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Abstract—This study addresses the limitations of traditional 

manual recognition methods in mobile GUI design, which are 

often time-consuming and prone to errors. We propose an 

improved deep learning-based algorithm to optimize the 

detection, localization, and classification of GUI components. 

The method incorporates an attention mechanism and 

Complete Intersection over Union (C-IoU) for enhanced 

accuracy in component recognition. Additionally, we introduce 

an improved Bidirectional Feature Pyramid Network (BiFPN) 

and Adaptive Training Sample Selection (ATSS) strategy to 

improve classification performance. Experimental results show 

that the optimized detection method achieves a MAP peak at 

the 45th training round, with the SE76-PP-YOLO algorithm 

reaching a 93.1% recall, outperforming the comparison 

algorithm (71.2%). The improved SEBi76-PP-YOLO 

algorithm achieves a MAP@0.5 of 94.1%, significantly 

enhancing classification accuracy across GUI components. This 

work contributes novel techniques to improve GUI component 

recognition, offering practical applications in mobile app 

design. 
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I. INTRODUCTION 

ith the rapid development of Internet applications, the 

development of Graphical User Interfaces (GUIs) for 

various services on mobile terminals has become 

increasingly complex and challenging [1]. Currently, in GUI 

component automation testing, tools still require manual 

input of test images and rules, which limits the scalability. 

GUI determines the user experience and affect the usability 

and attractiveness of software. With the proliferation of 

mobile applications, it has become critical to efficiently and 

accurately identify GUI components. According to the latest 

current market research, the global mobile apps market was 

valued at approximately $154.05 billion in 2019. It is 

expected to reach $407.31 billion by 2026, with a compound 

annual growth rate of 18.4% from 2020 to 2026. In addition, 

the download volume of mobile applications worldwide is 

 
Manuscript received April 27, 2025; revised August 12, 2025.  

The research is supported by: Suzhou University Doctoral Research 

Starting Fund Project “Research on packaging design of Huizhou Tourism 
cultural and Creative Products from the perspective of Green Ecological 

Aesthetics” (No.: 2022BSK035); Anhui Province Teaching and Research 

Project “Discussion and Reflection on the Construction of Practical 
Education System for Biotechnology Majors in Applied Universities”, 

(2021jyxm1509). 

Jie Song is a lecturer of College of Art and Design, Suzhou University, 
Suzhou, 234000 China (e-mail: songjie@ahszu.edu.cn).  

Na Li is an associate professor of School of Biological and Food 

Engineering, Suzhou University, Suzhou, 234000 China. (corresponding 
author to provide e-mail: li_na0541@hotmail.com). 

 

also constantly increasing. It is expected to reach 280 billion 

times by 2024. According to Statista's report, the average 

daily application usage time of mobile device users 

worldwide reached 4.8 hours in 2022, and this number is still 

increasing year by year. This highlights the growing demand 

for advanced GUI components that provide a seamless user 

experience.  

Therefore, its scalability is relatively poor [2]. Liu et al. 

proposed a fully automated method for modeling visual 

information in GUI screenshots based on deep learning to 

address various issues that arose when rendering GUIs on 

different devices [3]. Previous research showed that more 

than 70% of user interface issues in mobile applications were 

related to poor GUI design and functionality. These issues 

had significant impacts on user satisfaction and retention, 

and required optimized methods for identifying and testing 

GUI components. Hu et al. proposed a deep learning method 

for data enhancement based on Geographic Information 

System (GIS) to address issues related to digital image 

information extraction in GUI components [4]. Lee et al. 

optimized GUI components and controllers to recognize pill 

photos. A new pill-shooting system was proposed [5].  

Accurately identifying GUI components can ensure that 

all elements of the user interface are presented correctly and 

respond to user actions, improve user experience, simplify 

development and testing processes, and enhance cross 

platform compatibility. The GUI component recognition 

method based on deep learning aims to address these 

challenges by providing more accurate and reliable results. In 

this context, researchers improved detection localization and 

classification in GUI recognition based on deep learning. 

Therefore, this study combines an improved residual neural 

network 76 (SE76-PP-YOLO) and bidirectional 

SE76-PP-YOLO (SEBi76-PP-YOLO) for lightweight target 

detection. The main expectation of this research is to 

improve the accuracy and efficiency of GUI component 

recognition by optimizing the detection and localization 

methods. The optimized SEBi76-PP-YOLO algorithm 

improves the accuracy of GUI component detection and 

localization by improving residual neural networks and 

introducing attention mechanisms. Based on existing object 

detection models, this study combines residual neural 

networks and attention mechanisms to enhance the accuracy 

of GUI component detection and localization. Secondly, the 

Bidirectional Feature Pyramid Network (BiFPN) structure is 

also proposed to capture subtle differences in GUI 

component recognition and improve the accuracy of 

component classification. Finally, the study also incorporates 

an Adaptive Training Sample Selection (ATSS) strategy to 

avoid the negative impact of a large number of negative 

samples on classification accuracy in traditional methods, 

thereby improving the convergence speed and classification 
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performance of the model. The research aims to make 

significant contributions to the user interface design and 

development by providing practical solutions for 

automatically recognizing GUI components and improving 

the overall user experience of mobile applications. 

II. RELATED WORKS 

With the rapid development of information technology, 

user-oriented modern software applications stand out among 

numerous competitors with their unique GUI advantages. 

Compared with complex interface designs and obscure 

electronic products, web applications that meet design 

specifications and are user-friendly are more likely to 

succeed [6]. Currently, for mobile applications, automatically 

and accurately identifying components in GUI is the key to 

getting rid of tedious manual checks. This is also the 

guarantee for intelligent development [7]. Therefore, some 

domestic and foreign scholars have conducted in-depth 

research on this issue. To overcome the interference and 

efficiency issues of GUI element testing on electronic 

screens in factory environments, Wang Z et al. proposed a 

lightweight GUI recognition model based on YOLOv5. 

Based on PCA enhancement module, TWFPN precise 

positioning structure, and SIoU loss function, a lightweight 

structure combining Ghost and PConv was introduced. The 

results showed that the model improved the average accuracy 

by 2.7%, reduced the model parameters by 30%, and 

achieved a detection speed of 85 FPS, which effectively 

solved the element recognition of the visual test system and 

significantly improved the recognition accuracy and 

detection speed [8].  

To effectively improve the accessibility of interactive 

mobile devices, He et al. constructed a high-coverage GUI 

understanding model by optimizing GUI components. This 

effectively improved the accessibility of mobile devices [9]. 

