Engineering Letters

Spark Task Scheduling Strategy Based on
Multidimensional Load Sensing

Congyang Wang, Member, IAENG, Qingsong Xu, Haifeng Fei, Han Li*, Yanhao Zhang and Junyang Yu

Abstract—In the Spark parallel computing framework, the
default task scheduling algorithm primarily follows the princi-
ple of data locality. It pursues a higher data localization level
through a delay scheduling strategy but ignores differences in
node computing capacities and real-time load states, leading
to low task execution efficiency. To address this issue, this
paper proposes a multi-dimensional load-aware Spark task
scheduling strategy (MDLS). The strategy first evaluates node
computing capacities and monitors real-time loads. Then, it
constructs a multi-dimensional load-aware task execution time
prediction model by correlating and analyzing task charac-
teristics and node states. Next, the Executor-Task scheduling
problem is transformed into a Minimum Weighted Bipartite
Graph Matching problem based on execution time. For Spark’s
batch execution characteristics, MDLS integrates the Longest
Processing Time scheduling concept. Within each scheduling
batch, the task scheduling problem is modeled as a fully
weighted bipartite graph matching problem. An optimization
model is constructed with the objective of minimizing task
completion time, and the Kuhn-Munkres Algorithm is adopted
to solve for the optimal scheduling scheme. Finally, the strategy
is implemented in Spark-2.4.6 and evaluated via benchmark
tests. Experimental results show that the MDLS strategy ef-
fectively alleviates cluster resource contention and significantly
improves task execution efficiency: a 37.6% improvement over
Spark’s default mechanism and an 11.5% improvement over
the RUPAM strategy.

Index Terms—Spark; Task Scheduling; Minimum Weighted
Bipartite Graph; Kuhn-Munkres; Dynamic Load.

I. INTRODUCTION

ITH the proliferation of big data applications [1-5],
MapReduce [6] has become the mainstream frame-

work for large-scale data processing in industry [7]], [8]. As
an extension of the MapReduce paradigm, Apache Spark [9]
is widely adopted in industry due to its in-memory computing
capabilities, which significantly enhance data processing
efficiency by leveraging memory resources effectively [10].
As illustrated in Fig. 1, in a Spark application,Resilient
Distributed Dataset(RDD) construct Directed Acyclic

Manuscript received Apr 21, 2025; revised Aug 29, 2025. This work
is supported by the National Natural Science Foundation of China (No.
92367302 and No. 92467103), the subproject “New Industrial Internet
Service Security System” under the NSFC Major Research Program (No.
92367302), and the Henan Provincial Science and Technology Key Project
(No. 242102210046).

Congyang Wang is a postgraduate student of School of Software, Henan
University, Kaifeng 475004, China (e-mail: wangcongyang@henu.edu.cn).

Qingsong Xu is a postgraduate student of School of Software, Henan
University, Kaifeng 475004, China (e-mail: 2670993885 @qq.com).

Haifeng Fei is a postgraduate student of School of Software, Henan
University, Kaifeng 475004, China (e-mail: fhf @henu.edu.cn).

Han Li is an associate professor of School of Software, Henan University,
Kaifeng 475004, China (corresponding author to provide phone: +86-
13837853817; e-mail: lihan@henu.edu.cn).

Yanhao Zhang is a postgraduate student of School of Software, Henan
University, Kaifeng 475004, China (e-mail: zhangyanhao@henu.edu.cn).

Junyang Yu is a professor of the School of Software, Henan University,
Kaifeng 475004, China (e-mail: jyyu@henu.edu.cn).

Graphs(DAGs) through a series of operations such as
join, groupBy, and filter. The DAGScheduler component
then partitions the DAG into distinct stages based on
Shuffle operation characteristics, submitting partitioned
tasks to the TaskScheduler as TaskSets. The TaskScheduler
distributes these tasks to the eCluster manager, and Worker
Nodes receive tasks to execute in thread pools. Upon job
completion, Spark releases all resources occupied by the
application.

In task scheduling, Spark employs a data locality-first
delay scheduling strategy, prioritizing task execution on
nodes with high data locality. However, this default strategy
does not account for node computing capacity heterogeneity,
real-time load dynamics, or task execution states within
Executors. Additionally, data volume variations across tasks
can cause load imbalance. The default task execution order
does not adapt to task differences, resulting in suboptimal
utilization of cluster resources and prolonged task completion
time.

Spark tasks are divided into Map Tasks and Reduce Tasks,
with shuffle operations as the boundary (Figure 2). In the
Map phase, Map Tasks read and process data blocks to
generate intermediate results. In the Reduce phase, Reduce
Tasks retrieve all Map Task output data via shuffle oper-
ations. This many-to-many communication model creates
a performance bottleneck in data transfer during the Re-
duce phase. Cross-node or cross-rack data transfer delays
are significantly higher than local data reading efficiency.
Additionally, heterogeneity in node computing capacities
(CPU, memory, and I/O performance)—combined with real-
time load variations—causes dynamic fluctuations in node
processing capabilities.

Spark’s default task scheduling algorithm assumes node
homogeneity, failing to account for cluster heterogeneity
or dynamic changes in node resource utilization and real-
time load. This design leads to low resource efficiency in
heterogeneous environments, making it difficult to achieve
load balancing and satisfy performance requirements for
diverse computing scenarios. Although prior studies have
proposed effective task scheduling algorithms [11], [12] and
data locality-driven strategies [13], [14], they predominantly
rely on greedy-based scheduling with static task/node char-
acteristics. These approaches prioritize local optimization
over global optimization, hindering synergistic optimization
of data locality and resource allocation. Study [15] explores
globally optimal task-locality allocation from a data locality
perspective but ignores the impact of hardware and load
heterogeneity on scheduling.

To address the limitations of existing research, this paper
proposes a multi-dimensional load-aware task scheduling
strategy (MDLS) that comprehensively considers cluster per-
formance and load conditions. The main contributions are as

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

RDD Objects

DAGScheduler

Rdd1.join(rdd2)
.groupBy(-*?)
filter(-++)

Split graph into
Stages of tasks

Submit each

build operator DAG I —

Fig. 1. Spark Task Transformation and Execution Process.

follows:

1. Task Execution Time Prediction Model: By synthesizing
task characteristics, data distribution, node heterogeneity,
and real-time load states, an accurate task execution time
prediction model is built. This model quantitatively forecasts
task execution times on different Executors, providing a
reliable basis for scheduling decisions.

2. Multi-Dimensional Load-Aware Scheduling Strategy:
The task scheduling problem is modeled as a Minimum-
Weighted Bipartite Graph Matching problem. First, a
scheduling matrix integrating node computing capacities and
real-time load information is constructed. Then, a mathemat-
ical model is established to minimize task set completion
time, enabling intelligent task-resource matching.

