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Abstract—This study addresses the limitations of traditional
manual recognition methods in mobile GUI design, which are
often time-consuming and prone to errors. We propose an
improved deep learning-based algorithm to optimize the
detection, localization, and classification of GUI components.
The method incorporates an attention mechanism and
Complete Intersection over Union (C-loU) for enhanced
accuracy in component recognition. Additionally, we introduce
an improved Bidirectional Feature Pyramid Network (BiFPN)
and Adaptive Training Sample Selection (ATSS) strategy to
improve classification performance. Experimental results show
that the optimized detection method achieves a MAP peak at
the 45th training round, with the SE76-PP-YOLO algorithm
reaching a 93.1% recall, outperforming the comparison
algorithm  (71.2%). The improved SEBIi76-PP-YOLO
algorithm achieves a MAP@0.5 of 94.1%, significantly
enhancing classification accuracy across GUI components. This
work contributes novel techniques to improve GUI component
recognition, offering practical applications in mobile app
design.

Keywords—GUI component; Detection and positioning
method; Classification method; Intersection over union

l. INTRODUCTION

ith the rapid development of Internet applications, the

development of Graphical User Interfaces (GUIs) for
various services on mobile terminals has become
increasingly complex and challenging [1]. Currently, in GUI
component automation testing, tools still require manual
input of test images and rules, which limits the scalability.
GUI determines the user experience and affect the usability
and attractiveness of software. With the proliferation of
mobile applications, it has become critical to efficiently and
accurately identify GUI components. According to the latest
current market research, the global mobile apps market was
valued at approximately $154.05 billion in 2019. It is
expected to reach $407.31 billion by 2026, with a compound
annual growth rate of 18.4% from 2020 to 2026. In addition,
the download volume of mobile applications worldwide is
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also constantly increasing. It is expected to reach 280 billion
times by 2024. According to Statista's report, the average
daily application usage time of mobile device users
worldwide reached 4.8 hours in 2022, and this number is still
increasing year by year. This highlights the growing demand
for advanced GUI components that provide a seamless user
experience.

Therefore, its scalability is relatively poor [2]. Liu et al.
proposed a fully automated method for modeling visual
information in GUI screenshots based on deep learning to
address various issues that arose when rendering GUIs on
different devices [3]. Previous research showed that more
than 70% of user interface issues in mobile applications were
related to poor GUI design and functionality. These issues
had significant impacts on user satisfaction and retention,
and required optimized methods for identifying and testing
GUI components. Hu et al. proposed a deep learning method
for data enhancement based on Geographic Information
System (GIS) to address issues related to digital image
information extraction in GUI components [4]. Lee et al.
optimized GUI components and controllers to recognize pill
photos. A new pill-shooting system was proposed [5].

Accurately identifying GUI components can ensure that
all elements of the user interface are presented correctly and
respond to user actions, improve user experience, simplify
development and testing processes, and enhance cross
platform compatibility. The GUI component recognition
method based on deep learning aims to address these
challenges by providing more accurate and reliable results. In
this context, researchers improved detection localization and
classification in GUI recognition based on deep learning.
Therefore, this study combines an improved residual neural
network 76  (SE76-PP-YOLO) and bidirectional
SE76-PP-YOLO (SEBi76-PP-YOLO) for lightweight target
detection. The main expectation of this research is to
improve the accuracy and efficiency of GUI component
recognition by optimizing the detection and localization
methods. The optimized SEBIi76-PP-YOLO algorithm
improves the accuracy of GUI component detection and
localization by improving residual neural networks and
introducing attention mechanisms. Based on existing object
detection models, this study combines residual neural
networks and attention mechanisms to enhance the accuracy
of GUI component detection and localization. Secondly, the
Bidirectional Feature Pyramid Network (BiFPN) structure is
also proposed to capture subtle differences in GUI
component recognition and improve the accuracy of
component classification. Finally, the study also incorporates
an Adaptive Training Sample Selection (ATSS) strategy to
avoid the negative impact of a large number of negative
samples on classification accuracy in traditional methods,
thereby improving the convergence speed and classification
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performance of the model. The research aims to make
significant contributions to the user interface design and
development by providing practical solutions for
automatically recognizing GUI components and improving
the overall user experience of mobile applications.

Il. RELATED WORKS

With the rapid development of information technology,
user-oriented modern software applications stand out among
numerous competitors with their unique GUI advantages.
Compared with complex interface designs and obscure
electronic products, web applications that meet design
specifications and are user-friendly are more likely to
succeed [6]. Currently, for mobile applications, automatically
and accurately identifying components in GUI is the key to
getting rid of tedious manual checks. This is also the
guarantee for intelligent development [7]. Therefore, some
domestic and foreign scholars have conducted in-depth
research on this issue. To overcome the interference and
efficiency issues of GUI element testing on electronic
screens in factory environments, Wang Z et al. proposed a
lightweight GUI recognition model based on YOLOVS5.
Based on PCA enhancement module, TWFPN precise
positioning structure, and SloU loss function, a lightweight
structure combining Ghost and PConv was introduced. The
results showed that the model improved the average accuracy
by 2.7%, reduced the model parameters by 30%, and
achieved a detection speed of 85 FPS, which effectively
solved the element recognition of the visual test system and
significantly improved the recognition accuracy and
detection speed [8].

To effectively improve the accessibility of interactive
mobile devices, He et al. constructed a high-coverage GUI
understanding model by optimizing GUI components. This
effectively improved the accessibility of mobile devices [9].
Alajarmeh et al. proposed a new accessibility guide for blind
or visually impaired users accessing mobile touchscreen
devices by optimizing GUI component recognition. This
effectively increased the frequency of visits to relevant
websites [10]. To fill the gap in GUI testing research for
mobile applications, Nie L et al. systematically investigated
the relevant literature. Based on 4427 candidate studies, 114
main results were filtered out. The findings showed that GUI
testing focused on test case generation and automated testing.
The prolific authors were collaborative and had a wide range
of interests. The testing objectives were mainly functional,
and the modeling approach was the most widely used. These
findings provided important insights for understanding GUI
testing [11].