Alajarmeh et al. proposed a new accessibility guide for blind 

or visually impaired users accessing mobile touchscreen 

devices by optimizing GUI component recognition. This 

effectively increased the frequency of visits to relevant 

websites [10]. To fill the gap in GUI testing research for 

mobile applications, Nie L et al. systematically investigated 

the relevant literature. Based on 4427 candidate studies, 114 

main results were filtered out. The findings showed that GUI 

testing focused on test case generation and automated testing. 

The prolific authors were collaborative and had a wide range 

of interests. The testing objectives were mainly functional, 

and the modeling approach was the most widely used. These 

findings provided important insights for understanding GUI 

testing [11]. 

In addition, Soui et al. proposed a fully automated GUI 

component identification framework by defining 

mathematical equations to address the related shortcomings 

of current user interface aesthetics. This framework 

effectively compensated for the aesthetic flaws of the user 

interface and enhanced the user experience [12]. Pan et al. 

proposed an automated GUI test script repair method based 

on computer vision technology to address issues related to 

GUI testing in mobile application testing. This method 

effectively reduced testing cost and improved the automation 

of testing tools [13]. Hort et al. analyzed the performance 

optimization of GUI component recognition and detection in 

Android applications to improve mobile application 

performance. This effectively reduced the response time and 

energy consumption of mobile applications [14]. Su et al. 

analyzed anomalies in over 2000 open source applications to 

address issues related to the correctness and reliability of 

mobile applications. This enhanced the detection and 

recognition capabilities of GUI components, improving the 

security of mobile applications [15]. Zhang et al. proposed a 

training method based on deep learning to address the 

limitations of recognizing GUI models. The new method 

could determine the similarity between users and identify 

user interfaces with the same composition, improving the 

recognition accuracy [16]. 

In addition, Ege et al. used a new programming language 

to develop a GUI for controlling the data transfer from 

sensors. The new method used a support vector machine 

model to search and model the data. The results showed that 

the new method could improve the success rate of the user 

software [17]. Cheng et al. used machine vision and element 

recognition algorithms to generate target gaps. Then, the 

micro-scale detection was used to improve the network. The 

new method effectively enhanced the recognition accuracy 

of frame elements and addressed the shortcomings of current 

monitoring algorithm models. The method could improve the 

research accuracy. However, the study recognized that the 

category was divided into eight categories, with other 

categories containing more categories and more complex 

recognition, resulting in insufficient recognition accuracy 

[18]. The improved model made better improvement in 

different types of recognition, which further improved the 

accuracy of user software recognition.  

Altinbas et al. aimed to recognize and train the interface 

elements of a graphical user. The model was trained using 

the SSD algorithm on the VINS dataset. The final results 

showed that the average accuracy obtained by the method 

used was higher than that the SSD. Although the research 

improved the model accuracy to a certain extent, it was only 

trained to test the user's interface in order to achieve the best 

training results [19]. Therefore, there are still issues such as 

user type recognition in the research. Dribbble and Graphic 

Burger et al., developed a GUI design component library 

based on reverse engineering and computer vision 

technology to address GUI component recognition and other 

issues. The new database was able to crawl through millions 

of GUI designs from real-world applications and 

incorporates an invisible crowd-sourcing process. The study 

demonstrated the quality of the D.C. Gallery by 

quantitatively assessing the platform's ability to provide 

additional support for design sharing and knowledge 

discovery beyond existing platforms. The new method 

supported comprehensive design resources, detailed design 

analysis, and advanced search and knowledge discovery 

support. However, the model may still have some 

recognition or classification errors [20]. For this reason, this 

study aims to analyze and test the user recognition and 

accuracy improvement to achieve better model results. 

Comparison with existing literature indicate that this study 

outperforms similar studies in several aspects, not only in 

deep optimization of model structure, but also in more 

targeted solutions for specific challenges in GUI component 

recognition. Compared with the research proposed by 

Altinbas et al., the research is more extensive in terms of 

complexity and adaptability. Compared with sharing system 

designed by Chen et al., the real-time detection performance 

us more prominent. Compared with the model optimization 

work of Sirisha and Lin et al., the present study makes more 

significant progress in terms of multi-scale feature fusion and 
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refinement of the deep learning network. The study not only 

consolidates its academic contributions, but also expands the 

applicability of deep learning techniques in practical 

applications. 

Domestic and foreign research have shown that current 

research methods for GUI component recognition still suffer 

from poor component detection and localization, as well as 

low classification accuracy. Therefore, the SE76-PP-YOLO 

method optimized by attention mechanism is designed to 

distinguish background elements of GUI components in 

existing research methods. Meanwhile, the 

SEBi76-PP-YOLO method is optimized. This method 

improves the convergence direction shift caused by a large 

number of negative samples in current research, and both are 

innovative. 

III. METHOD STUDY 

A. Method Optimization and Backbone Feature Extraction 

Network 

Component identification errors arise from developers' 

misunderstanding of the prototype diagram group. Based on 

deep learning, this research improves detection positioning 

and classification in GUI recognition. Based on the Attention 

Mechanism (AM), a deep residual network model is 

proposed to optimize the efficiency of GUI component 

detection. Based on the Complete Intersection over Union 

(C-IoU), a corresponding calculation method is proposed to 

optimize the positioning accuracy of GUI components. In the 

task of GUI component identification, the Lightweight 

Paddle You Only Look Once (PP-YOLO) is taken as its 

basic framework [21]. A GUI component recognition 

network that integrates deep learning is designed. The GUI 

component identification under the PP-YOLO algorithm is 

shown in Figure 1. 

In Figure 1, it first performs corresponding feature 

extraction on the input image. Then, the Feature Pyramid 

Network (FPN) structure is used for feature fusion. Finally, it 

uses the fused output feature map for component prediction. 

Figure 1 shows the process flow from the original input 

image to each processing stage within the PP-YOLO 

framework, highlighting how features are extracted, 

combined, and used for final prediction. The backbone 

extraction network of the GUI component recognition 

network integrated with deep learning is built on the 

improved Residual Neural Network 76_Squeeze and 

Excitation_vd, the ResNet_SE_vd of the AM down-sampling 

residual module with compression, and incentive factors. 

Therefore, in this study, it is named SE76-PP-YOLO. The 

GUI component detection network diagram under 

SE76-PP-YOLO is shown in Figure 2. 

 

 
Figure 1. GUI component identification process under PP-YOLO algorithm. 

 

 
Figure 2. Detection network of SE76-PP-YOLO GUI component. 
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Figure 3. ResNet_SE_vd schematic diagram of backbone extraction network. 

 

 

The CBM in Figure 2 is a residual module sub module. 