3. LPT-Based Complete Weighted Bipartite Graph Op-
timization: By combining the Longest Processing Time
(LPT) strategy with Spark’s batch scheduling mechanism,
the weighted bipartite graph is extended to a Fully Weighted
Complete Bipartite Graph structure. The Kuhn—-Munkres
(KM) algorithm is used to solve for the optimal scheduling
scheme, optimizing task execution order while dynamically
balancing the loads of cluster nodes.

4. Experimental Validation and Performance Analysis: To
verify the effectiveness of MDLS, the strategy is evalu-
ated through benchmark tests across multiple dimensions,
including Map Stage completion time, Reduce Stage com-
pletion time, network bandwidth usage, and CPU utilization.
Experimental results fully validate the strategy’s feasibility
and effectiveness in improving task execution efficiency and
optimizing resource allocation.

The remainder of this paper is organized as follows:
Section 2 reviews related research on Spark task scheduling;
Section 3 details the model construction and algorithm design
of the MDLS strategy; Section 4 analyzes experimental
results and compares performance across different policies;
and Section 5 concludes the paper.

TaskScheduler Worker
Cluster
| manager Threads
TaskSet
———— Block

manager

-

Launch tasks via
Cluster manager

Execute tasks

Retry failer or
Straggling tasks

Store and serve
blocks

II. RELATED WORK

Task scheduling aims to assign a set of dependent or
independent tasks to execute on cluster nodes with available
resources. An effective task scheduling strategy must con-
sider both the cluster resource load and the task execution
time to find the optimal scheduling scheme, which is critical
to improve overall job execution efficiency [16].

In the Spark platform, the default task scheduling algo-
rithm prioritizes data location and uses a delay scheduling
strategy to enhance data location (Figure 3). However, this
algorithm has notable limitations, failing to account for
node computing capacity heterogeneity or real-time load
conditions [[17]. It assumes homogeneous clusters with iden-
tical configurations and balanced loads, but in practice,
heterogeneous clusters with computing capacity variations
are common due to hardware upgrades, cluster scaling, and
multi-role node deployments [16]. Spark’s delay scheduling
and round-robin scheduling are inefficient in heterogeneous
environments: high-performance nodes idle after quick task
completion, while low-performance nodes endure prolonged
high loads, leading to unbalanced resource utilization and
degraded cluster performance.

Non-local data exchange during Map and Reduce task
execution is a common cause of performance degradation
[18]. Zaharia et al. [19] proposed the Delay Scheduling
Algorithm (DSA) for fair scheduling, which reduces network
data transmission by balancing data transfer time and waiting
time. When task node locality cannot be satisfied, DSA
introduces appropriate delays to improve data locality. Guo
et al. [20] transformed the scheduling problem into a Linear
Sum Assignment Problem (LSAP) and proposed a node-
locality-maximizing task scheduling algorithm. Tang et al.
[23] modeled task scheduling as a graph problem, formulat-
ing optimal schemes by calculating task communication cost
matrices to minimize communication overhead and enhance
job performance.

However, a common limitation of these approaches is
their neglect of node computing capacities and real-time load
dynamics. Jin et al. [17] proposed BAR (Balance-Reduce), a

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

HDFS

L4 L]

wid
sc.textFile("p ath")li>
v

e @

— Map Stage

Fig. 2. Different Stages of Tasks and the Shuffle Process.

data locality-driven dynamic task scheduling algorithm that
adjusts to node network conditions and workloads but ignores
node computing capabilities. To address this, Naik et al. [[11]
developed a data locality-aware scheduling strategy based
on node performance and load profiles, balancing locality
and load by assigning data blocks to higher-capability nodes.
Lu et al. [21] proposed a scheduling strategy weighing task
complexity and node performance, assigning tasks to high-
performance nodes based on heterogeneous node differences
and resource demands to alleviate the barrel effect” in
heterogeneous environments. With growing data volumes
and cluster hardware aging, cluster heterogeneity intensi-
fies; node capability-based task allocation optimizes resource
utilization, balances loads, and reduces job runtime. Xu et
al. [16] proposed the Resource and Usage Pattern-Aware
Scheduling Management (RUPAM) strategy for heteroge-
neous environments. RUPAM integrates task resource and
hardware characteristics, using a heuristic greedy algorithm
to match tasks with nodes based on key factors (e.g., CPU,
memory) via task sorting and priority queue matching,
while preserving data locality. Although RUPAM improves
program performance, its real-time dynamic adjustment ca-
pability is limited. Tang et al. [22] developed a dynamic
memory-aware task scheduler that integrates CPU, memory,
and other resources, adjusting task concurrency via real-time
system feedback to optimize resource utilization and shorten
application execution time.

Historical task execution information provides valuable
a priori knowledge for dynamic scheduling. Li et al. [23]
proposed an energy-aware task scheduling strategy using
a historical policy table (recording execution times and
energy consumption of past tasks) to assign tasks to optimal
Executors, reducing job execution time and energy use.
Tang et al. [24] developed a network-load-aware scheduling
strategy based on historical execution data, categorizing
tasks into network-intensive and network-idle states. This
allows scheduling additional network-intensive tasks during
network-idle phases and executing co-located CPU tasks as

Dependency
Stage0
BERNE | 2 ooy
Stage 1 Dependency ';' 'lf V;
h
[RDDI ‘ ‘ HH ‘ ‘ - ‘ | ‘ L —Reduce Stage
“‘vf f:i T

coarse-grained pipelined tasks to improve resource utiliza-
tion. Zhang et al. [25] presented a delayed parallel Stage
scheduling strategy using historical task scheduling data,
optimizing CPU-network resource coordination to enhance
task efficiency.

Task deadlines are another critical scheduling constraint.
Unlike prior work focusing on static resource allocation,
these studies introduce time-sensitive constraints but still
lack dynamic adaptation to multi-dimensional load vari-
ations. Wang et al. [26] proposed a dynamic multi-task
deadline scheduling algorithm, first determining task order
via an improved priority strategy in the allocation phase,
then allocating resources based on user time demands to
reduce job runtime and meet deadlines. Wang [27] and
Singh [28] incorporated ant colony algorithms to balance
optimal completion times and node workloads. Gu et al.
[29] developed a scheduling strategy addressing both data
skewness and deadlines to minimize public cloud rental
costs. Neciu et al. [30] proposed a real-time Earliest Deadline
First (EDF)-based scheduling strategy for Spark jobs, dynam-
ically adapting to heterogeneous cluster loads by managing
job deadlines to reduce latency. Zhao et al. [31]] optimized
DAG-aware scheduling by integrating task dependencies
with cache replacement policies, addressing inefficiencies in
Spark’s cache management during DAG execution.

