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Abstract—In recent years, unmanned aerial vehicles (UAVs)
have been widely used in military, civil and commercial fields
due to their flexibility, efficiency and versatility. Infrared
imaging technology has become an important means of UAV
object detection due to its excellent performance in complex
environments such as night and foggy days. In this paper,
we establish a high-precision detection model for real-time
UAV infrared target detection, which effectively realizes object
detection of ground objects from high altitude. We call it
ADA-YOLO.The main improvements in the technology of this
research focus on four main improvement methods based on
the ADown module introduced by the YOLOv11n network,
the Dynamic Conv module, the AFGCAttention attention
mechanism, and the WIoUv3. First, the YOLOv11n algorithm
improves the recognition of various types of ground targets
such as pedestrians, vehicles, bicycles, etc. by introducing the
ADown module, which improves the computational efficiency
and the richness of the feature representations; second, we
propose the optimization module of Dynamic Conv, which
reduces the computation amount of the model to 5.3GFLOPs,
and further improves the recognition accuracy of the model.
To further optimize the model performance, we introduce
the AFGCAttention mechanism, which significantly improves
the recognition accuracy of the model to 92.6% with the
same number of model parameters and computations. Finally,
we introduce the WIoUv3 loss to make the performance of
real-time UAV infrared object detection more stable when
dealing with low-quality anchor boxes and outliers. Thereby,
the model is able to maintain its superior performance at a low
computational cost, further improving the recognition accuracy
and image processing speed.Based on the experimental data,
the ADA-YOLO model we built improved the average accuracy
(mAP@50) by 4.8%, and the computational cost and number of
parameters were controlled to be within the deployable range
of the UAV terminal. In addition, it shows higher detection
speed, increasing the frames per second (FPS) from 316 to
347.The ADA-YOLO real-time UAV infrared object detection
model improves the average accuracy along with the increased
detection speed, ensuring good operational efficiency.

Index Terms—UAVs, Object detection, Attention mechanism,
YOLOv11n, mAP@50

I. INTRODUCTION

IN recent years, Unmanned Aerial Vehicle (UAV) [1] tech-
nology has developed rapidly and become an important

part of modern technology. With its flexibility, efficiency
and versatility, UAV is widely used in military, civil and
commercial fields. It is capable of performing tasks in
complex terrains and harsh environments, such as disaster
rescue, border patrol and infrastructure inspection, while sig-
nificantly reducing manpower and time costs, and realizing
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high-precision tasks such as agricultural monitoring, logistics
and distribution, and film and television shooting. What’s
more, the rapid development of UAV technology provides a
brand-new data collection platform and application scenario
for target detection [2] tasks. With the advantages of flexi-
bility, mobility, wide coverage and low cost, UAVs are able
to efficiently acquire high-resolution images and real-time
video data, providing a rich source of information for target
detection. Compared with traditional imaging technology,
infrared imaging technology can effectively distinguish be-
tween the target and the background by capturing the thermal
radiation characteristics of the target due to its excellent
performance in complex environments such as nighttime and
foggy days. It has become an important means of UAV
target detection. Infrared imaging is robust to light changes,
shadows, camouflage and other disturbances, and can more
accurately detect hidden or camouflaged targets.

However, the accuracy problem of UAV target detection
and recognition accuracy has been one of the key chal-
lenges constraining its practical application. In real-world
scenarios, images collected by UAVs usually face problems
such as target scale diversity, changing lighting conditions,
and motion blur, which significantly affect the accuracy
and robustness of target detection. Targets in UAV aerial
images have limited information about their features and are
easily overwhelmed by complex backgrounds, leading to a
significant decrease in detection accuracy [3].Targets in UAV
aerial images are usually small, most of them are smaller than
32×32 pixels, which can be called target detection of small
objects, which is also a major challenge for infrared target
detection in UAVs. Traditional target detection algorithms
require sliding windows at different locations and scales,
are computationally intensive, and are sensitive to noise and
appearance changes. Because of its hand-designed limita-
tions, traditional target detection algorithms may not capture
all useful information. Moreover, traditional target detection
algorithms need to prepare templates for each target type and
are poorly adapted to new types. Compared with traditional
algorithms, deep learning algorithms can automatically learn
hierarchical feature representations from raw data without
the need for complex feature engineering by hand. Through
the multilayer neural network structure, deep learning [4]
can learn complex data representations, which is especially
effective for unstructured data such as images, and can
improve the accuracy and recognition efficiency of infrared
target detection. In addition, deep learning models are able to
generalize to new and unseen data by training on large-scale
datasets, which is important for practical applications.

In the field of target detection, deep learning algorithms
can be categorized into two-stage algorithms and one-stage
algorithms, which differ in processing flow and performance.
Two-stage algorithms first generate a series of candidate

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4326-4340

 
______________________________________________________________________________________ 



regions (Region Proposals), and then perform classifica-
tion and bounding box regression on these candidate re-
gions. Representative two-stage algorithms are R-CNN [5],
Fast R-CNN[6]. one-stage algorithms predict categories and
bounding boxes directly on the image without generating
candidate regions. Representative one-stage algorithms are
mainly YOLO.Compared with two-stage algorithms, one-
stage algorithms do not need to generate candidate regions
first as two-stage algorithms do, and then classify and
regress each candidate region, so they can significantly
reduce the amount of computation and improve the detection
speed. This makes one-stage algorithms more suitable for
application scenarios that require real-time detection. One-
stage algorithms typically have simpler network architectures
because they make predictions directly on the feature map
and do not require additional region proposal networks or
classification networks. This simplicity makes the models
easier to understand and implement, and more suitable for
deployment in UAV target detection embedded systems.
However, single-stage target detection algorithms also face
limitations for real-time UAV infrared target detection tasks,
e.g., in high-resolution images, targets may only account for
a small portion of the image, and single-stage target detection
algorithms may have difficulty in accurately detecting these
small targets because they usually rely on relatively large
anchor frames to predict the target position. Therefore, to
address the above challenges, researchers are working to
develop and optimize lightweight and efficient UAV infrared
target detection methods to ensure that the needs for efficient
processing and real-time detection are met while maintaining
high performance. These studies aim to advance algorithms
for fast and accurate UAV infrared target recognition even
on resource-constrained platforms.