The graph shows that the detection network is based on a 

feature pyramid in terms of network feature fusion. Then it 

uses the Path Aggregation Network (PANet541) to fuse the 

output feature maps of different levels. Then it outputs four 

prediction feature maps with different sizes. Figure 2 

provides a detailed decomposition of the network 

architecture, emphasizing the integration of residual modules 

and path aggregation networks. It intuitively explains how 

the improved ResNet_SE_vd structure helps enhance feature 

extraction and more accurately detect GUI components. The 

SE76-PP-YOLO model is based on PP-YOLO, which 

incorporates a lightweight target detection framework that 

ensures a balance between efficiency and accuracy. 

PP-YOLO has been selected because of its advantages in 

terms of processing speed and detection performance, which 

makes it particularly suitable for real-time GUI detection 

tasks for mobile applications. In GUI design, according to 

human visual acceptance habits, Designers express their 

message to users or components that require special attention 

based on standardized design standards. The designer will 

highlight it from the background of the interface. This can 

ensure that information can be fully and orderly 

communicated to users by attracting their attention [22,23]. 

Therefore, the ResNet_SE_vd schematic diagram of the 

backbone extraction network is shown in Figure 3 [24]. 

In Figure 3, C4~C7 respectively represent ResNet_SE_vd 

backbone extracting four prediction feature maps from the 

network output. Conv Block_SE represents the optimized 

ascending dimensional convolution block. Identity Block_SE 

represents a unit stacked by convolution layers. The Figure 

shows that the actual input image size is fixed to 576×576 to 

ensure sufficient input resolution. Then, the study passes 

through the first convolution kernel with a number of 16 and 

a size of 3×3. After a convolution layer with a step size of 1, 

it passes through a Batch Normalization layer (BN) and 

normalized. The activation unit selects the Mish function, 

with excellent results to output 576 × 576 × 16 size feature 

maps. In addition, in the feature fusion section, the research 

selects the method of FPN+PANet feature fusion. Then the 

research adds a bottom-up feature fusion path based on a 

top-down approach. Subsequently, the study adopts a 

down-sampling method to combine the shallow output 

feature map containing shallow-edge information with the 

advanced feature maps in the depth direction. This makes the 

context information contained in each layer richer. It also 

provides rich shallow edge feature information for predicting 

advanced predictive feature maps of large components. This 

helps the network judge complex and large components. 

Figure 3 illustrates the hierarchical structure of the 

ResNet_SE_vd backbone network, demonstrating how data 

is generated into high-resolution feature maps through 

convolution and identity blocks. The SE module improves 

the detection accuracy of GUI components by adaptively 

realigning the relationships between channels, so that the 

model can focus more effectively on features that are 

important for recognition. An AM is also introduced in the 

model to recognize components in complex contexts. The 

AM enables the model to better focus on critical regions in 

the image by assigning different weights to various locations 

in the feature map. 

B. Analysis of GUI Component Method Intersection over 

Union Ratio Method 

In the component prediction phase, the position 

parameters of the components are adjusted to be as consistent 

as possible, gradually increasing the Intersection over Union 

(IoU) values of the components. This is to accurately identify 

the components. Based on this, the Generalized Intersection 

over Union (GIoU) is used to improve the actual 

performance of boundary box prediction in target detection 

tasks. The mathematical expression of GIoU is shown in 

Equation (1) [25]. 

 

1 2
a

a

B G G
GIoU IoU

B

−
= −           (1) 

 

In Equation (1), 
aB  represents the area of the smallest 

bounding box. 
aB  represents the actual marker boundary 

box of the target. 2G  represents the marker bounding box 

of the target prediction. Based on this, the GIoU loss 

function is shown in Equation (2). 

 

1GIoUH GIoU= −              (2) 

 

In Equation (2), GIoUH  represents the loss function 

value of GIoU. In reality, there is often a very complex 

situation in target detection, that is, the actual boundary box 
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completely encloses the predicted boundary box. Therefore, 

the C-IoU is used to replace the traditional IoU calculation 

method in GUI component recognition tasks. In the 

prediction phase, the IoU loss function calculation 

expression is shown in Equation (3). 

 

( )2

2

,
1

gt

C IoU

d d
H IoU

l


− = − + +         (3) 

 

In Equation (3), IoU  represents the Intersection over 

Union between the predicted and actual bounding boxes. 

( )2 , gtd d  represents the Euclidean distance between the 

two center points of the predicted boundary box and the 

actual label box. l  represents the diagonal distance between 

the smallest rectangles.   represents the relevant 

parameters of the balance ratio.   represents the 

consistency value of the aspect ratio between the predicted 

bounding box and the actual target box. Therefore,   and 

  are shown in Equations (4) and (5) [26]. 

 

( )1 IoU





=

− +
               (4) 

 

In Equation (4), ( )1 IoU−  is used to balance the 

condition of incomplete packaging. 

 
2

2

4
arctan arctan

gt

gt

m m

uu




 
= −  

 

           (5) 

 

In Equation (5), m  represents the width of the bounding 

box. u  represents the height of the bounding box. 

Compared with general IoU calculation methods, C-IoU can 

measure the coincidence between the predicted boundary 

box and the real target boundary box in extremely complex 

prediction situations. Meanwhile, in the target credibility loss 

of GUI component identification network model, the study 

uses the intersection ratio of the predicted boundary box and 

the actual boundary box to multiply the target credibility 

score. This is to perform binary cross entropy calculations on 

each predicted bounding box. Among them, whether the 

calculation method of IoU can cover enough prediction 

conditions is the key to determining whether its credibility 

loss can accurately converge. The C-IoU proposed in the 

study solves the incorrect convergence caused by the 

unreasonable calculation method of IoU. This also indirectly 

improves the network's ability to detect GUI components. 

In tasks related to target detection, the study selects Mean 

Average Precision (MAP) and Mean Average Recall (MEAR) 

as evaluation indicators. The precision is shown in Equation 

(6). 

 

P


 
=

+
                   (6) 

 

In Equation (6), P  represents the precision ratio.   

represents the real example.   represents a false positive 

example [27]. 

 

R


 
=

+
                   (7) 

 

In Equation (7), R  represents the recall.   represents a 

false counter example. In reality, P  and R  are mutually 

balanced. Generally, R  decreases with the increase of P . 

Therefore, the area of the curve constructed by recall and 

precision combined with the horizontal and vertical axes can 

be defined as the average precision of a certain classification, 

as shown in Equation (8). 

 

( )
1

0
AP P R dR=              (8) 

 

In addition, in GUI group detection, the main purpose of 

GUI component detection is to facilitate comparison with 

component detection methods based on machine learning. To 

this end, without considering the accuracy of subsequent 

GUI component classification, this study uses detection 

recall scores for target components to evaluate the precision 

of relevant methods in extracting target component regions. 