In addition, Soui et al. proposed a fully automated GUI
component identification  framework by  defining
mathematical equations to address the related shortcomings
of current user interface aesthetics. This framework
effectively compensated for the aesthetic flaws of the user
interface and enhanced the user experience [12]. Pan et al.
proposed an automated GUI test script repair method based
on computer vision technology to address issues related to
GUI testing in mobile application testing. This method
effectively reduced testing cost and improved the automation
of testing tools [13]. Hort et al. analyzed the performance
optimization of GUI component recognition and detection in
Android applications to improve mobile application
performance. This effectively reduced the response time and
energy consumption of mobile applications [14]. Su et al.

analyzed anomalies in over 2000 open source applications to
address issues related to the correctness and reliability of
mobile applications. This enhanced the detection and
recognition capabilities of GUI components, improving the
security of mobile applications [15]. Zhang et al. proposed a
training method based on deep learning to address the
limitations of recognizing GUI models. The new method
could determine the similarity between users and identify
user interfaces with the same composition, improving the
recognition accuracy [16].

In addition, Ege et al. used a new programming language
to develop a GUI for controlling the data transfer from
sensors. The new method used a support vector machine
model to search and model the data. The results showed that
the new method could improve the success rate of the user
software [17]. Cheng et al. used machine vision and element
recognition algorithms to generate target gaps. Then, the
micro-scale detection was used to improve the network. The
new method effectively enhanced the recognition accuracy
of frame elements and addressed the shortcomings of current
monitoring algorithm models. The method could improve the
research accuracy. However, the study recognized that the
category was divided into eight categories, with other
categories containing more categories and more complex
recognition, resulting in insufficient recognition accuracy
[18]. The improved model made better improvement in
different types of recognition, which further improved the
accuracy of user software recognition.

Altinbas et al. aimed to recognize and train the interface
elements of a graphical user. The model was trained using
the SSD algorithm on the VINS dataset. The final results
showed that the average accuracy obtained by the method
used was higher than that the SSD. Although the research
improved the model accuracy to a certain extent, it was only
trained to test the user's interface in order to achieve the best
training results [19]. Therefore, there are still issues such as
user type recognition in the research. Dribbble and Graphic
Burger et al., developed a GUI design component library
based on reverse engineering and computer vision
technology to address GUI component recognition and other
issues. The new database was able to crawl through millions
of GUI designs from real-world applications and
incorporates an invisible crowd-sourcing process. The study
demonstrated the quality of the D.C. Gallery by
quantitatively assessing the platform's ability to provide
additional support for design sharing and knowledge
discovery beyond existing platforms. The new method
supported comprehensive design resources, detailed design
analysis, and advanced search and knowledge discovery
support. However, the model may still have some
recognition or classification errors [20]. For this reason, this
study aims to analyze and test the user recognition and
accuracy improvement to achieve better model results.
Comparison with existing literature indicate that this study
outperforms similar studies in several aspects, not only in
deep optimization of model structure, but also in more
targeted solutions for specific challenges in GUI component
recognition. Compared with the research proposed by
Altinbas et al., the research is more extensive in terms of
complexity and adaptability. Compared with sharing system
designed by Chen et al., the real-time detection performance
us more prominent. Compared with the model optimization
work of Sirisha and Lin et al., the present study makes more
significant progress in terms of multi-scale feature fusion and
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refinement of the deep learning network. The study not only
consolidates its academic contributions, but also expands the
applicability of deep learning techniques in practical
applications.

Domestic and foreign research have shown that current
research methods for GUI component recognition still suffer
from poor component detection and localization, as well as
low classification accuracy. Therefore, the SE76-PP-YOLO
method optimized by attention mechanism is designed to
distinguish background elements of GUI components in
existing research methods. Meanwhile, the
SEBIi76-PP-YOLO method is optimized. This method
improves the convergence direction shift caused by a large
number of negative samples in current research, and both are
innovative.

I11. METHOD STUDY

A. Method Optimization and Backbone Feature Extraction
Network

Component identification errors arise from developers'
misunderstanding of the prototype diagram group. Based on
deep learning, this research improves detection positioning
and classification in GUI recognition. Based on the Attention
Mechanism (AM), a deep residual network model is
proposed to optimize the efficiency of GUI component

Feature
extraction

Feature
fusion

Figure 1. GUI component identification process under PP-YOLO algorithm.

ResNet SE vd

detection. Based on the Complete Intersection over Union
(C-loV), a corresponding calculation method is proposed to
optimize the positioning accuracy of GUI components. In the
task of GUI component identification, the Lightweight
Paddle You Only Look Once (PP-YOLO) is taken as its
basic framework [21]. A GUI component recognition
network that integrates deep learning is designed. The GUI
component identification under the PP-YOLO algorithm is
shown in Figure 1.

In Figure 1, it first performs corresponding feature
extraction on the input image. Then, the Feature Pyramid
Network (FPN) structure is used for feature fusion. Finally, it
uses the fused output feature map for component prediction.
Figure 1 shows the process flow from the original input
image to each processing stage within the PP-YOLO
framework, highlighting how features are extracted,
combined, and used for final prediction. The backbone
extraction network of the GUI component recognition
network integrated with deep learning is built on the
improved Residual Neural Network 76 _Squeeze and
Excitation_vd, the ResNet_SE_vd of the AM down-sampling
residual module with compression, and incentive factors.
Therefore, in this study, it is named SE76-PP-YOLO. The
GUI component detection network diagram under
SE76-PP-YOLO is shown in Figure 2.
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Figure 2. Detection network of SE76-PP-YOLO GUI component.
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Figure 3. ResNet_SE_vd schematic diagram of backbone extraction network.

The CBM in Figure 2 is a residual module sub module.
The graph shows that the detection network is based on a
feature pyramid in terms of network feature fusion. Then it
uses the Path Aggregation Network (PANet541) to fuse the
output feature maps of different levels. Then it outputs four
prediction feature maps with different sizes. Figure 2
provides a detailed decomposition of the network
architecture, emphasizing the integration of residual modules
and path aggregation networks. It intuitively explains how
the improved ResNet_SE_vd structure helps enhance feature
extraction and more accurately detect GUI components. The
SE76-PP-YOLO model is based on PP-YOLO, which
incorporates a lightweight target detection framework that
ensures a balance between efficiency and accuracy.
PP-YOLO has been selected because of its advantages in
terms of processing speed and detection performance, which
makes it particularly suitable for real-time GUI detection
tasks for mobile applications. In GUI design, according to
human visual acceptance habits, Designers express their
message to users or components that require special attention
based on standardized design standards. The designer will
highlight it from the background of the interface. This can
ensure that information can be fully and orderly
communicated to users by attracting their attention [22,23].
Therefore, the ResNet SE_vd schematic diagram of the
backbone extraction network is shown in Figure 3 [24].