III. SPARK TASK SCHEDULING STRATEGY BASED ON
MULTIDIMENSIONAL LOAD SENSING

A. Task Execution Time Model

Spark task execution time is influenced by multiple fac-
tors: cross-node data shuffling occurs when task location
mismatches data storage, with migration time determined by
data volume, network bandwidth, and real-time load; node
computing capacities, disk performance, and real-time load
directly impact task execution duration [32]). Therefore, quan-
tifying node computing capacities is essential to accurately
predict task completion time.

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

Define the highest local
priority of the task level

If exists a task that
meets the priority

Y

Schedule
the task

Current waiting time >
priority threshold?

Lower the
priority

The current priority <

No priority threshold
Yes
Y
End
Fig. 3. Flowchart of Spark’s Scheduling Strategy.

1) Node Performance Definition

During Spark execution, network data transfer is triggered
when an Executor and task-execution data reside on different
nodes. To quantify a node’s ability to fetch remote data,
this paper measures the average rate at which Executor e;
retrieves data from intermediate data nodes via repeated
execution of a standard benchmark workload. The average
rate at which remote data is retrieved by e; to the local node
for task; is defined as:

num—1 net
— ijk
Netij = —k_(’)num J R

i=0,1,...m (1)

Where net;;;; denotes the network transmission rate be-
tween node j and the node k hosting the intermediate data
fragment for task;.

Computational capability C'alSpeed; represents the cur-
rent processing speed of node j. This is measured by
executing multiple standard benchmark jobs with fixed data
volumes and calculating their average execution speed:

num—1
—o Speed;
)

CalSpeed; = L 7i=0,1,...m (2)

num
Multiple Executors on the same node share hardware
resources, hence their execution rates are consistent.
Disk input/output (I/O) overhead is also a critical factor
in Spark computations. Using the Linux dd command, we

define disk write speed Cite and read speed Ci.eqq for
node j as follows:

num—1 num—1
> c > ¢
—0 w —0 r
erite = miv Cread = == (3)
num num

2) Dependency-Based Data Volume Sensing Algorithm

After Spark application jobs are transformed into Di-
rected Acyclic Graphs (DAGs), they are divided into stages
based on dependency levels. Specifically, narrow dependen-
cies (e.g., map, filter) form continuous stages, while wide
dependencies (shuffle operations) trigger stage boundaries.
Analogous to the MapReduce framework, these include Map
and Reduce stages. In the Map stage, each Map task reads a
data partition and forms a ”one-to-one” narrow dependency
with the partition. In the Reduce stage, each Reduce task
extracts partial intermediate data from Map task outputs,
establishing a “one-to-many” wide dependency (shuffle de-
pendency) with data partitions. While the Map stage’s input
data distribution is static (pre-known before task execution),
the Reduce stage’s data distribution is highly uncertain due
to dynamically generated intermediate results, necessitating
dynamic sensing algorithms for real-time computation. This
subsection focuses on dependency-based data distribution
sensing for Reduce-stage tasks.

In the Reduce stage, task-processed data originates from
Map-stage task outputs, categorized as local (same node) or
remote (cross-node) based on the Executor’s location. Spark
identifies Map-Reduce dependencies via shuffleld: Map task
output locations and corresponding shufflelds are stored in
the Driver’s MapOutputTracker. Before Reduce tasks start,
they retrieve data locations from the Driver and fetch data
from target nodes via BlockManagerClient. As Reduce tasks
are distributed across nodes and Map tasks process varying
data volumes, data pull volumes for different Reduce tasks
fluctuate significantly.

Before submitting the Reduce-phase TaskSet, the amount
of partitioned data and remote data pull per task can be ac-
curately calculated using Shuffleld and Spark’s RPC frame-
work. The detailed implementation is outlined in Algorithm
1.

Through the above process, the data volume for Map and
Reduce tasks is unified as Size;oq;, and the local data size
for Reduce task is defined as Sizej,cq;- These serve as basic
parameters for data distribution in subsequent execution time
modeling.

3) Map Task Execution Time Model

The Map stage task execution time comprises three sub-
stages: data reading, data computation, and result output.
For HDFS files, the number of Tasks by default equals the
number of HDFS partitions. By querying HDFS partition
locations via HDFS API , the data volume per Task is
obtained as modeling input.

HDFS storage mechanisms directly impact data reading
efficiency. For HDFS files, data read time depends on replica
location and storage media (e.g., memory/disk). Based on
how replicas are stored on the node where the Executor is de-
ployed, the time to read data from the replica (memory/disk)
to the Executor instance is evaluated as:

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

Algorithm 1 Dependency-Based Data Volume Sensing
Algorithm
Input: Reduce task corresponding to stage Shuffleld: sf;4
Output: Partition data information for the task: Tp,,,,;
The amount of partition data corresponding to the Reduce
task: D;;
Imitialize: T}, ;5o < {}; Dy < {}
taskSet = get ReduceT asks(sfiq)
for task in taskSet do
remoteData = 0
taskPs = partitions.get (task, partition Num)
for partition in taskPs do
Tp_infoltask.id).append (partition)
for partition in Tp_i,fo[task.id] do
if partition.Node # task.Node then
remoteData+ = mapSize
Dy [task.id]).remoteData = remoteData
end if
Dy[task.id).total Data+ = mapSize
end for
end for
end for
return (Tp_info, Di)

Sizetatal
ST'ead X (1 - 0)

Where S,..q represents the memory or disk read speed,
and 6 denotes the current resource utilization rate. For local
file systems (e.g., ext4), Spark requires files to be accessible
via the same path across all nodes. In this case, data read
time depends on the task’s file size and the Executor’s disk
speed, i.e., Srcqq takes the value of Ci.eqq.

If task data replicas on other file systems are not present on
node j, the data must be retrieved remotely over the network,
and the retrieval time can be expressed as:

TimeLocal; ; =

“)

Sizetotal

®)

TimeRemote; ; = netin % (1—a)
Where o represents the current network bandwidth utiliza-
tion.
Once the data required by task; is loaded into the Ex-
ecutor’s memory, the computation phase begins. The task
computation time is calculated as:

Sizetotal

T' s =
zmeCalz,] CalSpeedj X (1 - B)

(6)

Where (3 denotes the current CPU utilization rate.

After Map task computation, intermediate data is written
to disk for subsequent Reduce stage processing. Assuming
a data scaling factor of v and 6, as the disk write
bandwidth utilization ratio, the write time is:

Sizetotal Xy
erite X (1 - ewrite)

Therefore, the total execution time of Map task; on
Executor e; is:

TimeWrite; ; = (7

Time; j = [TimeLocal; ;, TimeRemote; ;]

8
+ TimeCal; j + TimeWrite; ; ®

4) Reduce Task Execution Time Model

In the Reduce stage, each task fetches partitioned data
from all Map stage output data. To avoid network congestion
from many-to-many communication, Spark limits the data
pulled per communication by the configuration parameter
MaxSizelInFlight (48 MB by default). Thus, the time for
Reduce task to fetch data from remote node is:

MazSizeInFlight
Netij X (1 — a)

Sizelotal — Sizeloeal
MazSizeInFlight
- Sizeon — Siz€jocal
o N@tij X (]. —a)

TimeTrans; ; =

©)

Where Sizeiotq 1S the total data volume for task;,
Sizeocql 15 the local data volume, and Net;; is the network
bandwidth utilization.

