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Abstract—We construct a continuous SEIR-type epidemic
model incorporating vaccination, which takes into account the
proportion of successful vaccinations and the vaccine’s efficacy.
We identify a feasible positively-invariant domain for the model
and obtain the model’s equilibria and basic reproduction
number, before establishing sufficient conditions for the equi-
libria’s local asymptotic stability in terms of the obtained basic
reproduction number. Subsequently, we construct a discrete
analogue of our model using the forward Euler method, and
establish sufficient conditions for the local asymptotic stability
of the discrete model’s equilibria in terms of not only the
basic reproduction number but also the discretisation step
size. Using the discrete model, we generate and visualise the
numerical solutions of our original model in two qualitatively
opposite scenarios: disease-free and endemic. A sensitivity anal-
ysis reveals that, in both scenarios, reducing inter-individual
contacts constitutes a more effective disease-control strategy
than accelerating vaccinations.

Index Terms—SEIR, vaccination, discretisation, forward Eu-
ler method, sensitivity analysis

I. INTRODUCTION

THE recent COVID-19 pandemic has led to a rapid
popularisation of compartmental epidemic models as

means for understanding disease dynamics and evaluating
intervention strategies. In such models, the population under
consideration is divided into several compartments, repre-
senting different states associated to the epidemic progres-
sion. In one of the simplest compartmental epidemic models,
the SIR-type model proposed in 1927 by Kermack and
McKendrick [20], the population is divided into three com-
partments: susceptible (S), infected (I), and removed (R). In
various modifications of this model, additional compartments
have been introduced. The exposed (E) compartment, in
particular, is intended to segregate individuals who have
been subjected to the disease but are not yet infectious,
giving rise to SEIR-type epidemic models, which capture
more accurately the respective disease’s incubation period
[1], [4], [6], [11], [12], [25], [28], [32], [46], [48], [49], [51],
[52], [56], [57]. Furthermore, numerous epidemic models
have been constructed to incorporate various intervention
strategies, such as vaccination, which has been recognised
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for its effectiveness in reducing disease transmission [2], [9],
[15], [26], [30], [42], [43], [50], [54].

In 1998, Shulgin et al. [42] incorporated two modes
of vaccination —constant and pulsed— into a modified
Kermack-McKendrick SIR-type model that features demo-
graphic factors. Subsequently, in 2002, Lu et al. [29] con-
ducted a similar study using another modified SIR-type
Kermack-McKendrick model, which features not only demo-
graphic factors but also vertical transmission. Complemen-
tarily, SEIR-type epidemic models have been employed in
numerous studies with a variety of purposes: to investigate
the dynamical behaviour induced by saturated incidence and
treatment rates [12], [28], [46], [48], [57], to examine the
impact of constant, pulsed, and periodic vaccinations [6],
[32], [49], [51], [52], and to simulate the transmission dy-
namics of COVID-19 in particular regions [1], [4]. Notably,
the models employed in such studies are mostly continuous,
and the analyses very rarely include the dynamical properties
of the model’s discretised counterpart, despite it providing a
basis for the conducted numerical simulations.

In this paper, we present a modest continuous SEIR-type
epidemic model incorporating constant vaccination, along
with its discretised counterpart obtained using the forward
Euler method [22, sec. 22.3]. To construct the model itself,
we assume that vaccinations are administered to individuals
upon their recruitment, taking into account both the propor-
tion of successful vaccinations and the vaccine’s efficacy.
We regard successfully vaccinated recruited individuals as
removed, and the remaining recruited individuals as suscep-
tible. We assume that susceptible, exposed, infected, and re-
covered individuals experience mortality at linear rates, with
possibly different proportionality constants. On the whole,
our model can be viewed as both a simplified variant of the
SEIR-type model constructed by Wintachai and Prathom [51]
and a developed variant of the constant-vaccination model
constructed by Shulgin et al. [42].