In Figure 3, C4~C7 respectively represent ResNet_SE_vd
backbone extracting four prediction feature maps from the
network output. Conv Block_SE represents the optimized
ascending dimensional convolution block. Identity Block_SE
represents a unit stacked by convolution layers. The Figure
shows that the actual input image size is fixed to 576>676 to
ensure sufficient input resolution. Then, the study passes
through the first convolution kernel with a number of 16 and
a size of 3>3. After a convolution layer with a step size of 1,
it passes through a Batch Normalization layer (BN) and
normalized. The activation unit selects the Mish function,
with excellent results to output 576 < 576 > 16 size feature
maps. In addition, in the feature fusion section, the research
selects the method of FPN+PANet feature fusion. Then the
research adds a bottom-up feature fusion path based on a
top-down approach. Subsequently, the study adopts a
down-sampling method to combine the shallow output
feature map containing shallow-edge information with the
advanced feature maps in the depth direction. This makes the

context information contained in each layer richer. It also
provides rich shallow edge feature information for predicting
advanced predictive feature maps of large components. This
helps the network judge complex and large components.
Figure 3 illustrates the hierarchical structure of the
ResNet_SE_vd backbone network, demonstrating how data
is generated into high-resolution feature maps through
convolution and identity blocks. The SE module improves
the detection accuracy of GUI components by adaptively
realigning the relationships between channels, so that the
model can focus more effectively on features that are
important for recognition. An AM is also introduced in the
model to recognize components in complex contexts. The
AM enables the model to better focus on critical regions in
the image by assigning different weights to various locations
in the feature map.

B. Analysis of GUI Component Method Intersection over
Union Ratio Method

In the component prediction phase, the position
parameters of the components are adjusted to be as consistent
as possible, gradually increasing the Intersection over Union
(loU) values of the components. This is to accurately identify
the components. Based on this, the Generalized Intersection
over Union (GloU) is used to improve the actual
performance of boundary box prediction in target detection
tasks. The mathematical expression of GloU is shown in
Equation (1) [25].

B2 -G,NG,
a

GloU = loU - (1)

In Equation (1), B? represents the area of the smallest

bounding box. B?® represents the actual marker boundary
box of the target. G, represents the marker bounding box

of the target prediction. Based on this, the GloU loss
function is shown in Equation (2).

Hgiou =1-GloU (2)

In Equation (2), Hg,y represents the loss function

value of GloU. In reality, there is often a very complex
situation in target detection, that is, the actual boundary box
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completely encloses the predicted boundary box. Therefore,
the C-loU is used to replace the traditional loU calculation
method in GUI component recognition tasks. In the
prediction phase, the 1loU loss function calculation
expression is shown in Equation (3).

lz(d,dgt)
|2

+ fo ®)

In Equation (3), loU represents the Intersection over
Union between the predicted and actual bounding boxes.

A2 (d,dgt) represents the Euclidean distance between the

two center points of the predicted boundary box and the
actual label box. | represents the diagonal distance between
the smallest rectangles. S represents the relevant

parameters of the balance ratio. o represents the
consistency value of the aspect ratio between the predicted
bounding box and the actual target box. Therefore, £ and

o are shown in Equations (4) and (5) [26].

o
ﬂ=m (4)

In Equation (4), (1-loU) is used to balance the
condition of incomplete packaging.

72'2

ot 2
o= 4 [arctan M arctan EJ (5)
ud u

In Equation (5), m represents the width of the bounding
box. u represents the height of the bounding box.
Compared with general loU calculation methods, C-loU can
measure the coincidence between the predicted boundary
box and the real target boundary box in extremely complex
prediction situations. Meanwhile, in the target credibility loss
of GUI component identification network model, the study
uses the intersection ratio of the predicted boundary box and
the actual boundary box to multiply the target credibility
score. This is to perform binary cross entropy calculations on
each predicted bounding box. Among them, whether the
calculation method of loU can cover enough prediction
conditions is the key to determining whether its credibility
loss can accurately converge. The C-loU proposed in the
study solves the incorrect convergence caused by the
unreasonable calculation method of loU. This also indirectly
improves the network'’s ability to detect GUI components.
In tasks related to target detection, the study selects Mean
Average Precision (MAP) and Mean Average Recall (MEAR)
as evaluation indicators. The precision is shown in Equation

(6).

n
P=
n+w (6)
In Equation (6), P represents the precision ratio. 7

represents the real example. @ represents a false positive
example [27].

R=—"15 ™

In Equation (7), R represents the recall. & represents a
false counter example. In reality, P and R are mutually
balanced. Generally, R decreases with the increase of P .
Therefore, the area of the curve constructed by recall and
precision combined with the horizontal and vertical axes can
be defined as the average precision of a certain classification,
as shown in Equation (8).

AP:I:P(R)dR ®)

In addition, in GUI group detection, the main purpose of
GUI component detection is to facilitate comparison with
component detection methods based on machine learning. To
this end, without considering the accuracy of subsequent
GUI component classification, this study uses detection
recall scores for target components to evaluate the precision
of relevant methods in extracting target component regions.
The closer the value is to 1, the more complete the extraction
method for the target component will be. The calculation
expression is shown in Equation (9) [28].

{Mgt’MP}min . |OUZDP

{ aMe) 3o, 9

ORecaII =
ot

In Equation (9), Orecal represents the recall score value.
M, represents the number of actual target bounding boxes.
M, represents the number of prediction bounding boxes.

loux®
2Dy

the prediction boundary box.