Remote-fetched data is stored in the Executor’s memory
buffer. When data exceeds the memory threshold, it spills to
disk, incurring spill overhead. During spilling, Spark writes
data to disk files in 10,000-entry batches. Assuming an
average spill block size of sizesp; (per 10,000 entries), the
number of spill operations is:

SpillNum — Sizeiotal — S12€10cal — SPIllThreshold

Sizespi”
(10)

During memory data spill to disk, the disk write time is
calculated as:

SpillNum x Sizespi

11
Cwm'te X (1 - ()

TimeSpill; ; =

awm'te)

Upon data fetch completion, the task reads spilled data
from disk and processes local data, both requiring disk
access. The disk read time is:

Sizeom — SpillThreshold
Cread X (1 — 6read)
n Sizelocal
Cread X (1 — Oreaa)

TimeRead; ; =

12)

Therefore, the total execution time of Reduce task; exe-
cuting on Executor e; is:

Time; j = TimeTrans; ; + TimeSpill; ;

13
+ TimeCal; ; + TimeRead; ; (13

B. Optimal Scheduling Problem Transformation

In Spark’s Executor-Task scheduling system, the task-
Executor assignment relationship is modeled as a n X m
bipartite graph adjacency matrix P, where n is the number
of unscheduled tasks and m is the number of idle Executors.
The element p; ; is a binary variable: p; ; = 1 if task; is
assigned to Executor e;, otherwise 0.

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

Po,o Po,m—1

P = (14)

Pn-1,0 Pn—1,m-1

During scheduling, the following constraints must be sat-
isfied:

1. Task atomicity: Each task is assigned to at most one
Executor.

2. Executor capacity: Each Executor runs at most one task
per scheduling interval.

Mathematically, these are expressed as:

m—1
pij <1, Yie[0,n—1];
7=0
- (15)
me- <1, VYjelo,m—1]
1=0

Additionally, the number of valid assignments equals the
minimum of unscheduled tasks and idle Executors:

m—1n—1

Z me» = min {m,n}

i=0 j=0

(16)

Meanwhile, by sensing task data volume and integrating
node performance with real-time loads, the predicted exe-
cution time of tasks on different Executors is defined as an
n X m matrix T using the task execution time model from
the previous section:

T’L'm€070 Timeo,m, 1

T = a7

Timen,1’0 Timenfl’mfl

where T'ime; ; represents the predicted execution time of
task; on e;.

Combining matrices P and 7', the task scheduling problem
in Spark is modeled as a weighted bipartite graph matching
problem based on execution time. As shown in
the constructed weighted bipartite graph BG = (U,V,S)
consists of task set U, Executor set V, and edge set S. An
edge s(i,j) denotes the assignment of task; to Executor e;
(corresponding to p; j=1), with edge weight w(3i, j) repre-
senting the execution time T'ime; ;.

The total execution time of the scheduling scheme is the
sum of weights for all matched edges, formalized as:

Time (P, T) (18)

Z P x T

Among them, the row vector P; in matrix P represents
the assignment of task; to all m Executors, and the vector
T; denotes the execution time of task; on each Executor.

Using the unified graph model, the optimal task scheduling
problem is transformed into a minimum weight bipartite
graph matching problem. To obtain the optimal task schedul-
ing scheme, the task scheduling matrix P should minimize
the total execution time of all tasks. This objective function
can be formalized as:

&3

Fig. 4. Weighted Bipartite Graph Matching.

n—1
=Min Y P xT;"
=0

MinTime (P,T) (19)

Minimizing total execution time not only reduces job
completion time but also balances Executor resource loads
through multidimensional load-aware weight modeling,
thereby optimizing cluster resource utilization.

C. Weighted Bipartite Graph Construction Algorithm

In the specific construction of the weighted bipartite graph,
edge weight calculation is first performed using task data,
node performance, and real-time load statistics provided by
Algorithm 1. This is combined with the execution time
models of Map tasks (Eq. 8) and Reduce tasks (Eq. 13)
to compute edge weights. The edge set S incorporates all
possible edges and their corresponding weights to model
feasible task scheduling schemes. The selection of final edges
(i.e., optimal scheduling schemes) is discussed in the next
subsection.

Algorithm 2 Weighted Bipartite Graph Construction Algo-
rithm
Input: A set of TaskSet: TK; Executor assigned
when scheduling a Task: SFE; Partitioned data
information for a Task: T}, snf0; Node performance set:
LM{Net;;, TimeCal; ;, CalSpeed;, Cyrite, Cread}s
Remote data volume for a Task: D;; Node real-time load
set: MT{a,f3,0};
Output: Weighted bipartite graph: BG = U, V, S;
Initialize: Node set:U <— T K,V < MZFE ; Initialize edge
set: S < {};
m = ME.size(),n = TK.size()
for (i =0;i <n;i++) do
for (j=0;j<m;j++) do
if (TK [i] ismapper) then
w(i,j) = eq(8, Sizetotar, MT, LM)

else
w(i,j) = eq(13,Tp_into, Dy, MT, LM)
end if
s(1,7) .addWeight(w(i, 7))
S=5Us(i,j)
end for

end for

BG = (U,V,S)

return BG

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

Switchl

Rackl Rack2

Rack3

Fig. 5. Cluster Topology Diagram.

D. Spark Task Scheduling Algorithm Based on Multidimen-
sional Load Sensing

In actual task scheduling, performing weight matching for
all unscheduled tasks each time would lead to high time
complexity. First, all tasks are sorted in descending order of
execution time. Then, a fully weighted bipartite graph BG of
m X m is constructed using Algorithm 2, and finally solved
via the Kuhn-Munkres (KM) algorithm.

Notably, the KM algorithm is designed to solve the max-
imum weight matching problem, whereas our objective is to
minimize the total execution time. To adapt our problem to
the KM algorithm, we negate all edge weights w; ; ((i.e., the
predicted execution times T'ime; ;) when constructing the
weight matrix. Consequently, finding the maximum weight
sum becomes equivalent to finding the minimum total exe-
cution time.

Furthermore, the standard KM algorithm requires a com-
plete bipartite graph, which means that the two sets of ver-
tices must be of equal size. When the number of unscheduled
tasks n is less than the number of idle Executors m, we
create mn virtual ~’placeholder tasks” in the task set to meet
this requirement. The edge weights from these placeholder
tasks to all Executors are set to a very large positive value
(which becomes a very small negative value after negation),
ensuring that they will not be selected in the maximum
weight matching solution and thus preserving the correct
matching for real tasks.