Our work is organised as follows. In the upcoming section
II, we construct our continuous SEIR-type model and study
its dynamical properties. In particular, we determine the
model’s basic reproduction number R0, and show that the
model possesses a disease-free equilibrium and an endemic
equilibrium, which are locally asymptotically stable if R0 <
1 and if R0 > 1, respectively. In the subsequent section III,
we construct the forward-Euler discretisation of our model,
which possesses the same equilibria. We determine sufficient
conditions on the discretisation step size that guarantee the
local asymptotic stability of the disease-free equilibrium in
the case R0 < 1, and that of the endemic equilibrium in
the case R0 > 1. In section IV, we use our discrete model
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to generate numerical solutions of our original continuous
model, in two scenarios representing the cases R0 < 1 and
R0 > 1, respectively. We also conduct a sensitivity analysis
in order to determine our model’s parameters upon which R0

depends most sensitively. In the final section V, we state our
conclusions and suggest avenues for further investigation.

II. MODEL CONSTRUCTION AND DYNAMICAL ANALYSIS

In this section, we first construct our SEIR-type model
in its continuous form (subsection II-A) and study its so-
lutions’ non-negativity and boundedness (subsection II-B).
Subsequently, we determine the model’s equilibria and basic
reproduction number (subsection II-C) and derive conditions
for the equilibria’s stability in terms of the obtained basic
reproduction number (subsection II-D).

A. Model construction

To construct our model, consider a situation where a
disease spreads over population in such a way that at any
given time, each individual in the population belong to
exactly one of the following compartments: susceptible (S),
exposed (E), infected (I), and removed (R). We denote by
S = S(t), E = E(t), I = I(t), and R = R(t) the
numbers of individuals belonging to each compartment at
time t > 0. Letting b > 0 be the population’s recruitment
rate, we assume that individuals recruited to the population
are vaccinated in a way that the proportion of successful
vaccinations and the vaccine’s efficacy are given by v ∈ [0, 1]
and p ∈ [0, 1], respectively, so that recruited individuals
enter the susceptible compartment at the constant rate of
(1− vp) b and the removed compartment at the constant rate
of vpb. Next, we assume that susceptible individuals become
exposed at a bilinear incidence rate of βSI , where β > 0
denotes the disease’s incidence coefficient, that exposed indi-
viduals become infected at a linear rate of αE, where α > 0
denotes the disease’s incubation coefficient, and that infected
individuals become removed at a linear rate of γI , where
γ > 0 denotes the disease’s recovery coefficient. Finally,
we assume that susceptible, exposed, infected, and removed
individuals experience mortality at the linear rates of d0S,
d1E, d2I , and d3R, respectively, where d0, d1, d2, d3 > 0.
These assumptions lead to the compartmental diagram shown
in Figure 1, and to the following continuous SEIR-type
model: 

dS
dt

= (1− vp) b− βSI − d0S,

dE
dt

= βSI − αE − d1E,

dI
dt

= αE − γI − d2I,

dR
dt

= vpb+ γI − d3R.

(1)

The parameters involved in the model (1) are summarised in
Table I.

B. Non-negativity and boundedness of solutions

Let us now verify the non-negativity and boundedness
of the solutions of our model (1). For this purpose, let
(S,E, I,R) = (S(t), E(t), I(t), R(t)) be such a solution,

d0S d1E d2I d3R

vpb

S E I R
βSI αE γI(1− vp) b

Fig. 1. Compartmental diagram of our model (1).

TABLE I
SUMMARY OF PARAMETERS INVOLVED IN OUR MODEL (1) AND THEIR

VALUES USED IN OUR NUMERICAL SIMULATIONS.