represents the loU of all targets in the sample to

C. Optimization Method for GUI Component
Classification

After optimizing the detection and positioning methods,
the classification method in GUI component recognition is
optimized. Aiming at the relatively difficult classification in
current GUI component recognition, a data enhancement
method for GUI is proposed to improve the uneven number
of component categories in the training set. Then, this study
uses a feature pyramid structure based on BiFPN to improve
feature fusion. Finally, this study uses a positive and negative
sample selection strategy based on ATSS to balance the
impact of a large number of negative samples on
classification convergence during this process. Therefore, the
improved GUI component recognition algorithm model
based on  SE76-PP-YOLO,  which is called
SEBIi76-PP-YOLO, uses a stacked BiFPN structure to
achieve recursive weight fusion of feature graphs compared
to SE76-PP-YOLO [29]. During feature fusion, an improved
feature fusion method based on the BiFPN structure is
designed. The specific structure is shown in Figure 4.
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Figure 4. Schematic diagram of FPN unit based on BiFPN structure
optimization.
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In Figure 4, P4 to P7 represent nodes. The Figure shows
that "Up Sample" actually increases the actual resolution of
the high-level correlation output feature map to four times
the original resolution. It is consistent with the actual output
characteristic map of adjacent layers. The up-sampling
method estimates the vacant pixel position value by using
bi-linear interpolation. Figure 4 shows the BiFPN structure,
detailing how to integrate features with different scales using
up-sampling and down-sampling techniques. Figure 4
emphasizes the iterative process of feature fusion, enhancing
the model's ability to accurately identify components using
multi-scale  information. BiFPN  achieves effective
information transfer between feature maps of different scales
through multi-level feature fusion. Compared with the
traditional FPN, BiFPN is more flexible in feature fusion,
which can further enhance the expressive capability of the
feature map through multiple bidirectional fusions. In this
way, the model is better able to maintain high accuracy when
dealing with GUI components with different sizes. In this
study, the coordinates of interpolation points in the original
image are set to (f, j). The equation related to pixel values is
shown in Equation (10) [30].

V=V,
f—1,

_ ViV
-1 10

In Equation (10), v represents the interpolation to be
calculated. f; and f;, represent the horizontal coordinates
of two adjacent points. v, and v; represent the pixel

values of adjacent two points. Therefore, the interpolation to
be calculated is shown in Equation (11) [31].

f,— f
fl_fO

V=

f—f,
Vot ¥ (12)
1 0

Meanwhile, to solve the gray scale discontinuity generated
during upper sampling, this study adopts the combined
method, which makes it have better grayscale smoothness.
By stacking two to three BiFPN unit structures, the feature
fusion process no longer involves simple bidirectional
stacking of all high-level and shallow feature maps, but
rather a parameter iterative update process. This filters out
features that contribute less to model convergence, allowing
the network to learn the optimal weight for feature fusion.

The intermediate layer output calculation in the optimal
weight calculation is shown in Equation (12).

it conv(s‘N“ +Re size(sig,‘ﬂ)) (12)
In Equation (12), S;\TOut represents the intermediate layer

output. N represents the number of output feature layers
after fusion, with a value range of {4,5,6}. When N +1 is7,
the output of the uppermost intermediate layer is shown in
Equation (13).

Sy = Conv(sy') (13)

The weighted output calculation for each intermediate
output layer is shown in Equation (14) [32-33].

o * Sy + @, *Resize(S}j‘+1)

o+ ty

S{ = Conv (14)

In Equation (14), @ represents the weight tensor. y

represents a constant, which typically takes a value of 10 to
ensure that the denominator in the actual calculation process
is not zero. The final fusion output calculation expression is
shown in Equation (15)[34-35].

§34 _ Cony @ *S + @, *S +%’*Resize(8ﬁ“fl)
out _

! ’ ! (15)
o+ +oy +y

In addition, the steps of the prediction positive and
negative sample selection method based on ATSS are shown
in Figure 5.

Find out the candidate areas with
accurate prediction results

According to the Euclidean distance between the
candidate area and the actual object, select T
candidate areas that are closest to the actual object

Calculate the IoU score, overall average
and standard deviation of the candidate
area relative to the actual object

Get the ToU threshold of the
actual object

The prediction candidate area whose LOU score is
greater than or equal to the threshold value is the
positive sample, otherwise, it is the negative sample

Figure 5. Schematic diagram of prediction positive and negative sample
selection algorithm using ATSS.

In Figure 5, the sample selection method first finds
candidate regions for each actual target object whose
prediction results are accurate. Secondly, at each output
feature scale, the study selects T candidate regions that are
closest to the actual object based on the Euclidean distance
between the candidate regions and the actual object. Next,
the loU score, overall average, and standard deviation of the
candidate region relative to the actual object are calculated.
The study then obtains the loU threshold of the actual object.
Finally, the prediction candidate regions with a loU score
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greater than or equal to the threshold are taken as positive
samples, and vice versa. Figure 5 provides a step-by-step
visual guide for the ATSS algorithm, explaining how to
identify candidate regions and calculate loU scores to select
positive and negative samples. ATSS optimizes the training
process by automatically selecting the most representative
positive and negative samples in each feature layer. The
strategy dynamically adjusts the selection criteria of positive
and negative samples by calculating the distance and loU
scores between the candidate regions and the real target, thus
avoiding the negative impact of a large number of negative
samples on the classification results.

IVV. THE APPLICATION OF USER INTERFACE GRAPHIC
DESIGN

A. Performance Analysis of Component Detection,

Positioning and Optimization

To verify the effectiveness of the optimized detection and
positioning method in the GUI component identification
method, the designed GUI inter-group recognition model
was first trained for 50 iterations on a publicly available Rico
dataset. The dataset was developed by Google in
collaboration with the University of Michigan and released
in 2017 to advance research and development of mobile app
user interfaces. The dataset collects more than 66,000 unique
user interface screenshots and metadata from more than
9,700 Android applications, showcasing various GUI
components to ensure a robust evaluation of model
performance for different types of user interfaces. In addition,
the diversity of the Rico dataset makes it an ideal choice for
studying GUI component recognition, covering a wide range
of application scenarios from simple login interfaces to
complex multi-level interaction interfaces.

Liu et al. emphasized the effectiveness of the Rico dataset
in GUI component recognition [3]. Hu et al. used this dataset
for data augmentation, improving the information extraction
performance [4]. MAP is a key indicator for evaluating the
performance of detection models, MAP@0.5 measures the
detection accuracy of the model under relaxed conditions,
MAP@0.5:0.95 provides a rigorous and comprehensive
evaluation. The recall rate measures the detection ability of
the model, and the precision reflects the precision of the
prediction results. F1 score combines precision and recall to
evaluate overall performance in a balanced manner. The
detection speed is used to evaluate the practicality of the
model, and the false detection rate measures the false

detection situation of the model. The study then sets the
initial learning rate to 10 the batch size to 8, and the
number of read threads to 5. The transformation process of
MAP values with training rounds is shown in Figure 6. An
loU fraction greater than or equal to 0.5 in the prediction box
is noted as MAP@0.5, and the loU score between 0.5 and
0.95 in the prediction box is denoted as MAP@0.5:0.95.