Eventually, the algorithm returns a scheduling matrix P,
which represents the optimal solution to task scheduling in
this batch.

The KM algorithm solves the maximum weight matching
problem for fully weighted bipartite graphs, aiming to find
a matching in the bipartite graph that maximizes the sum
of the weights of the matching edges. This conflicts with
the objective function of minimizing the task completion
time. Thus, in implementation, edge weights are set to their
negative values to align the problem’s objective function with
the applicable conditions of the KM algorithm. Additionally,

when the number of unscheduled tasks is less than the
number of idle Executors (i.e., n < m), m-n placeholder
tasks are created in BG to satisfy the KM algorithm’s
operational requirements. Each placeholder task has an edge
weight of i (where 7 is greater than the weight of any edge
in BG) to form the elements required for the KM algorithm
to operate.

Algorithm 3 generates the optimal scheduling plan for
tasks in the Map and Reduce Stages based on node perfor-
mance, real-time load, the longest m tasks selected by the
Longest Processing Time (LPT) strategy and the performance
set of idle executors.

Algorithm 3 Spark Task Scheduling Algorithm Based on
Multidimensional Load Sensing

Input: Number of tasks LPT chooses to prioritize for
scheduling: m; Node real-time load set: MT{«,f,0};
Assigned Executor: MUFE; Node performance set:
LM{Net;;, TimeCal; j, CalSpeed;, Ciyrite; Cread}
Output: Task Scheduling Matrix: P;
Initialize:Task scheduling matrix: P < {}; Fully
weighted bipartite graph: BG < algo(2, m, MT, LM);
for w (i,7) in BG do

w (Zaj) =-w (Zaj)
end for
MWBM = KM (BG) //IMWBM of BG obtained by
applying KM algorithm
for (i =0;i <m;i++) do

for (j =0;j <m;j++) do

if s(; ;) is selected by the MWBM then
Pij =1
else
pij =0
end if
end for
end for
return P

The time complexity of generating the task scheduling

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

TABLE 1
SPARK CLUSTER SOFTWARE CONFIGURATION

Type Configuration
Operating system CentOS-7.9
Hadoop version Hadoop-2.10.2
Spark version Spark-2.4.6
Java version 1.8
Scala version 2.12.10
Prometheus 2.26.0
Node Exporter 1.1.2

solution matrix P in Algorithm 3 is O(m?), and the time
complexity of the KM algorithm is O(m?). Thus, the total
time complexity is O(m?) + O(m?). Additionally, task
selection based on the LPT strategy requires sorting all tasks
once, with a time complexity of O (nlogn). Constructing
the fully weighted bipartite graph BG using Algorithm 2
has a time complexity of O(m?). In practical scenarios, the
number of Executors assigned (m) is typically much smaller
than the number of tasks (n). Therefore, the overall time
complexity of the algorithm is dominated by O (nlogn) due
tom << n.

IV. EXPERIMENT

In this paper, we extend the task scheduling module of
Spark 2.4.6 via the TaskSchedulerImpl interface, embedding
the MDLS strategy into the native framework as a plugin
to ensure compatibility with the existing cluster task execu-
tion mechanism. We conduct comparative experiments in a
heterogeneous cluster environment.

A. Experimental Setup

The experimental cluster consists of six physical servers,
including one master node and five worker nodes (Note:
”slave” is updated to “"worker” for modern terminology con-
sistency). Each node is a multi-role node deployed with other
service applications (Note: “applications” is more technically
precise than “programs”). We use Prometheus to monitor
real-time resource usage of each node in the cluster. Nodes in
the cluster share the same software environment, and specific
version information is shown in

The servers are distributed across three different racks.
Each rack contains two nodes, and the nodes in the racks
are interconnected via a single switch, with network band-
widths of 10Gbps, S00Mbps, and 1Gbps for the three racks,
respectively. The cluster topology is shown in
The distribution of cluster nodes and hardware configuration
details are listed in

TABLE II
CLUSTER NODE DISTRIBUTION AND HARDWARE CONFIGURATION

Rackl
Nodel Node6

Rack2
Node3 Node5

Rack3
Node2 Node4

Cluster Information

CPU Frequency (GHZ) 2.1 22 22 2.4 2.1 2.4
Number of Allocated CPU Cores 6 6 6 6 6 6
Allocated Memory (GB) 48 48 48 48 48 48
Network Bandwidth (Bps) 10G 500M 500M 500M 1G 1G
Disk Capacity (TB) 83 30 30 2 83 2
Disk Write Performance 700m/s 767m/s 1.5g/s S515m/s 670m/s 536m/s
Disk Read Performance 2.3gls 3gls 2.5g/s 829m/s 670m/s 835m/s
Is Hadoop Node Yes Yes Yes No Yes No

B. Single-Round Performance Analysis

Single-round jobs, typically comprising one Map stage
and one Reduce stage, are a key benchmark for evaluating
a scheduler’s fundamental efficiency. We demonstrate the
superiority of MDLS by analyzing three different types of
benchmarks.

WordCount, a widely used task in large-scale data pro-
cessing, aims to count the occurrences of each word in
the input data. While the shuffle data volume in Word-
Count is relatively small, its performance is still sensitive
to computation and network transfer efficiency. As shown in
MDLS maintains a performance lead on the 300GB
dataset. This is primarily attributed to its global decision-
making capability based on optimal matching. Within a
scheduling batch, MDLS does not assign tasks one-by-one
using a greedy approach like DEF or RUPAM. Instead, it
solves for a batch-level "Pareto optimal” solution using the
KM algorithm. This means it can balance the computational
needs and data locations for multiple tasks simultaneously,
minimizing the total completion time for all tasks in that
batch and thus accumulating small but critical advantages at
every scheduling decision point.

Experimental data show that for a 200GB dataset, MDLS
reduces job execution time by 6.09% compared with the DEF
scheduling strategy and by 3.24% compared with RUPAM.
As dataset size increases, MDLS’ performance advantage
becomes more pronounced: for a 250GB dataset, job execu-
tion time is reduced by 6.8% compared with DEF and 3.4%
compared with RUPAM; for a 300GB dataset, execution time
is reduced by 7.43% compared with DEF and 4.5% compared
with RUPAM. As dataset size grows, data transmission and
processing pressure increase. MDLS optimizes bandwidth
allocation to avoid network congestion under high load and
enhances network utilization under low load, enabling syn-
ergy between application-layer transmission semantics and
network-layer resource conditions. This effectively reduces
job execution time across datasets of different sizes.

Sort [33]], a common workload benchmark task primar-
ily used for sorting data objects, has experimental re-
sults presented in Experimental data show that
MDLS demonstrates significant performance advantages
across datasets of varying sizes.