Jiang et al [7] proposed a UAV thermal infrared image
and video target detection framework based on the YOLO
model, and found that the YOLOv5-s model performs the
best in terms of detection speed and model size, and is able
to achieve efficient real-time target detection on resource-
constrained UAV platforms.Tanda and Migliazzi [8] com-
pared the effectiveness of two different airborne remote
sensing platforms, drones and airplanes, in the solar pho-
tovoltaic (PV) system infrared thermography monitoring,
and they found that UAVs show higher flexibility and cost-
effectiveness in small-scale power plant monitoring. Kong et
al [9] proposed a precise landing method for UAVs based
on a ground-based infrared stereo vision system. The system
expands the field of view through an infrared camera and an
adjustable pan-tilt unit (PTU), and utilizes advanced image
processing algorithms to achieve tracking and localization of
the UAV. Hrúz et al [10] explored the application of UAV-
mounted infrared cameras and radio-frequency identification
(RFID) technology in the monitoring of the condition of an
aircraft airframe. They proposed an intelligent maintenance
scheme combining infrared cameras and RFID tags, which
can effectively monitor surface and structural damages of
aircraft fuselage and improve maintenance efficiency and
safety. However, although deep learning algorithms such
as YOLO achieve high efficiency in the field of target
detection, their improvement in accuracy falls short of the
requirements of infrared target recognition for UAVs, and
the number of parameters and computation of the algorithms

are too large, which limits their usefulness in real-time
application scenarios. Therefore, this paper aims to pursue
higher UAV target detection accuracy and, at the same time,
minimize the amount of computation and parameter count,
and ultimately achieve effective detection with minimal com-
putational resources. To improve the recognition accuracy of
infrared target detection for UAVs, we introduce Dynamic
Convolution, which aims to improve the performance of
lightweight convolutional neural networks (CNNs) without
increasing the depth or width of the network. The core idea
behind our introduction of Dynamic Convolution is to use a
set of parallel convolutional kernels instead of using a single
convolutional kernel per layer. These convolutional kernels
are dynamically aggregated based on the inputs, weighted
by an input-dependent attention mechanism. This approach
is not only computationally efficient (because of the small
convolutional kernels), but also has stronger representation
capabilities due to the nonlinear aggregation through the
attention mechanism. In order to further improve the de-
tection accuracy and robustness of the UAV infrared target
detection algorithm in complex backgrounds, we introduce
the ADown module, which effectively reduces the size and
computational complexity of the feature map by optimizing
the downsampling process, while enhancing the multi-scale
feature representation. It also improves the feature extraction
efficiency of UAV infrared target detection algorithms in
complex environments and adapts to the demand for model
lightweighting in embedded devices. In order to improve
the detection ability of the UAV infrared target detection
model for small targets, we introduced the AFGCAttention
mechanism, which enables the model to pay more attention to
the key feature regions in the image by dynamically adjusting
the weights of the channels in the feature map, while
suppressing the interference of irrelevant background infor-
mation. Finally, in order to significantly improve the overall
performance and average accuracy of the UAV infrared target
detection model, the performance of the UAV infrared target
detection model in the target detection task is optimized by
WIoUv3, which is capable of dynamically allocating the
gradient gain according to the dynamic characteristics of
the IoU and the classification criteria of the quality of the
anchoring frames according to the real-time situation. The
main contributions of this thesis research are summarized
below:

1. In this paper, a novel high-precision UAV target de-
tection model, ADA-YOLO, is proposed for infrared small
target detection in complex environments, strongly supported
by the new platform YOLOv11 algorithm. The model can
effectively improve the average accuracy of UAV recognition,
while the complexity and parameters of the model are small
and easy to deploy on UAVs.

2.This paper introduces dynamic convolution, which is an
effective lightweight CNN design method that can signifi-
cantly improve the model performance without significantly
increasing the computational cost. It enhances the model
representation by dynamically aggregating multiple convo-
lutional kernels and can be easily integrated into existing
CNN architectures.

3.The introduction of the ADown module aims to optimize
the downsampling process in the YOLOv11 network by
combining a variety of pooling and convolution operations
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to reduce the size of the feature map while enhancing the
multi-scale feature representation and improving the model’s
fine-grained recognition ability in complex backgrounds.

4.The introduction of the AFGCAttention attention mecha-
nism aims to improve the model’s ability to recognize small
targets by enhancing the network’s ability to pay attention
to key regions and suppressing the interference of irrelevant
background information.

5.The introduction of WIoUv3 is used to optimize the
GIoU of the YOLOv11 algorithm with the aim of better
adapting to the requirements of the UAV infrared target
recognition task, in particular, to achieve a more robust
performance when dealing with outliers and low-quality
anchored frames.

II. RELATED WORK

The YOLO series of algorithms have been widely used
and researched in both industry and academia due to their
speed, effectiveness, and ease of deployment.

Zefri et al [11] investigated the use of thermal infrared
and visible cameras carried by UAVs to detect images.
They detected photovoltaic (PV) target features by generating
orthophoto images and developed a semi-automatic hotspot
extraction method. This method provides a new idea for effi-
cient detection of high altitude infrared from UAVs and im-
proves the advantages of UAVs in infrared detection.Chrétien
et al [12] explored the potential of using UAV-mounted
visible and thermal infrared cameras for remote sensing
monitoring of multi-class targets. They successfully detected
and classified multiple large targets through a multi-criteria
goal-oriented image analysis (MOBIA) approach. This study
demonstrates the promise of UAVs for large target census,
especially for simultaneous multi-category detection.Kelly
et al [13] investigated how to obtain accurate temperature
data from a non-calibrated UAV thermal infrared camera.
Through laboratory and field experiments, they found that
simple empirical linear calibration can convert camera digital
values to temperature values and proposed a set of best
practices to minimize the effects of temperature dependence
of UAV thermal infrared cameras. This study shows great
promise for the application of UAV thermal infrared cameras
in ecophysiology.Gui et al [14] proposed an infrared light-
based method for precise landing of UAVs. By placing
infrared lights on the runway and utilizing the camera and
DSP processor on the UAV to detect and track the infrared
lights, the method is able to achieve efficient UAV landing
navigation in complex backgrounds.Niu et al [15] proposed a
target detection and segmentation model (FFDSM) based on
UAV infrared images that combines YOLOv5s-seg, Efficient
Channel Attention (ECA) and Spatial Pyramid Pooling Fast
Cross-Stage Partial Channel (SPPFCSPC) to improve the
detection accuracy for targets of different sizes. Through a
series of ablation experiments and comparison experiments,
they verified the effectiveness and adaptability of the pro-
posed model in different target detection scenarios.Zhang et
al [16] proposed an improved Picodet small target detection
method to address the real-time and accuracy problems
of small target detection in UAV infrared detection. By
introducing a lightweight LCNet network as the backbone
network for feature extraction and combining the Squeeze-
and-Excitation module and the improved feature pyramid

structure, the method significantly improves the real-time
(frame rate increased by 31fps) and detection accuracy (av-
erage accuracy increased by 7%) of the model. This research
provides an efficient solution for UAV infrared small target
detection, especially in complex background and multi-scale
target scenes.