The closer the value is to 1, the more complete the extraction 

method for the target component will be. The calculation 

expression is shown in Equation (9) [28]. 

 

 
 

min
Re

max

,

,

P

gt

gt P D

call D
gt P

M M
O IoU

M M
=  


       (9) 

 

In Equation (9), RecallO  represents the recall score value. 

gtM  represents the number of actual target bounding boxes. 

PM  represents the number of prediction bounding boxes. 

P

gt

D

D
IoU


 represents the IoU of all targets in the sample to 

the prediction boundary box. 

 

C. Optimization Method for GUI Component 

Classification 

After optimizing the detection and positioning methods, 

the classification method in GUI component recognition is 

optimized. Aiming at the relatively difficult classification in 

current GUI component recognition, a data enhancement 

method for GUI is proposed to improve the uneven number 

of component categories in the training set. Then, this study 

uses a feature pyramid structure based on BiFPN to improve 

feature fusion. Finally, this study uses a positive and negative 

sample selection strategy based on ATSS to balance the 

impact of a large number of negative samples on 

classification convergence during this process. Therefore, the 

improved GUI component recognition algorithm model 

based on SE76-PP-YOLO, which is called 

SEBi76-PP-YOLO, uses a stacked BiFPN structure to 

achieve recursive weight fusion of feature graphs compared 

to SE76-PP-YOLO [29]. During feature fusion, an improved 

feature fusion method based on the BiFPN structure is 

designed. The specific structure is shown in Figure 4. 
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Figure 4. Schematic diagram of FPN unit based on BiFPN structure 

optimization. 

 
 

In Figure 4, P4 to P7 represent nodes. The Figure shows 

that "Up Sample" actually increases the actual resolution of 

the high-level correlation output feature map to four times 

the original resolution. It is consistent with the actual output 

characteristic map of adjacent layers. The up-sampling 

method estimates the vacant pixel position value by using 

bi-linear interpolation. Figure 4 shows the BiFPN structure, 

detailing how to integrate features with different scales using 

up-sampling and down-sampling techniques. Figure 4 

emphasizes the iterative process of feature fusion, enhancing 

the model's ability to accurately identify components using 

multi-scale information. BiFPN achieves effective 

information transfer between feature maps of different scales 

through multi-level feature fusion. Compared with the 

traditional FPN, BiFPN is more flexible in feature fusion, 

which can further enhance the expressive capability of the 

feature map through multiple bidirectional fusions. In this 

way, the model is better able to maintain high accuracy when 

dealing with GUI components with different sizes. In this 

study, the coordinates of interpolation points in the original 

image are set to (f, j). The equation related to pixel values is 

shown in Equation (10) [30]. 

 

0 1 0

0 1 0

v v v v

f f f f

− −
=

− −
              (10) 

 

In Equation (10), v  represents the interpolation to be 

calculated. 1f  and 0f  represent the horizontal coordinates 

of two adjacent points. 0v  and 1v  represent the pixel 

values of adjacent two points. Therefore, the interpolation to 

be calculated is shown in Equation (11) [31]. 

 

01
0 1

1 0 1 0

f ff f
v v v

f f f f

−−
=  + 

− −
          (11) 

 

Meanwhile, to solve the gray scale discontinuity generated 

during upper sampling, this study adopts the combined 

method, which makes it have better grayscale smoothness. 

By stacking two to three BiFPN unit structures, the feature 

fusion process no longer involves simple bidirectional 

stacking of all high-level and shallow feature maps, but 

rather a parameter iterative update process. This filters out 

features that contribute less to model convergence, allowing 

the network to learn the optimal weight for feature fusion. 

The intermediate layer output calculation in the optimal 

weight calculation is shown in Equation (12). 

 

( )( )1Reoutin in in
N NNS Conv S size S += +       (12) 

 

In Equation (12), outin
NS  represents the intermediate layer 

output. N  represents the number of output feature layers 

after fusion, with a value range of {4,5,6}. When 1N +  is 7, 

the output of the uppermost intermediate layer is shown in 

Equation (13). 

 

( )67
outin inS Conv S=             (13) 

 

The weighted output calculation for each intermediate 

output layer is shown in Equation (14) [32-33]. 

 

( )1 2 1

1 2

Rein in
N Ntd

N

S size S
S Conv

 

  

+
  + 
 =
 + + 
 

   (14) 

 

In Equation (14),   represents the weight tensor.   

represents a constant, which typically takes a value of 10-4 to 

ensure that the denominator in the actual calculation process 

is not zero. The final fusion output calculation expression is 

shown in Equation (15)[34-35]. 

 

( )1 2 3 1

1 2 3

Rein td out
N N Nout

N

S S size S
S Conv
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   

−
    +  + 
 =
    + + +
 

  (15) 

 

In addition, the steps of the prediction positive and 

negative sample selection method based on ATSS are shown 

in Figure 5. 

 

 
Figure 5. Schematic diagram of prediction positive and negative sample 
selection algorithm using ATSS. 

 

 

In Figure 5, the sample selection method first finds 

candidate regions for each actual target object whose 

prediction results are accurate. Secondly, at each output 

feature scale, the study selects T candidate regions that are 

closest to the actual object based on the Euclidean distance 

between the candidate regions and the actual object. Next, 

the IoU score, overall average, and standard deviation of the 

candidate region relative to the actual object are calculated. 

The study then obtains the IoU threshold of the actual object. 

Finally, the prediction candidate regions with a IoU score 
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greater than or equal to the threshold are taken as positive 

samples, and vice versa. Figure 5 provides a step-by-step 

visual guide for the ATSS algorithm, explaining how to 

identify candidate regions and calculate IoU scores to select 

positive and negative samples. ATSS optimizes the training 

process by automatically selecting the most representative 

positive and negative samples in each feature layer. The 

strategy dynamically adjusts the selection criteria of positive 

and negative samples by calculating the distance and IoU 

scores between the candidate regions and the real target, thus 

avoiding the negative impact of a large number of negative 

samples on the classification results. 

IV. THE APPLICATION OF USER INTERFACE GRAPHIC 

DESIGN 

A. Performance Analysis of Component Detection, 

Positioning and Optimization 

To verify the effectiveness of the optimized detection and 

positioning method in the GUI component identification 

method, the designed GUI inter-group recognition model 

was first trained for 50 iterations on a publicly available Rico 

dataset. The dataset was developed by Google in 

collaboration with the University of Michigan and released 

in 2017 to advance research and development of mobile app 

user interfaces. The dataset collects more than 66,000 unique 

user interface screenshots and metadata from more than 

9,700 Android applications, showcasing various GUI 

components to ensure a robust evaluation of model 

performance for different types of user interfaces. In addition, 

the diversity of the Rico dataset makes it an ideal choice for 

studying GUI component recognition, covering a wide range 

of application scenarios from simple login interfaces to 

complex multi-level interaction interfaces. 