For a 40GB dataset, MDLS reduces execution time by
9.3% compared with DEF and 3% compared with RUPAM.
For a 60GB dataset, MDLS further shortens execution time
by 10.5% compared with DEF and 3.7% compared with
RUPAM. MDLS performs even better for an 80GB dataset,
with execution time reduced by 11% compared with DEF
and 2.7% compared with RUPAM. Although the RUPAM
strategy employs a static priority queue for task resource allo-
cation, it cannot adjust in real time according to data size and
task load changes, limiting its performance improvement. In
contrast, MDLS uses a multi-dimensional load-aware weight
allocation mechanism to monitor task load in real time and
dynamically adjust task allocation weights based on multi-
dimensional factors such as data size and computational
complexity. In the Sort task, as data size increases, task load
and complexity also increase. MDLS adapts better to these
changes by allocating resources reasonably to avoid compu-
tational resource imbalance, thereby significantly improving
the execution efficiency of the Sort task.

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

600

N\ DEF 7. RUPAM i MDLS

W
(=3
(=}

\%

«

[o%)
(=3
(=]

W

W
«

Map Stage Time (s)

—_
(=3
(=]

&

A

(a) Different WordCount DataSet (GB)

Fig. 6. Execution Results of the WordCount Benchmark.

120
(i MDLS

W

N\ DEF 772 RUPAM

—
=3
(=}

)
(=}

B
=}

Map Stage Time (s)
D
f=]

[55
[=}

iz

N\

(a) Different Sort DataSet (GB)

- 100 §///

I\

B B
(a) Different TeraSort DataSet (GB)

TeraSort [34], a sorting and merging framework based
on MapReduce technology, is designed to handle large-
scale data sorting and merging. Its test suite is provided
by HiBench, with experimental results summarized in fig8.
Across the three data sizes, MDLS outperforms DEF by
11.3%-13.9%, while the RUPAM strategy achieves an
8.2%-10.9% improvement. The DEF strategy lacks compre-
hensive consideration of multidimensional resources in large-
scale data processing, failing to schedule tasks reasonably
based on data distribution and node load. This leads to low
resource utilization and consequently long task execution
time. By contrast, MDLS assigns tasks to different nodes
according to data distribution, avoiding concentration and

I MDLS

XXX DEF v, RUPAM

o
(=]

2
W

[=2)
(=]

\

\%

(b) Different WordCount DataSet (GB)

S
[y

Reduce Stage Time (s)
9
(=]

Y

A
A

(=}

600

N\ DEF 777 RUPAM

IS w
S S
1S3 S

Reduce Stage Time (s)
s
(=]

—
(=3
S

%

N
(=]

60
(b) Different Sort DataSet (GB)

:

XXX DEF 7. RUPAM

700

SIS

(9%
3
(=]

0 60
(b) Different TeraSort DataSet (GB)

waste of computing resources. This significantly optimizes
the scheduling and execution efficiency of large-scale data
sorting and merging.

C. Iterative Job Performance Analysis

The above three workloads each consist of only two
Stages and one Shuffle. However, real-world big data pro-
cessing scenarios often involve more complex task flows.
To comprehensively demonstrate the performance advantages
of the multidimensional load-aware task scheduling strategy
(MDLS), three workloads with more Stages—Linear Regres-
sion (LR), PageRank (PR), and Random Forest (RF)—were

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

1600

?2000 . § % 1200 §/ ? o
M R ™ B BB
0 V\H\H V I \%/ | §f H v \ | VH\HH “ Nl \\Y? I X\
(a) Different LR DataSet (GB) (b) Different PageRauk pages (Tenthousaud) B (c) Different RF DataSet (GB)

Fig. 9. Execution Results of the Multi-Stage Benchmark.

selected, and experiments were conducted on various datasets
of different sizes. Experimental results are shown in[Figure 9]

As shown in [Figure 9] MDLS achieves the most significant
performance improvements across all iterative jobs, with
gains of up to 37.6%. This powerfully demonstrates the
Cumulative Advantage of the MDLS strategy. The greedy
or static approaches of DEF and RUPAM may make locally
optimal but globally suboptimal decisions at each stage,
accumulating “’scheduling debt.” MDLS, by striving for a
global optimum in every scheduling batch, effectively pre-
vents this negative compounding effect. For example, across
the multiple iterations of PageRank, MDLS consistently
assigns computation tasks to nodes with lower CPU loads
while preserving network bandwidth for subsequent data
shuffles. This forward-looking, cross-stage resource balanc-
ing is a capability that the other two strategies lack and is
the fundamental reason for MDLS’s success in complex job
flows.

D. Resource Load Analysis

To further demonstrate MDLS advantages, we collected
samples of CPU and network resource utilization during
runtime for three typical workloads: PageRank, Sort, and
WordCount. Resource utilization results are shown in
[ure 10| and [Figure 1} Experimental results indicate that
while DEF enhances data locality through delay scheduling
to reduce application-layer data transmission, its lack of
network-layer bandwidth and load awareness leads to delays
from network congestion or underutilization. For example,
during peak data transmission, DEF cannot adjust task allo-
cation in time, causing overutilized network bandwidth that
impacts other tasks and increases execution time. RUPAM’s
static queuing mechanism also fails to dynamically sense
network load changes or adjust task allocation based on real-
time bandwidth conditions, resulting in inefficient network
resource use. In contrast, MDLS dynamically adjusts task
allocation weights under high network load by monitoring
multidimensional resource usage, controlling bandwidth to
avoid congestion while enhancing utilization under low load.
This creates synergy between application-layer transmission
and network-layer resources, balancing resource load while
minimizing task completion time.

In terms of CPU resource utilization, as shown in
MDLS exhibits significantly higher CPU utilization
than the other two methods across three typical workloads.
As shown in Figure 10, MDLS achieves significantly higher
CPU utilization than its counterparts in all tests. The box

plot for the Sort job, in particular, reveals the superior
load balancing capability of MDLS: it achieves the highest
median CPU utilization while also displaying the narrow-
est interquartile range (IQR). This demonstrates that CPU
utilization under MDLS is not only higher overall but also
more uniform across the nodes. Such a distribution provides
empirical evidence of MDLS’s success in mitigating load
imbalance by migrating tasks from contended to available
nodes, which in turn improves the cluster’s parallel efficiency.
In the PageRank job, MDLS reaches a peak CPU utilization
of 51.8%, compared to DEF’s 46.2%; in the Sort job, MDLS
achieves a peak CPU utilization of 41.5%, significantly
higher than DEF’s 29.85%; in the WordCount job, MDLS’s
peak CPU utilization is 40.1%, surpassing DEF’s 33.65%
and RUPAM’s 36.45%.