III. YOLOV11 ALGORITHM

First proposed by Joseph Redmon [17] and other re-
searchers, YOLO (You Only Look Once) has emerged as
one of the most important methods in object detection. The
algorithm uses a single-stage detection strategy and can
predict the bounding box and category probability of an
object directly from an image in a single forward prop-
agation. As technology continues to advance, the YOLO
family has evolved from the original version to the most
recent YOLOv11, which is promoted by Ultralytics, Inc.
The family’s most recent accomplishment, YOLOv11, has
greatly improved in terms of detection speed, accuracy,
computational effort, and feature extraction capability.The
key elements of the model are highlighted by the YOLOv11
architecture, which is displayed in Figure 1(a). Usually, it
is composed of three main parts: the head, neck, and trunk.
We provide a brief description of each part and the features
that were introduced to improve the architecture as a whole
below.

The backbone network, one of the fundamental elements
of the YOLOv11 architecture in this study, is primarily
responsible for extracting multi-scale important features from
the input images. As illustrated in Fig. 1(b), this backbone
network has a spatial pyramid fast pooling (SPPF) module,
which effectively uses several maximal pooling layers to
extract multi-scale features from the input image. As illus-
trated in Fig. 1(c), feature extraction in the backbone network
is based on a sequence of convolutional (Conv) blocks,
each of which is composed of a Conv2D layer, a Batch-
Norm2D layer, and a SiLU activation function.Furthermore,
the backbone network integrates a cross-stage component
with spatial attention mechanism (C2PSA) [18], as illustrated
in Fig. 1(d). By introducing the attention mechanism, the
C2PSA module significantly improves the model’s detection
accuracy. YOLOv11 further optimizes the backbone structure
by using multiple C3K2 blocks, which replace the C2f
blocks used in YOLOv8 [19]. The C3K2 blocks offer a
more computationally efficient implementation of the cross-
stage part (CSP) [20]. It is important to note that there are
two structural variants of the C3K2 block, corresponding to
c3k=false and c3k=true, as illustrated in Fig. 1(e) and Fig.
1(f), both of which aim to increase the efficacy and efficiency
of feature extraction.

A key component of the YOLOv11 architecture, the neck
component serves as a bridge between the head block and
the backbone network [21]. As illustrated in Fig. 1, the
neck structure is composed of several convolutional (Conv)
layers, C3K2 blocks, feature splicing (Concat) operations,
and upsampling (Upsample) blocks, all of which inherit the
benefits of the C2PSA mechanism. The neck’s design aims
for multi-scale feature aggregation, which efficiently inte-
grates feature information from various backbone network
scales and guarantees that the features are fully utilized
and improved before being passed to the head block.The
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Fig. 1. The YOLOv11 network structure diagram.

neck’s design improves the detection framework’s overall
performance by optimizing the feature delivery pipeline
and enhancing the model’s capacity to recognize targets at
various scales.

The header module [22], the last part of the YOLOv11 ar-
chitecture, is responsible for producing the final predictions.
The head, which is intended to recognize items accurately
, is in charge of classifying objects, calculating objectivity
scores, and correctly anticipating the bounding box of every
object that is detected. Through a sequence of computational
stages, the head module generates the final detection results
after synthesizing multi-scale features from the neck com-
ponent, as illustrated in the figure. This procedure, which
guarantees the model’s excellent performance in the target
identification job, consists of, among other things, bounding
box regression, objectivity scoring, and categorization pre-
diction.

The final component of the YOLOv11 architecture is
the header module, which assumes the central function
of generating the final predictions. Designed to accurately
recognize objects , the head is responsible for determining
object classes, computing objectivity scores, and accurately
predicting the bounding box of each identified object. As
shown in the Fig. 1, the head module synthesizes multi-
scale features from the neck component and outputs the final
detection results through a series of computational steps.
This process includes, but is not limited to, categorization
prediction, bounding box [23] regression, and objectivity
scoring, ensuring the model’s high performance in the target
detection task.

IV. ADA-YOLO ALGORITHM

As we want to increase the UAV infrared target detection
accuracy, we try to increase the accuracy of UAV target
detection and recognition by combining advanced algorithm
design and multiple module improvements. At the same
time, we tried to reduce the increase in computation when

increasing the recognition accuracy. Therefore, we eliminated
models with large parameter sizes and slow detection speeds,
and chose YOLOv11, a target detection model with high
recognition accuracy and low computational effort, making
it fully capable of meeting real-time demands when de-
ployed on edge devices with limited computational resources,
such as UAVs. Therefore, this study introduces a real-time
UAV infrared target detection model ADA-YOLO based on
YOLOv11, as shown in Fig. 2.

In this study, we first propose a dynamic convolutional
approach, which is an efficient lightweight convolutional
neural network (CNN) design strategy. The strategy sig-
nificantly improves the performance of the model without
significantly increasing the computational burden. Dynamic
convolution enhances the model representation by dynami-
cally aggregating multiple convolutional kernels and can be
seamlessly integrated into existing CNN architectures, thus
improving the generalization ability of the network. Next,
we introduce the ADown module, which aims to optimize
the downsampling process in the YOLOv11 network.The
ADown module not only effectively reduces the size of
the feature map but also enhances the multi-scale feature
representation by combining multiple pooling and convolu-
tion operations, which in turn improves the model’s ability
to perform fine-grained recognition in complex contexts. In
addition, this study proposes the AFGCAttention mechanism,
which aims to significantly improve the model’s recognition
ability for small targets by enhancing the network’s attention
to critical regions while suppressing the interference of
irrelevant background information. Finally, we introduce the
WIoUv3 loss function for optimizing the GIoU loss in the
YOLOv11 algorithm.WIoUv3 is designed to better adapt to
the specific needs of the UAV infrared target recognition task,
in particular to achieve a more robust performance when
dealing with outliers and low-quality anchored frames. With
these improvements, the YOLOv11 algorithm is significantly
enhanced in both accuracy and robustness of target detection.
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Fig. 2. Diagram of ADA-YOLO network structure. Modules with a red line on the outside indicate that this module has been improved. The details of
the three modules proposed in this paper, ADown, DynamicConv and AFGCAttention, will be presented below.

A. ADA-YOLO algorithm detection process

In this study, a model for UAV infrared real-time target
detection is proposed. The overall process is shown in
Fig. 3. First, the dataset is preprocessed and divided into
three subsets as training set, validation set and test set.
Subsequently, the optimized YOLOv11n network is used to
detect ground targets. During the detection process, ground
targets are classified into four categories: human, bicycle,
car and other vehicle. ADA-YOLO will generate different
recognition accuracies based on the features of the labeled
infrared target dataset HIT-UAV for recognition classifica-
tion. This concludes the testing process.