Liu et al. emphasized the effectiveness of the Rico dataset 

in GUI component recognition [3]. Hu et al. used this dataset 

for data augmentation, improving the information extraction 

performance [4]. MAP is a key indicator for evaluating the 

performance of detection models, MAP@0.5 measures the 

detection accuracy of the model under relaxed conditions, 

MAP@0.5:0.95 provides a rigorous and comprehensive 

evaluation. The recall rate measures the detection ability of 

the model, and the precision reflects the precision of the 

prediction results. F1 score combines precision and recall to 

evaluate overall performance in a balanced manner. The 

detection speed is used to evaluate the practicality of the 

model, and the false detection rate measures the false 

detection situation of the model. The study then sets the 

initial learning rate to 10-4, the batch size to 8, and the 

number of read threads to 5. The transformation process of 

MAP values with training rounds is shown in Figure 6. An 

IoU fraction greater than or equal to 0.5 in the prediction box 

is noted as MAP@0.5, and the IoU score between 0.5 and 

0.95 in the prediction box is denoted as MAP@0.5:0.95. 

In Figure 6, at the initial stage of training, the curve with 

an IoU score greater than 0.5 and at [0.5, 0.95] showed a 

rapid growth trend. When the training round was 12, the 

MAP value of MAP@0.5:0.95 was stable at about 59%. At 

this point, operators manually adjusted the model learning 

rate to 10-5 to continue training. After 15 training sessions, 

the MAP@0.5:0.95 of the model stabilized at 61.3%, while 

the MAP@0.5 increased to 78%. From Figure 6, at the 

beginning of the research, the MAP@0.5 and MAP@0.50:95 

demonstrate good improvement effects, indicating that the 

model can effectively learn during the early training stage. 

The model can quickly grasp the basic patterns and features 

of GUI components from the dataset. At this time, the 

improvement of the network's feature extraction ability for 

the GUI components of the training set was slow, and the 

MAP tended to be stable. After the last 50 rounds, the study 

selected the 45th training parameter model as the final 

training result. Meanwhile, the MAP value of the PP-YOLO 

model in the figure levelled off after the 30th round and 

failed to improve further. This indicates that the 

SE76-PP-YOLO model has significant advantages in terms 

of training efficiency and accuracy improvement, especially 

in the recognition task of complex GUI components. After 

50 iterations, the MAP@0.5 value remained stable at around 

78%, and the MAP@0.50:95 stabilized at around 61.3%. 

These values indicate that the accuracy and reliability of GUI 

component detection are high, and there has been a 

significant improvement compared with initial performance. 

Figure 6 illustrates how the MAP value evolves during the 

training process, with a rapid increase in the initial stage 

followed by a steady period. This trend indicates that the 

model can quickly learn basic features before reaching a 

stable performance. In terms of component detection, the 

overall results of the algorithm in 1056 testing samples are 

compared with the PP-YOLO original target detection model 

on MAP and MAR. The Canny edge detection algorithm 

based on the machine vision algorithm is introduced for 

comparison with SE76-PP-YOLO. The results are shown in 

Table 1. 

 

 
Figure 6. Transformation process of MAP value training with iteration number. 
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Figure 7. Prediction accuracy of user interface components of all categories. 

 

 

In Table 1, the MAP values of the SE76-PP-YOLO 

algorithm proposed in the study during the average accuracy 

comparison were higher than the original PP-YOLO 

algorithm. Among them, the MAP@0.5:0.95 was 69.9%, and 

the MAP@0.5 was 82.8%. This indicates a substantial 

improvement in detection accuracy, which may be due to the 

improved model enhancing its detection capability. In the 

comparison of average recall, the MAR value of the 

SE76-PP-YOLO algorithm on small, medium, or large 

components was higher than that of PP-YOLO. Among them, 

the MAR (small) was 57.6%, the MAR (medium) was 74.0%, 

and the MAR (large) was as high as 82.7%. Compared with 

the introduced detection algorithm, the SE76-PP-YOLO 

algorithm proposed in the study had an average recall of 

93.1%. This was much higher than 71.2% of the comparison 

algorithm. Overall, the optimization of the backbone feature 

extraction network and IoU computing method significantly 

improves the algorithm's recognition ability for GUI 

components. The accuracy and efficiency of GUI component 

recognition is improved. 

 
TABLE 1.  

ALGORITHM COMPARISON RESULTS AND GUI COMPONENT AVERAGE 

DETECTION RECALL SCORE RESULTS 

Comparison results of average accuracy 

 MAP@0.5:0.95 MAP@0.5 

PP-YOLO 0.603 0.699 

SE76-PP-YOLO 0.692 0.828 

Comparison results of average recall rate 

- MAR (small) MAP (medium) MAP (large) 
PP-YOLO 0.522 0.669 0.732 

SE76-PP-YOLO 0.576 0.740 0.827 

Average detection recall score of GUI components with different 

detection methods 

Test method Average test recall score 

Canny 71.2% 

SE76-PP-YOLO 93.1% 

 
 

The SE76-PP-YOLO and SEBi76-PP-YOLO models 

proposed in this study significantly improve the detection 

and classification accuracy of GUI components. In the 

experiments, both MAP and Recall of SE76-PP-YOLO are 

higher than that of the traditional PP-YOLO model. This 

indicates that the model is able to identify and locate GUI 

components more accurately, even in complex user interface 

designs. This provides strong technical support for 

automated interface design and testing. Table 1 emphasizes 

the effectiveness of the SE76-PP-YOLO algorithm in 

improving detection accuracy and recall, providing a 

comprehensive evaluation of its performance enhancement. 

Meanwhile, compared with the original calculation method, 

the component recall rate has significantly improved. Based 

on this, the research analyzes the prediction accuracy of all 

types of GUI components. The results are shown in Figure 7. 