In Figure 6, at the initial stage of training, the curve with
an loU score greater than 0.5 and at [0.5, 0.95] showed a
rapid growth trend. When the training round was 12, the
MAP value of MAP@0.5:0.95 was stable at about 59%. At
this point, operators manually adjusted the model learning
rate to 10 to continue training. After 15 training sessions,
the MAP@0.5:0.95 of the model stabilized at 61.3%, while
the MAP@0.5 increased to 78%. From Figure 6, at the
beginning of the research, the MAP@0.5 and MAP@0.50:95
demonstrate good improvement effects, indicating that the
model can effectively learn during the early training stage.
The model can quickly grasp the basic patterns and features
of GUI components from the dataset. At this time, the
improvement of the network's feature extraction ability for
the GUI components of the training set was slow, and the
MAP tended to be stable. After the last 50 rounds, the study
selected the 45th training parameter model as the final
training result. Meanwhile, the MAP value of the PP-YOLO
model in the figure levelled off after the 30th round and
failed to improve further. This indicates that the
SE76-PP-YOLO model has significant advantages in terms
of training efficiency and accuracy improvement, especially
in the recognition task of complex GUI components. After
50 iterations, the MAP@0.5 value remained stable at around
78%, and the MAP@0.50:95 stabilized at around 61.3%.
These values indicate that the accuracy and reliability of GUI
component detection are high, and there has been a
significant improvement compared with initial performance.
Figure 6 illustrates how the MAP value evolves during the
training process, with a rapid increase in the initial stage
followed by a steady period. This trend indicates that the
model can quickly learn basic features before reaching a
stable performance. In terms of component detection, the
overall results of the algorithm in 1056 testing samples are
compared with the PP-YOLO original target detection model
on MAP and MAR. The Canny edge detection algorithm
based on the machine vision algorithm is introduced for
comparison with SE76-PP-YOLO. The results are shown in
Table 1.
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Figure 6. Transformation process of MAP value training with iteration number.
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Figure 7. Prediction accuracy of user interface components of all categories.

In Table 1, the MAP values of the SE76-PP-YOLO
algorithm proposed in the study during the average accuracy
comparison were higher than the original PP-YOLO
algorithm. Among them, the MAP@0.5:0.95 was 69.9%, and
the MAP@0.5 was 82.8%. This indicates a substantial
improvement in detection accuracy, which may be due to the
improved model enhancing its detection capability. In the
comparison of average recall, the MAR value of the
SE76-PP-YOLO algorithm on small, medium, or large
components was higher than that of PP-YOLO. Among them,
the MAR (small) was 57.6%, the MAR (medium) was 74.0%,
and the MAR (large) was as high as 82.7%. Compared with
the introduced detection algorithm, the SE76-PP-YOLO
algorithm proposed in the study had an average recall of
93.1%. This was much higher than 71.2% of the comparison
algorithm. Overall, the optimization of the backbone feature
extraction network and loU computing method significantly
improves the algorithm's recognition ability for GUI
components. The accuracy and efficiency of GUI component
recognition is improved.

TABLE 1.
ALGORITHM COMPARISON RESULTS AND GUI COMPONENT AVERAGE
DETECTION RECALL SCORE RESULTS
Comparison results of average accuracy

MAP@0.5:0.95 MAP@0.5
PP-YOLO 0.603 0.699
SE76-PP-YOLO 0.692 0.828

Comparison results of average recall rate

- MAR (small)  MAP (medium)  MAP (large)
PP-YOLO 0.522 0.669 0.732
SE76-PP-YOLO 0.576 0.740 0.827

Average detection recall score of GUI components with different
detection methods
Average test recall score
71.2%
93.1%

Test method
Canny
SE76-PP-YOLO

The SE76-PP-YOLO and SEBIi76-PP-YOLO models
proposed in this study significantly improve the detection
and classification accuracy of GUI components. In the
experiments, both MAP and Recall of SE76-PP-YOLO are
higher than that of the traditional PP-YOLO model. This
indicates that the model is able to identify and locate GUI
components more accurately, even in complex user interface
designs. This provides strong technical support for
automated interface design and testing. Table 1 emphasizes
the effectiveness of the SE76-PP-YOLO algorithm in
improving detection accuracy and recall, providing a
comprehensive evaluation of its performance enhancement.

J

15
14
13
12
11
10
9
8 ' ' ' ' J
0 02 04 06 08 10
AP@0.5
(b) The last seven components AP@0.5
value result

Meanwhile, compared with the original calculation method,
the component recall rate has significantly improved. Based
on this, the research analyzes the prediction accuracy of all
types of GUI components. The results are shown in Figure 7.

In Figure 7, 1 to 15 are digital steppers, tabs, text
components, image components, text buttons, input boxes,
radio buttons, dialog pop-up layers, switch selectors, paging
indicators, multiple selection boxes, progress bars,
advertising bars, date selectors, and map views. In Figure 7,
the AP@0.5 value of the proposed SE76-PP-YOLO for all
categories of GU components was higher than 75%, with the
highest appearing in the advertising column, which was
93.2%. This indicates that the model has good robustness in
accurately detecting these components. Overall, the
SE76-PP-YOLO had a high prediction and positioning
accuracy for most GUI components. However, in certain
categories, such as text components and input boxes, there is
still confusion in the classification of components, with an
AP@0.5 of only 75.3% and 76.7%. This highlights areas
where the model needs further improvement, as these
components are visually similar and have significant issues
in classification detection. SE76-PP-YOLO also maintained
a recall above 85% in detecting interfaces with smaller
widgets and high-density layouts, which was significantly
higher than other models. This shows that SE76-PP-YOLO
not only performs well in common scenarios, but also
demonstrates excellent detection capabilities in complex and
highly challenging scenarios. Therefore, the research
subsequently optimizes its GUI component classification
method and conducts corresponding experiments. Figure 7
provides a classification prediction accuracy, demonstrating
which components the algorithm most accurately identifies
and highlighting areas for improvement.

B. Method Optimization Performance Analysis

In the current situation where the accuracy of GUI
component prediction and classification is not ideal,
SEBIi76-PP-YOLO is proposed and its effectiveness is
verified. Before the experiment, 11600 image texts in
different mobile application formats and their corresponding
label data are input as a dataset. 90% are used as training sets
and 10% as testing sets. The component types and
corresponding quantities are shown in Figure 8.