B. ADown Module

In the field of UAV infrared target detection, existing
models are able to achieve high recognition accuracy when
dealing with medium to large size targets. However, for de-
tection of small-sized targets, the performance of these mod-
els degrades significantly. This performance degradation can
be traced to the stepped convolution module in the YOLOv11
network architecture. While this module effectively expands
the receptive domain, it is inevitably accompanied by a loss
of feature information. In contrast, the composition of the
ADown module mainly includes maximum pooling, average
pooling, 3 × 3 convolution, and 1 × 1 convolution operations.
Average pooling is able to preserve the channel information

Fig. 3. ADA-YOLO algorithm detection process.

of the feature map during the downsampling process, thus
effectively avoiding the information loss. On the other hand,
maximum pooling may filter out part of the information
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that is considered unimportant during the downsampling
process, which may lead to the detection of small targets
being interfered by the information of large targets or causing
blurring of details.

To overcome this challenge, a combination of 1×1 con-
volution and 3×3 convolution modules is introduced in this
study. In particular, the 3×3 convolution module is able to
express more complex functions due to its higher nonlinear
properties, thus capturing subtle features in the image more
comprehensively and enhancing the completeness of the
target information. The small-sized convolutional kernel, on
the other hand, helps to extract secondary features, prompting
the study to return to traditional convolutional operations for
downsampling, as shown in Fig. 4. With this design strategy,
we enhance the learning capability of the network, which in
turn enhances the performance of the UAV infrared target
detection model during training.

During the downsampling process, we successfully gen-
erated two sub-feature maps, both of which have a size
of (S-1) × (S-1) × (C1/2), which is reduced compared to
the size of the original feature map. Subsequently, these
subfeature maps underwent different convolution operations.
Specifically, each sub-feature map is processed through a
specific convolutional layer to extract and refine the feature
representation. After the processing is completed, these sub-
feature maps are connected along the channel dimensions
and fused into a new feature map of size (S/2) × (S/2) ×
(2C), as shown in Fig. 5.

After the ADown feature transformation layer, we finally
obtain a feature map with the size of S/2 × S/2 × C2,
where the value of C2 is 2C. this feature map is equipped
with the number of channels C2 required by the subse-
quent network module. this process effectively preserves
all the discriminative feature information used for target
detection and recognition, which ensures that a high feature
discriminative power can be maintained in the subsequent
processing. With this feature transformation strategy, we not
only realize the spatial size reduction of the feature map,
but also enhance the richness and robustness of the feature
representation, providing high-quality feature inputs for the
subsequent network layer processing.

C. Dynamic Convolution Module

In order to enhance the feature selectivity of the UAV
infrared target detection model and thus improve the per-
formance of the overall network, we introduce a specific
dynamic perceptron implementation, namely dynamic con-
volution, with which we fuse C3k2 of YOLOv11. The
dynamic convolution conforms to the given computational
constraints (as shown in Equation 1). Similar to the dynamic
perceptron, the dynamic convolution (see Fig. 6) consists
of K convolutional kernels that have the same kernel size
as well as input and output dimensions. These convolutional
kernels are aggregated by attention weights {πk} to form the
final convolutional output. Following the traditional design of
Convolutional Neural Networks (CNNs), we apply activation
functions (e.g., ReLU) after Batch Normalization and aggre-
gated convolution operations to build dynamic convolutional
layers. Notably, we employ the Squeeze-and-Excitation (SE)
mechanism [24] to compute the attention weight {πk (x)} of

the convolutional kernel, as shown in Fig. 6. In the squeezing
and excitation mechanism, the global spatial information is
first compressed by Global Average Pooling (GAP) to gen-
erate a compressed feature representation containing global
context information. Subsequently, we utilize two fully-
connected layers (with a ReLU activation function inserted
between them) as well as a softmax function to generate
normalized attention weights for the K convolutional kernels.
The first fully-connected layer reduces the size of the features
by 4. Unlike in SENet [25] where the attention is computed
on the output channels, our approach computes the attention
on the convolutional kernels. This computation is relatively
inexpensive as it only involves adjusting the weights of the
convolution kernel without additional complex computations.
As a result, our dynamic convolutional design maintains
computational efficiency while enhancing the model’s se-
lectivity of features, thus improving the overall network
performance.

O
(

˜
WTx+ b̃

)
≫ O

(∑
πkW̃k

)
+O

(∑
πk b̃k

)
+O (π (x))

(1)
For processing an input feature map of dimension HWCin

, the computational complexity analysis of attention shows
O (π (x)) = HWCin +

C2
in

4 +
C2

inK
4 Mult-Adds. this com-

putational cost is significantly reduced compared to the
convolution operation. The computational complexity of the
convolution operation is O

(
˜

WTx+ b̃
)
= HWCinCoutD

2
k

Mult-Adds, where Dk represents the size of the convolution
kernel and Cout denotes the number of output channels. It
can be seen that the attention mechanism is more computa-
tionally efficient when dealing with input feature maps of the
same size, thus reducing the consumption of computational
resources while maintaining the performance of the model.

D. AFGCAttention Module

The last module in the backbone of the original YOLOv11
algorithmic architecture is the C2PSA module.The C2PSA
module maintains or improves the performance of the net-
work through a parameterized channel attention mechanism
[26] where the model is better able to learn important fea-
tures. However, it also introduces additional computational
complexity, especially in lightweight networks, which may
offset some of the efficiency gains due to reduced convo-
lutional operations. We therefore introduce AFGCAttention.
the AFGCNatten attention mechanism dynamically adjusts
the weights of each channel according to its importance in the
feature map to further optimize feature selection. This allows
the model to focus more on useful features for subsequent
tasks and ignore unimportant or irrelevant background noise,
thus improving feature representation. This is shown in Fig.
7.

The nth channel of U can be represented by a channel
descriptor U ∈ RC obtained by global average pooling on
the space of feature mappings F ∈ RC×H×W .

Un = GAP (Fn) (2)

We define Fn as the set of pixel values of the nth
channel feature map. In addition, GAP (X) represents the
global average pooling function, which serves to reduce the
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Fig. 4. Structure diagram of the ADown module

Fig. 5. Structure of ADown feature conversion.