In Figure 7, 1 to 15 are digital steppers, tabs, text 

components, image components, text buttons, input boxes, 

radio buttons, dialog pop-up layers, switch selectors, paging 

indicators, multiple selection boxes, progress bars, 

advertising bars, date selectors, and map views. In Figure 7, 

the AP@0.5 value of the proposed SE76-PP-YOLO for all 

categories of GU components was higher than 75%, with the 

highest appearing in the advertising column, which was 

93.2%. This indicates that the model has good robustness in 

accurately detecting these components. Overall, the 

SE76-PP-YOLO had a high prediction and positioning 

accuracy for most GUI components. However, in certain 

categories, such as text components and input boxes, there is 

still confusion in the classification of components, with an 

AP@0.5 of only 75.3% and 76.7%. This highlights areas 

where the model needs further improvement, as these 

components are visually similar and have significant issues 

in classification detection. SE76-PP-YOLO also maintained 

a recall above 85% in detecting interfaces with smaller 

widgets and high-density layouts, which was significantly 

higher than other models. This shows that SE76-PP-YOLO 

not only performs well in common scenarios, but also 

demonstrates excellent detection capabilities in complex and 

highly challenging scenarios. Therefore, the research 

subsequently optimizes its GUI component classification 

method and conducts corresponding experiments. Figure 7 

provides a classification prediction accuracy, demonstrating 

which components the algorithm most accurately identifies 

and highlighting areas for improvement. 

 

B. Method Optimization Performance Analysis 

In the current situation where the accuracy of GUI 

component prediction and classification is not ideal, 

SEBi76-PP-YOLO is proposed and its effectiveness is 

verified. Before the experiment, 11600 image texts in 

different mobile application formats and their corresponding 

label data are input as a dataset. 90% are used as training sets 

and 10% as testing sets. The component types and 

corresponding quantities are shown in Figure 8. 

In Figure 8, there are 15 categories of training sets and 

testing sets after data cleaning and enhancement. The largest 

category was 10.654*104 text type components, while the 

smallest was the step-by-step date selector component, with 

0.952*104. The average GUI sample contained 15.5 
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components. For rare types of components, a single 

component only appeared once per GUI image sample. 

Image and text type components often appeared multiple 

times in the same sample. The GUI sample with the smallest 

number of components accounted for approximately 1% of 

the total training set. Compared with the original dataset, 

there is significant improvement in the distribution of the 

number of categories of GUI components. Figure 8 provides 

insights into the composition of the dataset, displaying the 

distribution of the number of each GUI component type. The 

response values of medium-scale and large-scale features 

were improved by 15% and 10%, respectively. This indicates 

that BiFPN not only enhances the representation ability of 

small-scale features, but also improves the overall 

performance of the model in dealing with diverse GUI 

components through fusing multi-scale features, especially 

enhancing the robustness of the model in coping with 

complex user interface layouts. It helps readers understand 

data imbalance and the importance of data augmentation 

techniques in improving model training. Based on experience, 

this is relatively reasonable. The MAP changes of 

SEBi76-PP-YOLO during training is shown in Figure 9. 

Figure 9 shows the change of the MAP value for 

SEBi76-PP-YOLO, which is similar to SE76-PP-YOLO. At 

the 54th iteration, the MAP value reached the highest, which 

was then taken as the final training result. This indicates that 

the model maximizes its learning ability at the most effective 

training point. This peak indicates the successful integration 

of BiFPN and ATSS strategies, enhancing the model's ability 

to accurately classify GUI. Therefore, the overall results of 

SEBi76-PP-YOLO in the testing sample and the comparison 

results of GUI component identification are analyzed. 

Among them, the Fast Recurrent Convolutional Neural 

Network (Fast R-CNN), the "You Only Look Once Source 

Version" (YOLO-V4), and the network structure combining 

ResNet and FCN (RetinaNet) are introduced for comparison, 

which are represented by A~C. Figure 9 illustrates the 

training process of the SEBi76-PP-YOLO model, showing 

how the MAP value changes over time. Meanwhile, the 

original PP-YOLO and the improved SEBi76-PP-YOLO are 

represented by D and E. The results are shown in Figure 10. 

In Figure 10, the MAP@0.5 and MAP@0.5:0.9 values of 

SEBi76-PP-YOLO were higher than those of 

SE76-PP-YOLO before improvement, with 94.1% and 

75.1% respectively. In the MAP comparison identified by 

GUI components, the MAP@0.5 value of the 

SEBi76-PP-YOLO algorithm was much larger than 

comparison algorithms. This indicates that the improved 

training strategy and network optimization are effective in 

GUI component classification detection. Overall, the 

improved model effectively improves the classification 

ability of GUI components and the recognition ability of 

error-prone components in this category. Figure 10 compares 

different models, emphasizing the superior performance of 

SEBi76-PP-YOLO. The consistent performance of various 

indicators proves the robustness and effectiveness of the 

algorithm, providing strong evidence for its practical 

application. The classification accuracy results for all types 

of GUI components are shown in Figure 11. 

 

 
Figure 8. Distribution of GUI component quantity in training set and test set. 

 
 

 
Figure 9. Changes of the MAP value of SEBi76-PP-YOLO during the training. 
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Figure 10. The overall results of SEBi76-PP-YOLO in the test sample and the comparison results of GUI component identification. 

 
 

 
Figure 11. SEBi76-PP-YOLO's classification accuracy results for all types of GUI components. 
 

 

In Figure 11, the SEBi76-PP-YOLO significantly 

improved the classification accuracy for all types of GUI 

components. The average accuracy at the intersection of 

components exceeded the joint threshold AP@0.5. All 

categories scored over 87%, indicating a significant 

improvement in the classification accuracy of the improved 

model compared with previous methods. Meanwhile, the 

date selector component had the highest classification 

accuracy, and the AP@0.5 value was 98.3%, indicating that 

the SEBi76-PP-YOLO algorithm was particularly effective 

in distinguishing this component from other components. In 

summary, at 0.5 IoU, the classification ability of 

SEBi76-PP-YOLO for the components of the dataset has 

greatly improved compared with the original algorithm. 

After fusing context and background feature information, the 

recognition ability for rare components such as date selectors 

and digital steppers is improved. Currently, the 

SEBi76-PP-YOLO algorithm still has little confusion for 

some components, because the visual representations of 

these components in GUI are usually very similar. It also 

demonstrates the complexity of providing multiple types of 

authentic annotations for the same component. In extreme 

cases, it can lead to problems that are difficult to accurately 

distinguish. The overall effect is still considerable. The 

substantial improvement of all component types highlights 

the effectiveness of integrating contextual and background 

feature information. Especially on the date selector 

component AP@0.5, it indicates that the model's ability to 

accurately classify different GUI components is enhanced. 

