Index (CRI) for head-on encounter scenario detected by DBSCAN-Haversine. 

 

 
(a) 

 
(b) 

Fig. 8.  Comparison of ship encounter detection results on Dataset 3: (a) DBSCAN-Haversine, (b) DBSCAN-Euclidean. 

 

 
(a) 

 
(b) 

Fig. 7.  Comparison of ship encounter detection results on Dataset 3: (a) DBSCAN-Haversine, (b) DBSCAN-Euclidean. 
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