Fig. 6. Structure of Dynamic Convolution module.

dimension of the feature map from C×H×W to C×1×1,
thus enabling the aggregation of the global information of the
feature map ,as shown in Equation 2. In order to efficiently
extract the local inter-channel interaction information while
reducing the size of the model parameters, we introduce
an interval matrix B. This matrix B is designed to capture
the interactions between neighboring channels, and its set
of elements is denoted as B = [b1, b2, b3, ..., bk], which is
constructed as described below:

Ulc =
k∑

i=1

U • bi (3)

U represents the channel descriptor, while Ulc character-
izes the local channel information. The parameter k defines
the number of neighboring channels considered, as shown
in Equation 3. In the experimental implementation, we

perform this process through a one-dimensional convolution
(Conv1D) operation. In order to further enhance the char-
acterization of the global information and to reveal the de-
pendencies between channels, we employ a diagonal matrix
D to extract the global channel information. The diagonal
matrix D is constructed as follows: D = [d1, d2, d3, ..., dc],
where each element di corresponds to the global information
of the ith channel in the channel descriptor. The specific
construction is described below:

Ulc =
k∑

i=1

U • bi (4)

Ugc represents the global channel information, while the
variable C indicates the total number of channels, as shown
in Equation 4. In the experimental manipulation, we im-
plement this process through two-dimensional convolution
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Fig. 7. Structure of AFGCAttention module.

(Conv2D). In order to facilitate the interaction between
global and local information, we adopted a strategy of
fusing the global information extracted through the diagonal
matrix D with the local information obtained through the
interval matrix B. The global information is then fused with
the local information. In order to quantify the correlation
between these two types of information at different scales, we
introduce a correlation matrix M . This matrix M is designed
to capture the interaction between global channel information
and local channel information as follows:

M = Ugc • UT
lc (5)

As defined in Equation 5, the correlation matrix M
quantifies the interdependencies between global and local
channel features. To facilitate precise feature weighting while
maintaining computational efficiency, we introduce an adap-
tive fusion strategy. This strategy derives weight vectors
for global and local information directly from the rows of
M and the columns of its transpose, MT , respectively. A
learnable parameter then dynamically governs the fusion
process, enabling the model to autonomously determine the
optimal weighting scheme during training. The mechanism
is formally described as follows:

Uw
gc =

c∑
j

Mi,j,i ∈ 1, 2, 3, ...c (6)

Uw
lc =

c∑
j

(
Ulc • UT

gc

)
i,j

=
c∑
j

MT
i,j , i ∈ 1, 2, 3...c (7)

W = σ
(
σ (θ)× σ

(
Uw
gc

)
+ (1− σ (θ))× σ (Uw

lc )
)

(8)

In the proposed framework, Uw
gc and Uw

lc represent the
fused global and local channel weights, respectively, while c
denotes the total number of channels,as shown in Equation
6 and Equation 7. The parameter σ denotes the s-type

activation function, which is used to introduce nonlinearity
and control the magnitude of the weights, as shown in
Equation 8.

This strategy effectively avoids redundant interactions be-
tween global and local information and promotes synergy
between them. In this way, the model is able to selec-
tively enhance key information while suppressing irrele-
vant features, thus achieving efficient weight assignment
for relevant features. Finally, by performing element-level
multiplication operations of the obtained weights with the
input feature map, we obtain the final output feature map.
In the mathematical expression, F denotes the input feature
map, FOutout represents the output feature map, and the ⊗
symbol denotes the element-level multiplication operation,
as shown in Equation 9.

FOutout = F ⊗W (9)

E. WIoU Loss

The three loss functions of RTDETR are the border loss
function, classification loss, and confidence loss. IoU [27]
is the ratio of the intersection of the real target and the
candidate detection box to the union of the two components.
As shown in Fig. 8. The IoU ’s value should be set to zero if
it surpasses preset threshold values. It still has its original
value in any other case, however, is not able to handle
some complicated situations due to its insensitivity to small
target detection and unequal weight distribution among target
categories.

We present Wise-IoU (WIoU )[28], an enhanced IoU met-
ric built on a weighting method, to overcome these problems.
By adding movable weighting factors for intersection and
concatenation regions, WIoU can more adaptably represent
the significance of various targets or job requirements. In par-
ticular, when determining the intersection and concatenation,
WIoU dynamically modifies the weights based on the size,
category, or task priority of the target garbage, producing
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Fig. 8. IoU conceptual diagram

more precise and reliable evaluation findings for the detection
results.The benefit of WIoU is that it can greatly enhance
the model’s detection performance for imbalanced datasets,
small targets, and multi-category targets. Three versions of
WIoU are available: v1 constructs a bounding box based
on attentional loss, while v2 and v3 supplement v1 with
a focusing mechanism. The performance of v3 is superior.
Equations (7) and (8) demonstrate how a distance metric is
used to construct the v1 of WIoU .
Wg and Hg stand for the width and height of the real

frame xgt, respectively, and ygt for the minimum bounding
box, where x and y are the target frame’s center coordinates.
For high-quality anchor frames, the value of WIoU is greatly
reduced by extending the value of the loss function of the
traditional IoU (the value of IoU takes the value in the
range of [0,1]) to include WIoU , which takes the value in
the range of [1,e]. The distance between their centroids is
the main emphasis when the target frame and the anchor
frame overlap significantly. A separation between Wg and
Hg from the computational map is shown by an asterisk (*).

RWIOU = exp

(
(x− xgt)

2
+ (y − ygt)

2(
W 2

g +H2
g

)∗
)

(10)

LWIoUv1
= RWIOULIoU (11)

The YOLOv11 model’s target detection performance is
enhanced by the WIoUv2 bounding box regression loss
function, which lowers the loss values of simple samples
while allowing the model to concentrate on the monotonic
focusing coefficients of challenging data. Equation (9) dis-
plays the WIoUv2 loss function formula.

LWIoUv2
= Lγ∗

IoULWIoUv1
| γ > 0 (12)

In the later phases of model training, there is slower
convergence since γ ∗ IoU reduces as IoU lowers during
it. As illustrated in equation (10), a moving average IoU
is added to address this issue and maintain the overall
γ ∗ IoU/IoU at a comparatively high level.

LWIoUv2
=

(
L∗
IoU

LIoU

)γ

LWIoUv1
(13)

An exponential factor is represented by γ. WioUv3 the
quality of the anchor box is described by the loss function

using anomalies; a lower quality anchor box is indicated
by a lower anomaly, and a higher quality anchor box is
indicated by a higher anomaly. In equation (11), the degree
of abnormality is defined.

β =
L∗
IoU

LIoU
(14)

To improve the attention on common anchor frames, smaller
gradient gains are needed for anchor frames with low
anomaly values. Conversely, in order to mitigate the substan-
tial adverse effects of low-quality anchor frames, lesser gradi-
ent benefits are allocated to anchor frames with high outliers.
Equation (12) illustrates how this mechanism operates by
building a focusing coefficient that is used to WIoUv1 to
derive WIoUv3.

LWIoUv3
= rLWIoUv1

| r =
β

δαβ−δ
(15)

Where the conversion factor is r, the non-monotonic focus-
ing coefficient is β , and the hyperparameters are α and
δ. The performance of the RTDETR model in the target
detection task is optimized by WIoUv3, which is able to
dynamically allocate the gradient gain based on the real-time
circumstances given the dynamic characteristics of the IoU
and the classification criteria of the anchor frame quality.