Parameter Description Unit
Value for
simulation

α incubation coefficient 1/day
0.02
0.90

β incidence coefficient 1/(individual× day) 0.01

γ recovery coefficient 1/day 0.15

v proportion of successful
vaccinations

– 0.50

p vaccine efficacy – 0.70

b recruitment rate individual/day 2.00

d0
death coefficient of
susceptible individuals 1/day 0.03

d1
death coefficient of
exposed individuals 1/day 0.03

d2
death coefficient of
infected individuals

1/day 0.03

d3
death coefficient of
removed individuals

1/day 0.03

S(0)
initial number of
susceptible individuals individual 100

E(0)
initial number of
exposed individuals individual 1

I(0) initial number of
infected individuals

individual 1

R(0) initial number of
recovered individuals

individual 0

associated to an initial condition (S(0), E(0), I(0), R(0)) ∈
R4

+, where R+ = [0,∞). Since at each time t∗ > 0 where
S (t∗) = 0 we have that

dS
dt

∣∣∣∣
t=t∗

= (1− vp) b > 0,

by the first equation in (1), implying that S(t) > 0 for all
t > 0. Similarly, one deduces that E(t) > 0, I(t) > 0, and
R(t) > 0 for all t > 0.

Next, suppose that N = N(t) = S(t)+E(t)+I(t)+R(t).
Adding the four equations in (1) gives

dN
dt

= b− d0S − d1E − d2I − d3R 6 b− dN,

i.e.,
dN
dt

+ dN 6 b,

where d = min {d0, d1, d2, d3}. Multiplying both sides by
edt gives

d
dt
[
edtN(t)

]
6 bedt =

d
dt

[
b

d
edt +N(0)− b

d

]
.
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It follows that for all t > 0 we have

edtN(t) 6
b

d
edt +N(0)− b

d
,

i.e.,

N(t) 6
b

d
+

[
N(0)− b

d

]
e−dt t→∞−−−→ b

d
,

completing the proof of the following theorem.

Theorem 1. The sets R4
+ and{

(S,E, I,R) ∈ R4
+ : S + E + I +R 6

b

d

}
⊆ R4

+,

where d = min {d0, d1, d2, d3}, are positively invariant
under the model (1).

C. Equilibria and basic reproduction number

Let us continue the dynamical analysis of our model (1)
by determining the model’s equilibria [41], [44]. These are
the solutions of the system

0 = (1− vp) b− βSI − d0S,
0 = βSI − αE − d1E,
0 = αE − γI − d2I,
0 = vpb+ γI − d3R.

(2)

The third equation gives

E =
γ + d2
α

I. (3)

Substituting (3) into the system’s second equation gives

0 = βSI − α
(
γ + d2
α

I

)
− d1

(
γ + d2
α

I

)
= I

[
βS − (α+ d1) (γ + d2)

α

]
,

which leads to two cases.
In the first case, I = 0. Substituting this to (3) gives E =

0, and to the system’s first and fourth equations gives

S =
(1− vp) b

d0
and R =

vpb

d3
.

We thus obtain our model’s disease-free equilibrium

E0 = (S0, E0, I0, R0) =

(
(1− vp) b

d0
, 0, 0,

vpb

d3

)
. (4)

In the second case, we have that

S =
(α+ d1) (γ + d2)

αβ
.

Substituting this into the first equation in (2) gives

I =
α (1− vp) b

(α+ d1) (γ + d2)
− d0
β
. (5)

Substituting this into (3) gives

E =
(1− vp) b
α+ d1

− d0 (γ + d2)

αβ
.

Finally, substituting (5) into the fourth equation in (2) gives

R =
vpb

d3
+

γ

d3

[
α (1− vp) b

(α+ d1) (γ + d2)
− d0
β

]
.

This leads to the model’s endemic equilibrium

E1 = (S1, E1, I1, R1) , (6)

where

S1 =
(α+ d1) (γ + d2)

αβ
,

E1 =
(1− vp) b
α+ d1

− d0 (γ + d2)

αβ
,

I1 =
α (1− vp) b

(α+ d1) (γ + d2)
− d0
β
,

R1 =
vpb

d3
+

γ

d3

[
α (1− vp) b

(α+ d1) (γ + d2)
− d0
β

]
.