The DEF strategy lacks the ability to dynamically allocate
CPU resources, failing to distribute CPU resources reason-
ably according to task computational demands. This leads to
idle CPU resources on some nodes and overuse on others,
reducing overall CPU utilization. RUPAM’s static queuing
mechanism fails to adjust task allocation in real time to adapt
to CPU load changes, leading to inefficient CPU resource
utilization. By contrast, MDLS pre-senses data distribution
and task characteristics, dynamically adjusting allocation
weights based on real-time load of different resource types at
each node. This avoids severe computing resource skewing,
balances node resource loads, and minimizes completion
time, demonstrating its load-sensitive elastic scheduling ca-
pability.

In summary, compared with Spark’s default scheduling,
the RUPAM strategy uses static priority queues for resource
types (e.g., CPU, network, storage, and memory), sorting
them by capacity in descending order and allocating tasks
via feature-queue matching to optimize execution efficiency.
However, its static queuing mechanism cannot dynamically
sense Executor real-time load changes, disconnecting task
allocation from current node load states. Similarly, some
studies optimize from the perspective of task cost and
latency benefits, such as the CALS strategy proposed by
Xu et al. [35], which uses a greedy algorithm to optimize
task execution order and dynamically adjusts delay times.
In contrast, the MDLS strategy in this paper goes a step
further. It first employs the LPT strategy for batch task
selection, then constructs a multi-dimensional load-aware
task execution time model by integrating node computing
capability, data distribution, and Executor real-time load. It
builds a fully weighted bipartite graph and solves for the

Volume 33, Issue 11, November 2025, Pages 4341-4352

Engineering Letters

460

1601 — pEr [DEF [DEF
—_ [MDLS —_ [MDLS —_ [MDLS
€ 128) 3 RUPAM € 420} =3 ruPAM 2% = rueam
s b} S
F T g | = B
4 — —
g% g 380 —— g T -I—
= = =
2 w4l = S 440
5 £ 340 £
g J_ g g
M 32! m M 400
300
0 DEF MDLS RUPAM DEF MDLS RUPAM 360 DEF MDLS . RUPAM
(a) PageRank Average Bandwidth usage (b) WordCount Average Bandwidth usage (c) Sort Average Bandwidth usage
Fig. 10. Average BandWidth Usage For Multiple Loads
50 50 70
[DEF [DEF [DEF
60
40 [MDLS 40 [MDLS -1 _ [MDLS
S [RUPAM S 1 RUPAM <] RUPAM
< 2 50
o o =
=T E gk = E =
< I <
S 20, 520 @ — 530
10 10
10
0 RUPAM 0 RUPAM 0

DEF MDLS RU
(a) WordCount CPU utilization

Fig. 11. CPU Utilization For multiple Loads

batch-level global optimal scheduling scheme via the KM
algorithm. This reduces task execution time while avoiding
computing resource load skewing.

Experimental results indicate that although MDLS in-
troduces moderate scheduling delays through real-time re-
source monitoring and heuristic decision-making, it achieves
significant performance gains compared to Spark’s default
scheduling.

V. CONCLUSION

Cluster performance and load heterogeneity are critical
factors affecting Spark task scheduling. This paper proposes
a Spark task scheduling strategy based on Multidimensional
Load Sensing (MDLS). The strategy first assesses the per-
formance and real-time load of each compute node, counts
the data load and distribution of compute tasks, and performs
multi-dimensional dynamic modeling of task execution times
on different Executors. It then analyzes Spark’s Executor-
Task scheduling mechanism in depth, transforming the op-
timal task scheduling problem into a minimum weighted
bipartite graph matching problem. Finally, combining Spark’s
task execution mechanism with the Longest Processing Time
(LPT) strategy, it constructs a fully weighted bipartite graph
and solves for the batch optimal scheduling plan using
the Kuhn-Munkres (KM) algorithm. MDLS addresses the
performance bottlenecks of Spark’s default scheduling policy,
which focuses solely on data locality and uses a polling-
based load balancing approach in heterogeneous clusters. Ex-
perimental results show that MDLS improves Spark cluster
job execution efficiency, balances node load more effectively,
and achieves up to 37.6% performance improvement.

DEF MDLS |
(b) Sort CPU utilization

DEF MDLS _ RUPA
(c) PageRank CPU utilization

DATA AND CODE AVAILABILITY

The data and code supporting this study are available in the
GitHub repository at |https://github.com/wcy666103/spark-
paper-task

REFERENCES

[1] X. Xu, W. Dou, X. Zhang, and J. Chen, “EnReal: An Energy-Aware
Resource Allocation Method for Scientific Workflow Executions in
Cloud Environment,” IEEE Transactions on Cloud Computing, vol. 4,
no. 2, pp. 166-179, 2016.

[2] Z. Liu and T. S. E. Ng, “Leaky Buffer: A Novel Abstraction for Re-
lieving Memory Pressure from Cluster Data Processing Frameworks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no.
1, pp. 128-140, 2017.

[3] H. Moniz, J. Leitdo, R. J. Dias, J. Gehrke, N. Preguica, and R.
Rodrigues, “Blotter: Low Latency Transactions for Geo-Replicated
Storage,” Proceedings of the 26th International Conference on World
Wide Web, pp. 263-272, 2017.

[4] Q. Gan, X. Wang, and X. Fang, “Efficient and Secure Auditing Scheme
for Outsourced Big Data with Dynamicity in Cloud,” Science China
Information Sciences, vol. 61, pp. 122104, 2018.

[5] K. Wang, C. Xu, Y. Zhang, S. Guo, and A. Y. Zomaya, “Robust Big
Data Analytics for Electricity Price Forecasting in the Smart Grid,”
IEEE Transactions on Big Data, vol. 5, no. 1, pp. 34-45, 2019.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

[71 S. M. Nabavinejad, M. Goudarzi, and S. Mozaffari, “The Memory
Challenge in Reduce Phase of MapReduce Applications,” IEEE Trans-
actions on Big Data, vol. 2, no. 4, pp. 380-386, 2016.

[8] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “MapTask Scheduling
in MapReduce with Data Locality: Throughput and Heavy-Traffic
Optimality,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 190-203,
2016.

[9] Apache Spark, 2019.[Online].Available: http://spark.apache.org/

[10] T. Hajji, R. Loukili, I. El Hassani, and T. Masrour, “Optimizations of
Distributed Computing Processes on Apache Spark Platform,” IAENG
International Journal of Computer Science, vol. 50, no. 2, pp422-433,
2023.

Volume 33, Issue 11, November 2025, Pages 4341-4352

https://github.com/wcy666103/spark-paper-task
https://github.com/wcy666103/spark-paper-task

Engineering Letters

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

S. N. Naik, A. Negi, B. R. Tapas Bapu, and R. Anitha, “A data locality
based scheduler to enhance MapReduce performance in heterogeneous
environments,” Future Generation Computer Systems, vol. 90, no. 1,
pp. 423-434, 2019.

M. Tang, C. Wang, and Y. Peng, “MARS: Scheduling non-local tasks
in mapreduce,” 2014 IEEE 3rd International Conference on Cloud
Computing and Intelligence Systems, pp. 536-540, 2014.