V. EXPERIMENTS AND ANALYSIS OF RESULTS

A. Experimental Platform and Parameter Settings

The operating system for the experiment is Windows 11,
Professional, the processor is 12 vCPU Intel(R) Xeon(R)
Platinum 8352V CPU @ 2.10GHz, the running memory
is 32GB, the GPU model is vGPU-32GB(32GB), and the
experiment is performed on PyTorch 1.11.0 Deep Learning
framework, Cuda 11.3.0 architecture, and the Python version
is 3.8.0 training parameters: batch size is set to 16, epoch
is set to 200, the initial learning rate is 0.01, the final
learning rate is 0.01, the momentum is 0.937, the weight
decay is set to 0.0005, the warmup epochs is set to 3.0, the
warmup momentum is 0.8, the warmup bias learning rate
is 0.1, the size of the input image is automatically scaled
to 640×640, no pre-training weight values are used, and the
other parameters are the default values. As shown in Table I
and Table II

TABLE I
EXPERIMENTAL PLATFORM CONFIGURATION.

Name Configuration
Operating System Windows 11

CPU 12 vCPU Intel(R) Xeon(R)
Platinum 8352V CPU @ 2.10GHz

GPU vGPU-32GB(32GB)
Memory 32GB
Cuda 11.3.0
Pytorch 1.11.0
Python 3.8.0

B. Experimental Dataset

The field of UAV target detection benefits from a collection
of high-altitude infrared thermal imaging data provided by
the HIT-UAV dataset. As seen in Figure 9, the dataset
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TABLE II
MODEL TRAINING PARAMETER SETTINGS.

Parameters Value
Initial learning rate 0.01
Final learning rate 0.01
Batch size 16
Image size 640×640
Number of epochs 200
Momentum 0.937
Weight decay 0.0005
Warmup epochs 3.0
Warmup momentum 0.8
Warmup Bias Learning Rate 0.1

includes image samples taken by UAVs in various loca-
tions, including streets, parking lots, schools, and parks. The
dataset encompasses a broad range of shooting conditions,
with the shooting angle ranging from 30 to 90 degrees and
the UAV flight altitude between 30 and 60 meters.As a
result, the targets to be recognized exhibit a range of sizes
and shapes, which aids the target detection model in better
identifying and comprehending the dataset’s richness and
complexity. This diversity increases the model’s robustness
by improving its capacity to generalize to various input data
scales.

Fig. 9. The partial image of the HIT-UAV dataset.

We have updated the HIT-UAV dataset to increase the
average detection accuracy of UAVs in target detection tasks.
The partial dataset image is shown in Fig 9. The four primary
categories in the new dataset are human, bicycle, car, and
OtherVehicle.With a 7:1:2 division ratio, the dataset is split
into three subsets: the training set, validation set, and test
set.The training set comprises 2008 photos that are used to
train the model; the validation set comprises 287 images that
are used to tune the model’s parameters; and the test set
comprises 571 images that are used to evaluate the model.

is employed to modify the model’s parameters, and the
test set, which includes 571 photos to assess the model’s
performance, is displayed in Fig 10.The HIT-UAV dataset
offers useful picture data support for research in related
domains and is a crucial resource for the study of UAV
infrared target detection and recognition.

Fig. 10. Scale diagram of dataset categories.

C. Evaluation Indicators

The number of parameters,the amount of calculation, FPS
and mean Average Precision (mAP) were selected as the
evaluation indexes of the model. Among them, mAP is
calculated by precision P and checking rate R. FPS stands
for the number of image counts per second that the target
detection network is capable of analyzing.

The equation for the precision P is:

P =
TP

TP + FP
(16)

The equation for the rate of checking completeness R is:

R =
TP

TP + FN
(17)

The equation of AP is:

AP =

∫ 1

0

PdR (18)

The equation for mAP is:

mAP =
1

n

n∑
i

APi (19)

The equation for FPS is:

FPS =
N

T
(20)

Where TP is the number of positive samples judged
correctly, FP is the number of incorrectly detected samples,
FN is the number of missed samples, AP is the area of the
curve about the axes consisting of the precision P and R;
mAP is the average of all APs, and i in mAP indicates the
current category. When mAP is higher, it means that the
model is trained better. N stands for the count of processed
images and T for the total processing time.

D. Ablation experiments

In this experiment, the experimental parameter settings
were kept consistent between YOLOv11n and ADA-YOLO
during the training process. After improving the ADown
module, the number of parameters and computation of the
model decreased by 0.5M and 1.0G, respectively, and the
FPS increased by 1.5%, mAP@50 increased by 1.3%. After
the introduction of the Dynamic Conv module, there is a
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Fig. 11. Comparison of YOLOv11n and ADA-YOLO metrics.

Fig. 12. Confusion matrix of YOLOv11n. OV stands for OtherVehicle.

small increase in the number of covariates and computation
of the model, FPS and mAP@50 increased by 2.2%. After
the introduction of the improved AFGCAttention attention
mechanism, the number of parameters and computation of
the model remained the same and the FPS increased by 5.6%,
mAP@50 increased by 1.2%. From the Table III, it can be
seen that after the introduction of WIoUv3, the number of
parameters and the amount of computation of the model
remain basically unchanged, and the FPS is increased by
1.2%, mAP@50 increased by 0.2%.

Then, after the introduction of the ADown module to im-
prove the YOLOv11n backbone, we introduced the Dynamic
Conv module to refine the model structure. The number of
parameters and computation of the model remain basically
unchanged. In addition, the FPS is improved by 3.1% over
the original model, and the model is significantly lighter than
the original model. mAP@50 increased by 3.6%.

Experiments were conducted to improve the model back-
bone using the AFGCAttention mechanism based on the
improvements made to the ADown and Dynamic Conv
modules. With the improved YOLOv11n model, the number

Fig. 13. Confusion matrix of ADA-YOLO. OV stands for OtherVehicle.

of parameters and computation of the model are slightly
increased over the original model, but it is still a very
lightweight target detection model and suitable for deploy-
ment on UAVs. In addition, the FPS increased by 7.2% over
the original model and the model is significantly lighter than
the original model, mAP@50 increased by 4.6%.

Based on the first three improvements to the YOLOv11n
backbone, WIoUv3 is introduced in the final experiment,
which constitutes the ADA-YOLO model.The ADA-YOLO
model greatly improves the average accuracy of UAV in-
frared detection, and the advantage of recognizing small
targets is more obvious, in particular.The number of parame-
ters and computation of the ADA-YOLO model are slightly
increased compared to YOLOv11n, but still controlled within
the lightweight range, the FPS increased by 9.8% over the
YOLOv11n model, and the average accuracy increased by
4.8% over the YOLOv11n model. As Table III and Fig.11
shown.