In Figure 8, there are 15 categories of training sets and
testing sets after data cleaning and enhancement. The largest
category was 10.654*10* text type components, while the
smallest was the step-by-step date selector component, with
0.952*10*. The average GUI sample contained 15.5
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components. For rare types of components, a single
component only appeared once per GUI image sample.
Image and text type components often appeared multiple
times in the same sample. The GUI sample with the smallest
number of components accounted for approximately 1% of
the total training set. Compared with the original dataset,
there is significant improvement in the distribution of the
number of categories of GUI components. Figure 8 provides
insights into the composition of the dataset, displaying the
distribution of the number of each GUI component type. The
response values of medium-scale and large-scale features
were improved by 15% and 10%, respectively. This indicates
that BiFPN not only enhances the representation ability of
small-scale features, but also improves the overall
performance of the model in dealing with diverse GUI
components through fusing multi-scale features, especially
enhancing the robustness of the model in coping with
complex user interface layouts. It helps readers understand
data imbalance and the importance of data augmentation
techniques in improving model training. Based on experience,
this is relatively reasonable. The MAP changes of
SEBIi76-PP-YOLO during training is shown in Figure 9.
Figure 9 shows the change of the MAP value for
SEBIi76-PP-YOLO, which is similar to SE76-PP-YOLO. At
the 54th iteration, the MAP value reached the highest, which
was then taken as the final training result. This indicates that
the model maximizes its learning ability at the most effective
training point. This peak indicates the successful integration
of BiFPN and ATSS strategies, enhancing the model's ability
to accurately classify GUI. Therefore, the overall results of
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Figure 8. Distribution of GUI component quantity in training set and test set.
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SEBIi76-PP-YOLO in the testing sample and the comparison
results of GUI component identification are analyzed.
Among them, the Fast Recurrent Convolutional Neural
Network (Fast R-CNN), the "You Only Look Once Source
Version" (YOLO-V4), and the network structure combining
ResNet and FCN (RetinaNet) are introduced for comparison,
which are represented by A~C. Figure 9 illustrates the
training process of the SEBi76-PP-YOLO model, showing
how the MAP value changes over time. Meanwhile, the
original PP-YOLO and the improved SEBi76-PP-YOLO are
represented by D and E. The results are shown in Figure 10.

In Figure 10, the MAP@0.5 and MAP@0.5:0.9 values of
SEBIi76-PP-YOLO  were higher than those of
SE76-PP-YOLO before improvement, with 94.1% and
75.1% respectively. In the MAP comparison identified by
GUI  components, the MAP@0.5 value of the
SEBIi76-PP-YOLO algorithm was much larger than
comparison algorithms. This indicates that the improved
training strategy and network optimization are effective in
GUI component classification detection. Overall, the
improved model effectively improves the classification
ability of GUI components and the recognition ability of
error-prone components in this category. Figure 10 compares
different models, emphasizing the superior performance of
SEBIi76-PP-YOLO. The consistent performance of various
indicators proves the robustness and effectiveness of the
algorithm, providing strong evidence for its practical
application. The classification accuracy results for all types
of GUI components are shown in Figure 11.

Training

______ _Test
Set

Set

w B W

o

I

8

;
[, o

4

Number of components(*

1

!

P L

0 11 12 13 1
Assembly

(b) Number of test sets and training

sets of the last 8 components

I
9 5

1.0 —/\ e
4+
08— i 0.8 .
06+ | 06 |
<
=041 I e
02 -1+ 02+
0 MAP@0. 0 MAP@O0.
30 5: 0.95
0 * D85 40 MAP <
. \*\bc @05 \Qb

30
(a) MAP change process when the
number of iterations is 0~30

Epoch

Figure 9. Changes of the MAP value of SEBi76-PP-YOLO during the training.

60

Epoch
(b) MAP change process when the

number of iterations is 30~60

Volume 33, Issue 11, November 2025, Pages 4362-4374



Engineering Letters

1.0 ,} 1.0
~I N
0.8 I A 0.8
| I\
B I A \ (-
= 0.6 R I < 0.6 -
0.4 “ \ ! 0.4 1
\ \ \
0.2 1 ke Y/ SE76-PP- 0%
0 - _YOLO.§ o MAP .
SEBi76-PP- & 58
S
MAP@OS  \1ap@o YOLO
5: 095
Index . . Algorithm
(a) GUI component target detection (b) Comparison of GUI component
MAP result identification results MAP

Figure 10. The overall results of SEBi76-PP-YOLO in the test sample and the comparison results of GUI component identification.

AP@"*(PP- AP@"*(SEBi76-PP-
YOLO) YOLO)
1.00 f
0.95 A A
@
0.90 A A
o A
< 085} A
@
080} O
075} PY O
070 1 1 1 1 1 J
1 p) 3 4 5 6 7

Assembly
(a) Classification results of the first

seven components

AP@"*(PP- AP@"*(SEBi76-PP-
YOLO) YOLO)
]OOA A
A A
0.95} A 0
0.90F o A @ O
[~
<0.85 ® O
0.80 ()
O
0.75
070 1 1 1 1 1 1 J
8 9 10 11 12 13 14 15
Assembly

(b) Classification results of the last
8 components

Figure 11. SEBIi76-PP-YOLO's classification accuracy results for all types of GUI components.

In Figure 11, the SEBIi76-PP-YOLO significantly
improved the classification accuracy for all types of GUI
components. The average accuracy at the intersection of
components exceeded the joint threshold AP@0.5. All
categories scored over 87%, indicating a significant
improvement in the classification accuracy of the improved
model compared with previous methods. Meanwhile, the
date selector component had the highest classification
accuracy, and the AP@0.5 value was 98.3%, indicating that
the SEBIi76-PP-YOLO algorithm was particularly effective
in distinguishing this component from other components. In
summary, at 0.5 loU, the classification ability of
SEBIi76-PP-YOLO for the components of the dataset has
greatly improved compared with the original algorithm.
After fusing context and background feature information, the
recognition ability for rare components such as date selectors
and digital steppers is improved. Currently, the
SEBIi76-PP-YOLO algorithm still has little confusion for
some components, because the visual representations of
these components in GUI are usually very similar. It also
demonstrates the complexity of providing multiple types of
authentic annotations for the same component. In extreme
cases, it can lead to problems that are difficult to accurately
distinguish. The overall effect is still considerable. The
substantial improvement of all component types highlights
the effectiveness of integrating contextual and background
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feature information. Especially on the date selector
component AP@0.5, it indicates that the model's ability to
accurately classify different GUI components is enhanced.
Figure 11 highlights the classification accuracy improvement
achieved by SEBIi76-PP-YOLO on different GUI
components. The highest AP@0.5 among all categories,
especially the date selector component, indicates that the
model's ability to accurately classify different components is
enhanced, thus verifying the effectiveness of the proposed
method. The current advanced methods, including
ResNet_SE_vd model, BiFPN model, ATSS algorithm, and
SE76-PP-YOLO algorithm are compared. Comparison
indicators are AP@0.5, AP@0.5:0.95, and recall rate. The
results are shown in Table 2.