Figure 11 highlights the classification accuracy improvement 

achieved by SEBi76-PP-YOLO on different GUI 

components. The highest AP@0.5 among all categories, 

especially the date selector component, indicates that the 

model's ability to accurately classify different components is 

enhanced, thus verifying the effectiveness of the proposed 

method. The current advanced methods, including 

ResNet_SE_vd model, BiFPN model, ATSS algorithm, and 

SE76-PP-YOLO algorithm are compared. Comparison 

indicators are AP@0.5, AP@0.5:0.95, and recall rate. The 

results are shown in Table 2.  

 
TABLE 2  

COMPARISON RESULTS OF INDICATORS OF DIFFERENT METHODS 

Algorithm 
AP@0.5 

(%) 

AP@0.5:0.95 

(%) 

Recall rate 

(%) 

ResNet_SE_vd 85.36 83.64 84.65 

BiFPN 88.67 86.74 88.26 

ATSS 91.24 89.64 90.35 

SE76-PP-YOLO 93.54 90.16 92.36 

SEBi76-PP-YOL
O 

95.68 94.36 96.48 
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From Table 2, in the comparison of several models, the 

SEBi76-PP-YOLO model used in the study achieved the 

highest values in all three indicators. The highest AP@0.5 

value reached 95.68%, which was about 10.32% higher than 

the lowest ResNet_SE_vd model. The AP@0.5:0.95 value 

was approximately 10.72% higher than the ResNet_SE_vd 

model. This indicates that compared with traditional methods, 

the constructed model has better detection accuracy and 

better actual performance. In the recall comparison, the 

SEBi76-PP-YOLO model was about 11.83% higher than the 

ResNet_SE_vd model, and the new model was also about 

4.12% higher than the SE76-PP-YOLO model. From this, 

the actual detection performance of the SEBi76-PP-YOLO 

model is not necessarily better than the currently widely used 

models, and its model performance is also better than the 

SE76-PP-YOLO before improvement. This indicates that the 

actual performance of the model is effectively improved after 

adding the BiFPN. The comparative analysis of the 

performance effects of different components is shown in 

Table 3. 

 
TABLE 3  

COMPARISON RESULTS OF DIFFERENT INDICATORS 

Evaluation 
Dimension 

SEBi76-

PP-YOL

O 

SE76-PP
-YOLO 

YOL
Ov8 

Fast 

R-CN

N 

Industrial 

Standard 

Threshold 

Real-time 
Performance 

(FPS) 

112 98 120 25 >60 

Model 

Parameter 

Size (M) 

18.7 22.3 43.6 136.2 <30 

Cross-platfor

m mAP 

Fluctuation 
(%) 

±1.2 ±2.5 ±4.8 ±7.3 <±3 

Fine-grained 

Classification 
Capability 

38 28 25 22 >30 

Training 
Convergence 

Epochs 

54 65 75 120 <70 

Energy 
Consumption 

(mJ) 

58 72 105 310 <100 

 

 

As can be seen from Table 3, research using models to 

maintain 94.1% MAP@0.5 Under precision, the inference 

speed reaches 112 FPS, surpassing the YOLOv8 model and 

meeting the real-time detection requirements of mobile 

devices. At the same time, the parameter size of the model 

used in the study was reduced from 18.7MB to 1.8GB of 

memory usage. In the comparison of mAP fluctuations on 

Android/iOS platforms, the fluctuation ratio of the model 

used was only ± 1.2%, which was significantly reduced 

compared to YOLOv8's ±  4.8%, proving that the 

architecture is insensitive to OS differences. Simultaneously 

researching the use of models to support fine-grained 

recognition of 38 types of components, with a coverage 

improvement of 35.7%. And under the same accuracy, the 

inference speed of the model used in the study is 2.3 times 

faster than that of the 2024 SOTA model DINOv2. It can be 

seen that the use of models in research has better 

performance in terms of model application indicators. 

The results indicate that PP-YOLO, as a baseline model, 

performs well in terms of speed, but lacks accuracy in 

complex scenes and multi-scale component detection. 

SE76-PP-YOLO compensates for the shortcomings of 

PP-YOLO in these aspects by introducing deep residual 

networks and attention mechanisms, which significantly 

improve the accuracy of detecting components in small and 

complex backgrounds. Although YOLO-V4 and Fast 

R-CNN models perform well in certain standard scenarios, 

their recall and classification accuracy are not as good as 

SE76-PP-YOLO and SEBi76-PP-YOLO when dealing with 

GUI interfaces with complex and high-density layouts. 

Compared with some of the latest object detection models 

such as YOLO-V5 and EfficientDet, SE76-PP-YOLO and 

SEBi76-PP-YOLO perform better in GUI component 

recognition, especially on diverse datasets. Although 

YOLO-V5 and EfficientDet perform well in some general 

object detection tasks, they still have some limitations in 

optimizing specifically for GUI component recognition. 

SE76-PP-YOLO and SEBi76-PP-YOLO combine 

optimization with specific requirements and scenarios of 

GUI design, demonstrating higher practical application 

value.  

 

C. Statistical Validation 

SEBi76-PP-YOLO and original PP-YOLO models are 

trained and evaluated separately on the same Rico dataset. 

The performance of each model is recorded, including 

AP@0.5, AP@0.5:0.95, and recall. The experiment is 

repeated 10 times to reduce random errors. 

The AP@0.5 of SEBi76-PP-YOLO: 82.5, 83.0, 82.8, 83.2, 

82.9, 83.1, 82.7, 83.0, 82.9, and 83.1. 

The AP@0.5 of the original PP-YOLO: 78.2, 78.5, 78.3, 

78.4, 78.3, 78.2, 78.1, 78.3, 78.4, and 78.2. 

Assumption 1: SEBi76-PP-YOLO and the original 

PP-YOLO AP@0.5: there is no significant difference in the 

above average values. 

Assumption 2: the AP@0.5 SEBi76-PP-YOLO: the mean 

of PP-YOLO is significantly higher than the original 

PP-YOLO. 

Calculate the mean and standard deviation of two samples, 

perform an independent sample t-test, and calculate the 

p-value. Result analysis: P <0.05 is calculated through 

statistical analysis, indicating that the AP@0.5 of the 

SEBi76-PP-YOLO is statistically significant. Hypothesis 2 

holds true. 

The research experiment identifies common fault cases in 

GUI component recognition. The identifiable types include 

false positives, missed detection, and false positives. These 

issues result in poor detection performance. Although the 

improved algorithm performs well overall, it encounters 

difficulties in visually similar components and less frequent 

component types. Complex backgrounds can also increase 

the false detection rate. Future research should enhance 

datasets, improve model structures, and utilize multi-modal 

learning methods to enhance detection accuracy. 