Let us now apply van den Driessche and Watmough’s next-
generation approach [10], [31] to determine the model’s basic
reproduction number, taking as infectious compartments our
exposed and infected compartments. By our model (1), the
numbers of individuals in each of these compartments evolve
according to the equations

dE
dt

= F1 (S,E, I,R)− V1 (S,E, I,R) ,

dI
dt

= F2 (S,E, I,R)− V2 (S,E, I,R) ,

where

F1 (S,E, I,R) = βSI,

F2 (S,E, I,R) = 0,

V1 (S,E, I,R) = (α+ d1)E,

V2 (S,E, I,R) = −αE + (γ + d2) I.

Next, constructing the matrices

F =


dF1

dE
(E0)

dF1

dI
(E0)

dF2

dE
(E0)

dF2

dI
(E0)

 =

0
β (1− vp) b

d0
0 0


and

V =


dV1
dE

(E0)
dV1
dI

(E0)

dV2
dE

(E0)
dV2
dI

(E0)

 =

[
α+ d1 0
−α γ + d2

]
,

one finds that the next-generation matrix of our model (1) is
given by

FV−1 =

0
β (1− vp) b

d0
0 0

[α+ d1 0
−α γ + d2

]−1

=

 αβ (1− vp) b
d0 (α+ d1) (γ + d2)

β (1− vp) b
d0 (α+ d1)

0 0

 .
Thus, the model’s basic reproduction number —the spectral
radius of the above matrix— is given by

R0 =
αβ (1− vp) b

d0 (α+ d1) (γ + d2)
.

By straightforward algebraic manipulations, one may rewrite
the coordinates of the model’s endemic equilibrium (6) in
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terms of R0 as

S1 =
(1− vp) b
d0R0

, I1 =
d0 (R0 − 1)

β
,

E1 =
d0 (γ + d2) (R0 − 1)

αβ
, R1 =

vpb

d3
+
γd0 (R0 − 1)

βd3
.

This makes it apparent that, while the disease-free equilib-
rium (4) exists in R4

+ for all parameter values, the endemic
equilibrium (6) exists if and only if R0 > 1. Let us
summarise our findings in this and previous subsections in
the following theorem.

Theorem 2. The model (1) in its positively invariant domain
R+

4 possesses the disease-free equilibrium

E0 = (S0, E0, I0, R0) =

(
(1− vp) b

d0
, 0, 0,

vpb

d3

)
, (7)

which exists for all parameter values, and the endemic
equilibrium

E1 = (S1, E1, I1, R1) , (8)

where

S1 =
(1− vp) b
d0R0

, I1 =
d0 (R0 − 1)

β
,

E1 =
d0 (γ + d2) (R0 − 1)

αβ
, R1 =

vpb

d3
+
γd0 (R0 − 1)

βd3
,

which exists if and only if R0 > 1, where

R0 =
αβ (1− vp) b

d0 (α+ d1) (γ + d2)
(9)

is the model’s basic reproduction number.

D. Local asymptotic stability of equilibria

Let us next study the local asymptotic stability of the
disease-free and endemic equilibria E0 and E1 using the
Jacobian matrix of our model (1):

J (S,E, I,R)=


−d0 − βI 0 −βS 0

βI −α− d1 βS 0
0 α −γ − d2 0
0 0 γ −d3

 . (10)

Evaluating this at our model’s disease-free equilibrium

E0 =

(
(1− vp) b

d0
, 0, 0,

vpb

d3

)
=

(
(α+ d1) (γ + d2)

αβ
R0, 0, 0,

vpb

d3

)
gives

J (E0)=


−d0 0 − (α+ d1) (γ + d2)

α
R0 0

0 −α− d1
(α+ d1) (γ + d2)

α
R0 0

0 α −γ − d2 0
0 0 γ −d3

 .