D. Choi, M. Jeon, N. Kim, and B.-D. Lee, “An Enhanced Data-
Locality-Aware Task Scheduling Algorithm for Hadoop Applications,”
IEEE Systems Journal®, vol. 12, no. 4, pp. 3346-3357, Dec. 2018.
F. Shang, X. Chen, and C. Yan, “A strategy for scheduling reduce
task based on intermediate data locality of the MapReduce,” Cluster
Computing, vol. 20, no. 4, pp. 2821-2831, 2017.

Z. Fu, M. He, Y. Yi, and Z. Tang, “Improving Data Locality of Tasks
by Executor Allocation in Spark Computing Environment,” IEEE
Trans. Cloud Comput., vol. 12, no. 3, pp. 876-888, 2024.

L. Xu, A. R. Butt, S.-H. Lim, and R. Kannan, “A heterogeneity-
aware task scheduler for spark,” 2018 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 245-256, 2018.

J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: An Efficient
Data Locality Driven Task Scheduling Algorithm for Cloud Com-
puting,” 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, Newport Beach, CA, USA, pp. 295-304,
2011.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale
data analysis,” 2009 ACM SIGMOD International Conference on
Management of Data, Providence, Rhode Island, USA, pp. 165-178,
2009.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleey, S. Shenker,
and L. Stoica, “Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling,” EuroSys, Paris, France,
2010.

Z. Guo, G. Fox, and M. Zhou, “Investigation of Data Locality in
MapReduce,” 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2012), Ottawa, ON,
Canada, pp. 419-426, 2012.

S. Lu, M. Zhao, C. Li, Q. Du, and Y. Luo, “Time-Aware Data Partition
Optimization and Heterogeneous Task Scheduling Strategies in Spark
Clusters,” The Computer Journal, vol. 67, no. 2, pp. 762-776, 2024.
Z. Tang, A. Zeng, X. Zhang, L. Yang, and K. Li, “Dynamic memory-
aware scheduling in spark computing environment,” Journal of Parallel
and Distributed Computing, vol. 141, pp. 10-22, 2020.

H. Li, H. Wang, S. Fang, Y. Zou, and W. Tian, “An energy-aware
scheduling algorithm for big data applications in Spark,” Cluster
Comput, vol. 23, pp. 593-609, 2020.

Z. Tang, Z. Xiao, L. Yang, K. He, and K. Li, “A Network Load Per-
ception Based Task Scheduler for Parallel Distributed Data Processing
Systems,” IEEE Transactions on Cloud Computing, vol. 11, no. 2, pp.
1352-1364, 2023.

Y. Zhang, C. Wang, X. He, J. Yu, R. Zhai, and Y. Song, “Delay-
aware resource-efficient interleaved task scheduling strategy in spark,”
Computer Science and Information Systems, pp. 18-18, 2025.

G. Wang, Y. Wang, M. S. Obaidat, C. Lin, and H. Guo, “Dynamic
Multiworkflow Deadline and Budget Constrained Scheduling in Het-
erogeneous Distributed Systems,” IEEE Systems Journal, vol. 15, no.
4, pp. 4939-4949, 2021.

Y. Wang, R. R. Yang, Y. X. Xu, X. Li, and J. L. Shi, “Research on
Multi-Agent Task Optimization and Scheduling Based on Improved
Ant Colony Algorithm,” IOP Conference Series: Materials Science
and Engineering, vol. 1043, no. 3, pp. 032007, 2021.

G. Singh, A. Sharma, R. Jeyaraj, and A. Paul, “Handling Non-Local
Executions to Improve MapReduce Performance Using Ant Colony
Optimization,” IEEE Access, vol. 9, pp. 96176-96188, 2021.

H. Gu, X. Li, and Z. Lu, “Scheduling Spark Tasks With Data Skew
and Deadline Constraints,” IEEE Access, vol. 9, pp. 2793-2804, 2021.
L. -F. Neciu, F. Pop, E. -S. Apostol, and C. -O. Truica, “Efficient Real-
time Earliest Deadline First based scheduling for Apache Spark,” 2021
20th International Symposium on Parallel and Distributed Computing
(ISPDC), pp. 97-104, 2021.

Y. Zhao, J. Dong, H. Liu, J. Wu, and Y. Liu, “Performance Improve-
ment of DAG-Aware Task Scheduling Algorithms with Efficient Cache
Management in Spark,” Electronics, vol. 10, pp. 1874, 2021.

W. CongYang, Y. JunYang, and L. Han, “Dynamic-awareness-based
Spark Execution Plan Selection and Shuffle Optimization Strategies,”
TAENG International Journal of Computer Science, vol. 52, no. 7,
pp2223-2233, 2025

R. Baity, L. R. Humphrey, and K. Hopkinson, “Formal Verification
of a Merge Sort Algorithm in SPARK,” ATAA Scitech 2021 Forum,
Reston, AIAA, p. 0039, 2021.

[34] D. Xia, M. Simpson, V. Srinivasan, and A. Thomo, “Strongly Minimal
MapReduce Algorithms: A TeraSort Case Study,” in Foundations of
Information and Knowledge Systems (FoIKS 2020), Lecture Notes in
Computer Science, vol. 12012, Springer, Cham, pp. 301-317, 2020.

[35] Q. Xu, C. Wang, and J. Yu, ”A Cost-Aware and Latency-Benefit
Evaluation-Based Task Scheduling Optimization Strategy in Apache
Spark,” Concurr. Comput. : Pract. Exper., 2025.

Congyang Wang born in 2000, received a bachelor’s degree in software
engineering from Henan University in 2022, where he graduated from the
School of Software. He is currently a graduate student in the School of
Software at Henan University. His research interests include distributed
computing and big data processing.He has published three SCI journal paper
and won several national awards in computer-related competitions. He is a
CCF (China Computer Federation) student member and an Alibaba Cloud
Open Source Pioneer. Since 2022, he has completed two industrial projects
and holds two patents. As an Apache Contributor, he has made technical
contributions to open-source projects in the big data field.

Volume 33, Issue 11, November 2025, Pages 4341-4352

	Introduction
	Related Work
	Spark Task Scheduling Strategy Based on Multidimensional Load Sensing
	Task Execution Time Model
	Node Performance Definition
	Dependency-Based Data Volume Sensing Algorithm
	Map Task Execution Time Model
	Reduce Task Execution Time Model

	Optimal Scheduling Problem Transformation
	Weighted Bipartite Graph Construction Algorithm
	Spark Task Scheduling Algorithm Based on Multidimensional Load Sensing

	Experiment
	Experimental Setup
	Single-Round Performance Analysis
	Iterative Job Performance Analysis
	Resource Load Analysis

	Conclusion
	References
	Biographies
	Congyang Wang