TABLE 2
COMPARISON RESULTS OF INDICATORS OF DIFFERENT METHODS
- AP@0.5 AP@0.5:0.95 Recall rate
Algorithm (%) (%) (%)
ResNet_SE_vd 85.36 83.64 84.65
BiFPN 88.67 86.74 88.26
ATSS 91.24 89.64 90.35
SE76-PP-YOLO 93.54 90.16 92.36
SEBI76-PP-YOL 95.68 94.36 96.48

0
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From Table 2, in the comparison of several models, the
SEBIi76-PP-YOLO model used in the study achieved the
highest values in all three indicators. The highest AP@0.5
value reached 95.68%, which was about 10.32% higher than
the lowest ResNet SE_vd model. The AP@0.5:0.95 value
was approximately 10.72% higher than the ResNet SE vd
model. This indicates that compared with traditional methods,
the constructed model has better detection accuracy and
better actual performance. In the recall comparison, the
SEBIi76-PP-YOLO model was about 11.83% higher than the
ResNet_SE_vd model, and the new model was also about
4.12% higher than the SE76-PP-YOLO model. From this,
the actual detection performance of the SEBi76-PP-YOLO
model is not necessarily better than the currently widely used
models, and its model performance is also better than the
SE76-PP-YOLO bhefore improvement. This indicates that the
actual performance of the model is effectively improved after
adding the BIiFPN. The comparative analysis of the
performance effects of different components is shown in
Table 3.

TABLE 3
COMPARISON RESULTS OF DIFFERENT INDICATORS
. SEBI76- Fast Industrial
Sreten wevoL SO (b mON St
0 N Threshold
Real-time
Performance 112 98 120 25 >60
(FPS)
Model
Parameter 18.7 22.3 43.6 136.2 <30
Size (M)
Cross-platfor
m mAP +12 +25  +48 +73  <+3
Fluctuation
(%)
Fine-grained
Classification 38 28 25 22 >30
Capability
Training
Convergence 54 65 75 120 <70
Epochs
Energy
Consumption 58 72 105 310 <100
(mJ)

As can be seen from Table 3, research using models to
maintain 94.1% MAP@0.5 Under precision, the inference
speed reaches 112 FPS, surpassing the YOLOv8 model and
meeting the real-time detection requirements of mobile
devices. At the same time, the parameter size of the model
used in the study was reduced from 18.7MB to 1.8GB of
memory usage. In the comparison of mAP fluctuations on
Android/iOS platforms, the fluctuation ratio of the model
used was only + 1.2%, which was significantly reduced
compared to YOLOv8s =+ 4.8%, proving that the
architecture is insensitive to OS differences. Simultaneously
researching the use of models to support fine-grained
recognition of 38 types of components, with a coverage
improvement of 35.7%. And under the same accuracy, the
inference speed of the model used in the study is 2.3 times
faster than that of the 2024 SOTA model DINOv2. It can be
seen that the use of models in research has better
performance in terms of model application indicators.

The results indicate that PP-YOLO, as a baseline model,
performs well in terms of speed, but lacks accuracy in
complex scenes and multi-scale component detection.
SE76-PP-YOLO compensates for the shortcomings of
PP-YOLO in these aspects by introducing deep residual
networks and attention mechanisms, which significantly
improve the accuracy of detecting components in small and
complex backgrounds. Although YOLO-V4 and Fast
R-CNN models perform well in certain standard scenarios,
their recall and classification accuracy are not as good as
SE76-PP-YOLO and SEBIi76-PP-YOLO when dealing with
GUI interfaces with complex and high-density layouts.
Compared with some of the latest object detection models
such as YOLO-V5 and EfficientDet, SE76-PP-YOLO and
SEBIi76-PP-YOLO perform better in GUI component
recognition, especially on diverse datasets. Although
YOLO-V5 and EfficientDet perform well in some general
object detection tasks, they still have some limitations in
optimizing specifically for GUI component recognition.
SE76-PP-YOLO and  SEBIi76-PP-YOLO  combine
optimization with specific requirements and scenarios of
GUI design, demonstrating higher practical application
value.

C. Statistical Validation

SEBIi76-PP-YOLO and original PP-YOLO models are
trained and evaluated separately on the same Rico dataset.
The performance of each model is recorded, including
AP@0.5, AP@0.5:0.95, and recall. The experiment is
repeated 10 times to reduce random errors.

The AP@0.5 of SEBi76-PP-YOLO: 82.5, 83.0, 82.8, 83.2,
82.9,83.1, 82.7,83.0, 82.9, and 83.1.

The AP@0.5 of the original PP-YOLO: 78.2, 78.5, 78.3,
78.4,78.3,78.2,78.1,78.3,78.4, and 78.2.

Assumption 1: SEBIi76-PP-YOLO and the original
PP-YOLO AP@0.5: there is no significant difference in the
above average values.

Assumption 2: the AP@0.5 SEBi76-PP-YOLO: the mean
of PP-YOLO is significantly higher than the original
PP-YOLO.

Calculate the mean and standard deviation of two samples,
perform an independent sample t-test, and calculate the
p-value. Result analysis: P <0.05 is calculated through
statistical analysis, indicating that the AP@0.5 of the
SEBIi76-PP-YOLO s statistically significant. Hypothesis 2
holds true.

The research experiment identifies common fault cases in
GUI component recognition. The identifiable types include
false positives, missed detection, and false positives. These
issues result in poor detection performance. Although the
improved algorithm performs well overall, it encounters
difficulties in visually similar components and less frequent
component types. Complex backgrounds can also increase
the false detection rate. Future research should enhance
datasets, improve model structures, and utilize multi-modal
learning methods to enhance detection accuracy.