Therefore, the real-time UAV infrared target detection
model (ADA-YOLO) proposed in this paper is suitable for
UAV aerial target detection tasks. In this experiment, three
modules are fused and improved with IOUs to achieve the
goal of high-precision UAV infrared target detection. In
addition, the mAP@50 of the ADA-YOLO model in the
recognition task is significantly improved, and the ADA-
YOLO model has more obvious advantages for the recog-
nition of small targets. Fig 14 shows a comparison of the
detection results of the two models YOLOv11n and ADA-
YOLO.

Meanwhile, we give the confusion matrices generated by
the YOLOv11n model and the ADA-YOLO model, as shown
in Figs. 12 and 13.The ADA-YOLO model reduces the clas-
sification confusion and greatly improves the classification
accuracy, as shown in our ablation experiments for UAV in-
frared target detection. The “OtherVehicle” category has the
largest improvement in recognition accuracy among the four
categories, with a 16% improvement in the mAP@50 metric.
In addition, the recognition accuracy of the “Person” cate-
gory is improved by 4%, and the single-category recognition
accuracy reaches 96%. Although, the classification accuracy
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TABLE III
ABLATION EXPERIMENTS.

YOLOv11n
ADown

√ √ √ √

Dynamic Conv
√ √ √ √

AFGCAttention
√ √ √

WIoUv3
√ √

Parameters(M) 2.6 2.1 3.4 2.6 2.6 2.9 3.8 3.8
FLOPs(G) 6.3 5.3 6.1 6.3 6.4 5.1 9.6 9.6
P(%) 89.0 89.2 93.5 89.6 89.1 93.8 94.1 94.1
R(%) 82.7 82.2 83.2 78.9 82.7 83.0 82.9 82.8
mAP@50(%) 88.0 89.3 90.2 89.2 88.2 91.6 92.6 92.8
FPS(bt=16) 316 321 323 334 320 326 339 347

Fig. 14. Comparison of YOLOv11n and ADA-YOLO metrics.

of the “Bicycle” category is not much different before and
after the improvement, fluctuating around 90%, which also
meets the standard of real-time UAV infrared target detection.
In addition, the “Car” category has the highest classification
accuracy of 97%. It can be seen that our UAV infrared
target detection model based on YOLOv11n, after a series of
improvements, meets the recognition accuracy requirements
of real-time UAV infrared target detection.

E. Comparative Experiments on Different Attention Mecha-
nisms

The purpose of this experiment is to compare the per-
formance of different attentional mechanisms in the task of
UAV infrared target detection and to analyze their respec-
tive parametric quantities, computation, FPS, and mAP50.In
the field of computer vision, attentional mechanisms have
become an important technique to improve the perfor-
mance of models. We will create five augmented mod-
els based on YOLOv11n, namely YOLOv11n+Biformer,
YOLOv11n+GAM, YOLOv11n+LSK, YOLOv11n+EMA,
YOLOv11n+AFGCAttention.Subsequently, each model is
trained until it on the validation set obtains the best perfor-
mance. Finally, the performance of each modified model is
evaluated on the test set to compare its number of parameters,
computational effort, and classification accuracy, and then we
will select the optimal augmented model as an improvement
of our final attention mechanism. The comparison results are
shown in Table IV and Fig.15.

Fig. 15. Experimental comparison of improved attention mechanism
models.

As shown in Table IV shows, the YOLOv11n+EMA
model is the lightest, with the least amount of computa-
tion and number of parameters, and its average accuracy
is improved by 0.5% over the original model, which has
some improvement effect, but the recognition accuracy is
lower. Similarly, the YOLOv11n+LSK model has lower
computation and number of parameters, and its average
accuracy is improved by 0.2% over the original model, again
with lower recognition accuracy.The YOLOv11n+Biformer
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TABLE IV
EXPERIMENTAL COMPARISON OF IMPROVED ATTENTION MECHANISM MODELS.

Method P
(%)

R
(%)

mAP@50
(%)

Parameters
(M)

FLOPs
(G)

FPS
(bt=16)

YOLOV11n 89.0 82.7 88.0 2.6 6.3 316
YOLOV11n+Biformer 88.7 82.5 87.5 2.9 7.1 327
YOLOV11n+GAM 89.1 82.3 88.6 4.9 7.3 319
YOLOV11n+LSK 89.3 82.2 88.2 3.0 6.9 323
YOLOV11n+EMA 89.4 81.8 88.5 2.6 6.4 331
YOLOV11n+AFGCAttention 89.6 78.9 89.2 2.6 6.3 334

model has an increase in the number of parameters and
computation but its average accuracy is lower than that of the
original model by 0.5%, respectively.The YOLOv11n+GAM
model has the largest computation and number of param-
eters among the five improvements, but its average accu-
racy only increases by 0.6%, which shows that the ac-
curacy of the recognition does not meet the performance
requirements for UAV infrared target detection. In con-
trast, the YOLOv11n+AFGCAttention model, which has
the same number of parameters and computation as the
original model, is the only one among the five improved
attention mechanism models with an average accuracy in-
crease of 1.2%. In addition, the YOLOv11n+AFGCAttention
model has the highest FPS. Therefore, we believe that the
YOLOv11n+AFGCAttention improved model is better in
terms of improvement.

From this attention mechanism comparison experiment,
we can infer that the YOLOv11n+AFGCAttention enhanced
model outperforms the YOLOv11n algorithmic network and
has the highest mAP@50 and FPS.What’s more, compared
with the other four groups of attention mechanism im-
proved models, the YOLOv11n+AFGCAttention improved
model has a relatively small number of parameter num-
ber is relatively small and less computationally intensive,
making it suitable for real-time UAV infrared target de-
tection tasks. Therefore, in order to realize the atten-
tion mechanism improvement in this experiment, we chose
the YOLOv11n+AFGCAttention improvement model. Mean-
while, this comparison experiment can provide a valuable
reference for the research of attention mechanism in the field
of real-time UAV infrared target detection.

F. Experiments comparing up-sampling and down-sampling
operators

The purpose of this experiment is to compare the
performance of different up and down sampling operators
in the task of household waste image classification and to
analyze their respective parameter counts, computational
effort, FPS and mAP50.In the field of computer vision, up
and down sampling operators have become an important
technique to improve the performance of models. We
created five improved models based on YOLOv11n,
which are YOLOv11n+ADown, YOLOv11n+LDConv,
YOLOv11n+DySample, YOLOv11n+CARAFE, and
YOLOv11n+WaveletPool.Subsequently, each model is
trained until it achieves optimal performance on the
validation set. Finally, the performance of each modified
model was evaluated on the test set to compare its number
of parameters, computation, average accuracy, and FPS. the
comparison results are shown in Table V

TABLE V
EXPERIMENTS COMPARING UP-SAMPLING AND DOWN-SAMPLING

OPERATORS.