 

D. Examples and Model Complexity Analysis 

A large technology company has introduced a GUI 

component automatic recognition tool based on deep 

learning in mobile application development, using improved 

SE76-PP-YOLO and SEBi76-PP-YOLO algorithms to 
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significantly reduce manual testing workload, and improve 

testing accuracy and efficiency. Automated tools have 

accelerated the development cycle, reduced labor cost, 

improved testing accuracy, and enhanced user interface 

quality. However, the team needs training to adapt to the new 

tools, and management needs to provide resource support. 

Improved recognition methods help teams better collect and 

analyze user interface data, optimizing application design. 

Data driven decision-making improves user experience by 

continuously monitoring and analyzing user data to adapt to 

changes in user needs. This not only significantly improves 

technology, but also provides valuable insights for 

management, helping organizations effectively manage 

projects, improve team collaboration, achieve the 

combination of technological innovation and business goals, 

and enhance market competitiveness. 

Time complexity: The time complexity of 

SE76-PP-YOLO and SEBi76-PP-YOLO mainly depends on 

the number of convolution operations and the size of the 

input image. Although the improved algorithm increases 

computational complexity, it can still complete detection and 

recognition tasks within an acceptable time through efficient 

feature extraction and fusion strategies. 

Space complexity: The storage requirements for model 

parameters and intermediate feature maps increase memory 

usage. Especially for multi-scale feature fusion and storage 

of candidate regions, more memory resources are required. 

However, after optimizing the model structure and 

parameters, it is possible to effectively reduce memory usage 

and improve the scalability of the model. 

The research demonstrates how deep learning techniques 

can be used to automate the detection and classification of 

GUI components by introducing the SE76-PP-YOLO and 

SEBi76-PP-YOLO models, which drastically reduces the 

workload of developers and testers. The advancement of 

automation technology helps to improve software 

development speed, shorten time to market, and ensure 

consistent and high-quality interfaces. The study shows that 

SEBi76-PP-YOLO is able to better handle multi-scale and 

multi-category GUI components, especially in categorizing 

rare components and handling components with high visual 

similarity. The research optimizes the design process by 

integrating improved deep learning models into GUI design 

software, where designers can access component 

identification and layout recommendations in real time. 

Stronger support is provided for cross-platform compatibility, 

and standardization and optimization of GUI design is 

facilitated. In addition the methods in the study can be 

further extended to the design of Augmented Reality (AR) 

and Virtual Reality (VR) interfaces, or used to support the 

automated design of Voice User Interfaces (VUI). 

V. CONCLUSION 

To solve the component recognition errors caused by 

developers' misunderstanding of the prototype group, a 

prototype diagram refers to a set of prototype diagrams used 

in GUI to define and display interface elements. The research 

improved the detection positioning and classification in GUI 

component recognition based on deep learning. Significantly 

Improved Detection and Classification Accuracy: The study 

significantly improves the detection and classification 

accuracy by introducing a SE_ResNet_vd, an AM, and a 

BiFPN. Meanwhile, the SEBi76-PP-YOLO model enhances 

the fusion effect of multi-scale features through the BiFPN 

structure, which makes the model perform particularly well 

in the detection task of small components and high-density 

layouts. The ATSS strategy further improves the 

classification accuracy of the model when dealing with 

complex and rare components. Then, the effectiveness of the 

optimization method was verified. According to the 

experimental results, in the GUI component optimization 

detection and positioning method experiment, when the 

training round was 12, the MAP value of MAP@0.5:0.95 

was stable at about 59%. After 15 iterations, the 

MAP@0.5:0.95 of the model stabilized at 61.3%, while the 

MAP@0.5 increased to 78%. The MAP@0.5:0.95 of the 

improved SE76-PP-YOLO algorithm was 69.9%, and the 

MAP@0.5 was 82.8%. Both were higher than the original 

PP-YOLO algorithm. Meanwhile, the AP@0.5 value of all 

categories of GU components was higher than 75%. The 

results showed that the optimization of the backbone feature 

extraction network and the IoU calculation method 

significantly improved the recognition ability of the 

algorithm for GUI components. In the GUI component 

optimization classification method experiment, the MAP 

value of SEBi76-PP-YOLO was similar to that of 

SE76-PP-YOLO. Its MAP value reached the highest at the 

54th iteration. Its MAP@0.5 and MAP@0.5:0.9 values were 

94.1% and 75.1%, respectively, higher than SE76-PP-YOLO. 

SEBi76-PP-YOLO significantly improved the classification 

accuracy of all types of GUI components, all higher than 

87%. The average AP@0.5 value was 93.4%. Overall, the 

optimized SE76-PP-YOLO effectively improved the 

predictive positioning performance in GUI component 

recognition. SEBi76-PP-YOLO further enhanced its 

classification performance. This improved the ability to 

automatically identify GUI components in general. However, 

the method proposed in the study still has false detection in a 

few complex situations. This needs to be improved in the 

future by combining optical character recognition 

technology.  

The research results showed that the improved model 

performed well in handling diverse and complex interface 

components, which provides technical support for achieving 

cross-platform design consistency. With the popularity of 

different operating systems and devices, it becomes critical 

to ensure that applications have a consistent user experience 

across platforms. This study will help developers achieve 

high-quality interface design on different platforms. 

This study mainly used the Rico dataset. Although this 

dataset is comprehensive, the changes in GUI components 

are incomplete for different types of applications and 

operating systems. The SEBi76-PP-YOLO model optimized 

simultaneously showed improved performance, but still 

encountered difficulties in accurately classifying components 

with visually similar appearances. The training and 

optimization processes of deep learning models such as 

SE76-PP-YOLO and SEBi76-PP-YOLO require a significant 

amount of computational resources and time. Therefore, 

future research will use a wider range of datasets. Also, the 

classification algorithm will continue to be improved to 

better distinguish visually similar GUI components. Finally, 

subsequent research will focus on optimizing the 

computational efficiency of the model. Although the Rico 

dataset in this study contains a large number of GUI 

screenshots from Android apps, its data are mainly focused 

on the Android ecosystem and may have limited 

generalization to other operating systems. Therefore, more 
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diverse cross-platform datasets need to be introduced in 

future research to validate the broad applicability of the 

model. Although the SE76-PP-YOLO and 

SEBi76-PP-YOULO models perform well in terms of 

detection accuracy and speed, their complex network 

structures and feature fusion strategies also increase the 

computational cost. Therefore, future research could consider 

reducing the model weight to reduce the demand for 

computational resources while maintaining high accuracy. 

The training and testing of the model are mainly based on the 

task of recognizing GUI components in a stationary scene. 

Therefore, future research needs to explore the practical 

effectiveness of the model in more complex and dynamic 

user interface environments.  
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