D. Examples and Model Complexity Analysis

A large technology company has introduced a GUI
component automatic recognition tool based on deep
learning in mobile application development, using improved
SE76-PP-YOLO and SEBIi76-PP-YOLO algorithms to
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significantly reduce manual testing workload, and improve
testing accuracy and efficiency. Automated tools have
accelerated the development cycle, reduced labor cost,
improved testing accuracy, and enhanced user interface
quality. However, the team needs training to adapt to the new
tools, and management needs to provide resource support.
Improved recognition methods help teams better collect and
analyze user interface data, optimizing application design.
Data driven decision-making improves user experience by
continuously monitoring and analyzing user data to adapt to
changes in user needs. This not only significantly improves
technology, but also provides valuable insights for
management, helping organizations effectively manage
projects, improve team collaboration, achieve the
combination of technological innovation and business goals,
and enhance market competitiveness.

Time  complexity:  The time complexity of
SE76-PP-YOLO and SEBi76-PP-YOLO mainly depends on
the number of convolution operations and the size of the
input image. Although the improved algorithm increases
computational complexity, it can still complete detection and
recognition tasks within an acceptable time through efficient
feature extraction and fusion strategies.

Space complexity: The storage requirements for model
parameters and intermediate feature maps increase memory
usage. Especially for multi-scale feature fusion and storage
of candidate regions, more memory resources are required.
However, after optimizing the model structure and
parameters, it is possible to effectively reduce memory usage
and improve the scalability of the model.

The research demonstrates how deep learning techniques
can be used to automate the detection and classification of
GUI components by introducing the SE76-PP-YOLO and
SEBIi76-PP-YOLO models, which drastically reduces the
workload of developers and testers. The advancement of
automation technology helps to improve software
development speed, shorten time to market, and ensure
consistent and high-quality interfaces. The study shows that
SEBIi76-PP-YOLO is able to better handle multi-scale and
multi-category GUI components, especially in categorizing
rare components and handling components with high visual
similarity. The research optimizes the design process by
integrating improved deep learning models into GUI design
software, where designers can access component
identification and layout recommendations in real time.
Stronger support is provided for cross-platform compatibility,
and standardization and optimization of GUI design is
facilitated. In addition the methods in the study can be
further extended to the design of Augmented Reality (AR)
and Virtual Reality (VR) interfaces, or used to support the
automated design of VVoice User Interfaces (VUI).

V. CONCLUSION

To solve the component recognition errors caused by
developers' misunderstanding of the prototype group, a
prototype diagram refers to a set of prototype diagrams used
in GUI to define and display interface elements. The research
improved the detection positioning and classification in GUI
component recognition based on deep learning. Significantly
Improved Detection and Classification Accuracy: The study
significantly improves the detection and classification
accuracy by introducing a SE_ResNet vd, an AM, and a
BiFPN. Meanwhile, the SEBi76-PP-YOLO model enhances
the fusion effect of multi-scale features through the BiFPN

structure, which makes the model perform particularly well
in the detection task of small components and high-density
layouts. The ATSS strategy further improves the
classification accuracy of the model when dealing with
complex and rare components. Then, the effectiveness of the
optimization method was verified. According to the
experimental results, in the GUI component optimization
detection and positioning method experiment, when the
training round was 12, the MAP value of MAP@0.5:0.95
was stable at about 59%. After 15 iterations, the
MAP@0.5:0.95 of the model stabilized at 61.3%, while the
MAP@0.5 increased to 78%. The MAP@0.5:0.95 of the
improved SE76-PP-YOLO algorithm was 69.9%, and the
MAP@0.5 was 82.8%. Both were higher than the original
PP-YOLO algorithm. Meanwhile, the AP@0.5 value of all
categories of GU components was higher than 75%. The
results showed that the optimization of the backbone feature
extraction network and the loU calculation method
significantly improved the recognition ability of the
algorithm for GUI components. In the GUI component
optimization classification method experiment, the MAP
value of SEBIi76-PP-YOLO was similar to that of
SE76-PP-YOLO. Its MAP value reached the highest at the
54th iteration. Its MAP@0.5 and MAP@0.5:0.9 values were
94.1% and 75.1%, respectively, higher than SE76-PP-YOLO.
SEBI76-PP-YOLO significantly improved the classification
accuracy of all types of GUI components, all higher than
87%. The average AP@0.5 value was 93.4%. Overall, the
optimized SE76-PP-YOLO effectively improved the
predictive positioning performance in GUI component
recognition. SEBIi76-PP-YOLO further enhanced its
classification performance. This improved the ability to
automatically identify GUI components in general. However,
the method proposed in the study still has false detection in a
few complex situations. This needs to be improved in the
future by combining optical character recognition
technology.

The research results showed that the improved model
performed well in handling diverse and complex interface
components, which provides technical support for achieving
cross-platform design consistency. With the popularity of
different operating systems and devices, it becomes critical
to ensure that applications have a consistent user experience
across platforms. This study will help developers achieve
high-quality interface design on different platforms.

This study mainly used the Rico dataset. Although this
dataset is comprehensive, the changes in GUI components
are incomplete for different types of applications and
operating systems. The SEBi76-PP-YOLO model optimized
simultaneously showed improved performance, but still
encountered difficulties in accurately classifying components
with visually similar appearances. The training and
optimization processes of deep learning models such as
SE76-PP-YOLO and SEBi76-PP-YOLO require a significant
amount of computational resources and time. Therefore,
future research will use a wider range of datasets. Also, the
classification algorithm will continue to be improved to
better distinguish visually similar GUI components. Finally,
subsequent research will focus on optimizing the
computational efficiency of the model. Although the Rico
dataset in this study contains a large number of GUI
screenshots from Android apps, its data are mainly focused
on the Android ecosystem and may have limited
generalization to other operating systems. Therefore, more
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diverse cross-platform datasets need to be introduced in
future research to validate the broad applicability of the

model.

Although the SE76-PP-YOLO and

SEBIi76-PP-YOULO models perform well in terms of
detection accuracy and speed, their complex network
structures and feature fusion strategies also increase the
computational cost. Therefore, future research could consider
reducing the model weight to reduce the demand for
computational resources while maintaining high accuracy.
The training and testing of the model are mainly based on the
task of recognizing GUI components in a stationary scene.
Therefore, future research needs to explore the practical
effectiveness of the model in more complex and dynamic
user interface environments.
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