Algorithmic model Params
(M)

FLOPs
(G)

mAP@50
(%)

FPS
(bt=16)

WaveletPool 2.2 5.5 88.1 303
LDConv 2.5 5.8 88.4 305
DySample 3.1 6.3 88.5 311
CARAFE 2.3 5.4 89.0 315
ADown 2.1 5.3 89.3 321

As shown in Table V shows, the YOLOv11n+DySample
model has the largest amount of computation and number
of parameters, and the recognition accuracy is 88.5%, which
is a poor improvement. Similarly, the YOLOv11n+LDConv
model has larger computational and parametric quantities,
and its average accuracy is slightly lower than that of the
original model, which also suffers from the disadvantage
of lower recognition accuracy.The YOLOv11n+WaveletPool
model has an increase in the number of parametric quantities
and computational quantities, but its average accuracy is only
0.1% higher than that of the original model.The YOLOv11n+
CARAFE model has the most obvious optimization in terms
of computation and number of parameters among the first
four improvements, but its average accuracy still falls short
of the performance requirements for household waste recog-
nition, with an average accuracy of 89.0%. In contrast,
the YOLOv11n+ADown model, with a reduced number of
parameters and little fluctuation in computation compared to
the original model, is the only one among the five improved
sets of up- and down-sampling operator models with an
average accuracy improvement of 1.3%. In addition, the
YOLOv11n+ADown model has the highest FPS, which is
321. Therefore, we believe that the YOLOv11n+ADown
improved model has better improvement.

From this up-and-down sampling operator comparison
experiment, we can infer that the YOLOv11n+ADown en-
hanced model outperforms the YOLOv11n algorithmic net-
work and has the highest mAP@50 and FPS. What’s more,
compared with the other four sets of up-and-down sam-
pling operator improved models, the YOLOv11n+ADown
improved model has relatively fewer parameters and the
amount of computation is also less, making it suitable
for real-time household waste identification and detection
tasks. Therefore, in order to realize the up-down sampling
operator improvement in this experiment, we choose the
YOLOv11n+ADown improvement model. Meanwhile, this
comparison experiment can provide a valuable reference for
the research of up-down sampling operator in the field of
real-time household garbage identification and detection.
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TABLE VI
EXPERIMENTAL COMPARISON OF IMPROVED ATTENTION MECHANISM

MODELS.

Algorithmic model Params
(M)

FLOPs
(G)

mAP@50
(%)

FPS
(bt=16)

RTDETR-r18 20.0 56,8 87.8 97
YOLOv3-tiny 12.2 18.8 85.5 52
YOLOv4 52.5 119.8 84.0 63
YOLOv5s 9.1 23.8 91.6 261
YOLOv5m 20.9 48 91.2 273
YOLOv6s 17.2 44.1 89.3 238
YOLOv8s 11.1 28.4 91.7 316
YOLOv9-c 51 238.9 92.1 337
YOLOv10m 15.7 59.8 92.3 343
ADA-YOLO 3.8 9.6 92.8 347

G. Comparative experiments with different models

In addition, in order to test the performance of the ADA-
YOLO model for target detection, we compare the ADA-
YOLO model with other algorithmic models to further in-
vestigate the development of the ADA-YOLO model while
maintaining the same dataset and hyperparameters.RTDETR-
r18, YOLO3-tiny, YOLOv4, YOLOv5s, YOLOv5m ,
YOLOv6s, YOLOv8s, YOLOv9-c and YOLOv10m are the
popular algorithms for comparison. The current evaluation
criteria are the number of parameters, arithmetic power,
mAP@50 and FPS; Table VI show the comparison results.

According to the Table VI , the maximum computational
amount of YOLOv9-c is 238.9 GFLOPS, and the maximum
parameter number of YOLOv4 is 52.5M is hardly suitable
for real-time UAV infrared target detection.The RTDETR-
r18, YOLOv3-tiny, YOLOv5s, YOLOv5m, YOLOv6s,
YOLOv8s, YOLOv10m models’ The computational and
parametric quantities are similarly too large, leading to a
lag in the inference process. In contrast, the number of
parameters and computation of ADA-YOLO model are 3.8M
and 9.6 GFLOPS, respectively. it is easy to see that our ADA-
YOLO model has obvious advantages in terms of arithmetic
power and parameter lightness, as well as lower device
requirements for deployment, compared with RTDETR and
previous YOLO series models. More importantly, the ADA-
YOLO model achieves the highest FPS and mAP@50, reach-
ing 347 frames per second and 92.8%, respectively. For real-
time UAV infrared target detection tasks, the ADA-YOLO
model algorithmic approach proposed in this paper is more
appropriate.

VI. CONCLUSION

In this study, we improve the YOLOv11n network consti-
tuting ADA-YOLO, which is a real-time UAV infrared target
detection model. The recognition average accuracy of the
ADA-YOLO algorithm is significantly improved compared
to the YOLOv11n network, and the efficiency of the target
detection process is optimized. We have four improvements
for the YOLOv11n algorithm: first, the introduction of the
ADown module, which optimizes the downsampling process
in the YOLOv11 network and improves the computational
efficiency; second, additional optimization through the intro-
duction of the Dynamic Conv module, which is an effective
and lightweight CNN design methodology that significantly
improves the model performance without significantly in-
creasing the computational cost. At the same time, the

recognition accuracy is improved; third, by introducing the
AFGCAttention mechanism aims to improve the model’s
ability to recognize small targets by enhancing the network’s
ability to pay attention to key regions and suppressing the
interference of irrelevant background information, which fur-
ther improves the recognition accuracy. Moreover, the results
show that this attention mechanism enhancement allows
the model to increase the mean accuracy value (mAP50)
while keeping the number of parameters and computations
constant. Fourth, the introduction of WIoUv3 allows the
improved model to achieve more robust performance when
dealing with outliers and low-quality anchored frames, and
it results in a significant increase in the model’s FPS. With
the introduction of ADA-YOLO, real-time UAV IR target
detection will be more effective, practical and affordable in
the future. In addition, by reducing hardware requirements
and controlling the amount of computation, ADA-YOLO
improves the recognition accuracy of IR target detection.
This helps to improve the accuracy of IR target detection for
better applications in industry and life. The algorithm also
contributes to the application of multimodal fusion and end-
to-end learning. Our future work will include further testing
the improved model on larger and more complex remote
sensing datasets to validate its robustness and generaliza-
tion ability in various application scenarios. We hope more
researchers will join us in the future.
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