The characteristic polynomial |λI− J (E0)| of this matrix is
given by∣∣∣∣∣∣∣∣∣∣∣∣

λ+ d0 0
(α+ d1) (γ + d2)

α
R0 0

0 λ+ α+ d1 − (α+ d1) (γ + d2)

α
R0 0

0 −α λ+ γ + d2 0
0 0 −γ λ+ d3

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ+ d0) (λ+ d3) p (λ) ,

where

p (λ) =

∣∣∣∣∣∣λ+ α+ d1 − (α+ d1) (γ + d2)

α
R0

−α λ+ γ + d2

∣∣∣∣∣∣
= λ2 +A1λ+A2,

with

A1 = α+ d1 + γ + d2,

A2 = (α+ d1) (γ + d2) (1−R0) .

The eigenvalues of J (E0) thus comprise −d0, −d3, and the
two roots of the polynomial p (λ). If R0 < 1, then A1 > 0
and A2 > 0, so that the Routh-Hurwitz criterion [5, sec. 4.5]
implies that all eigenvalues of J (E0) have negative real parts.
If R0 = 1, then the origin is a root of p (λ). If R0 > 1, then
p (0) < 0, and since p (λ)

λ→∞−−−−→ ∞, the intermediate value
theorem guarantees that p (λ) possesses a positive real root.
Our conclusion is the following theorem.

Theorem 3. The disease-free equilibrium E0 of the model (1)
is locally asymptotically stable if R0 < 1, is non-hyperbolic
if R0 = 1, and is unstable if R0 > 1.

Next, evaluating the Jacobian matrix (10) at our model’s
endemic equilibrium E1 gives

J (E1)=


−d0R0 0 − (α+ d1) (γ + d2)

α
0

d0 (R0 − 1)−α− d1
(α+ d1) (γ + d2)

α
0

0 α −γ − d2 0
0 0 γ −d3

 .

The characteristic polynomial |λI− J (E1)| of this matrix is
given by∣∣∣∣∣∣∣∣∣∣∣∣

λ+ d0R0 0
(α+ d1) (γ + d2)

α
0

−d0 (R0 − 1) λ+ α+ d1 −
(α+ d1) (γ + d2)

α
0

0 −α λ+ γ + d2 0
0 0 −γ λ+ d3

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ+ d3) q (λ) ,
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where

q (λ) =

∣∣∣∣∣∣∣∣∣∣
λ+ d0R0 0

(α+ d1) (γ + d2)

α

−d0 (R0 − 1) λ+ α+ d1 −
(α+ d1) (γ + d2)

α

0 −α λ+ γ + d2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
λ+ d0R0 0

(α+ d1) (γ + d2)

α

λ+ d0 λ+ α+ d1 0
0 −α λ+ γ + d2

∣∣∣∣∣∣∣∣
= − (α+ d1) (γ + d2) (λ+ d0)

+ (λ+ γ + d2)
[
λ2 + (α+ d1 + d0R0)λ

+d0R0 (α+ d1)]

= λ3 + B1λ2 + B2λ+ B3,

with

B1 = α+ d1 + γ + d2 + d0R0,

B2 = (α+ d1 + d0R0) (γ + d2) + d0R0 (α+ d1)

− (α+ d1) (γ + d2)

= d0R0 (α+ d1 + γ + d2) ,

B3 = d0R0 (α+ d1) (γ + d2)− d0 (α+ d1) (γ + d2)

= d0 (R0 − 1) (α+ d1) (γ + d2) .

Suppose that R0 > 1. Notice that B1 > 0 and B3 > 0.
Moreover, noticing that

C1 = B1 − α− d1 = γ + d2 + d0R0 > 0

and

C2 = B2 − d0R0 (γ + d2) = d0R0 (α+ d1) > 0,

one computes that

B1B2 − B3 = (C1 + α+ d1) [C2 + d0R0 (γ + d2)]

− d0 (R0 − 1) (α+ d1) (γ + d2)

= C1 + d0R0 (γ + d2) C1 + (α+ d1) C2
+ d0 (α+ d1) (γ + d2) > 0.

The Routh-Hurwitz criterion [5, sec. 4.5] thus implies that
the four eigenvalues of J (E1) possess negative real parts. On
the other hand, if R0 = 1, then the origin is a root of q (λ).
If R0 > 1, then q (0) < 0, and since q (λ)

λ→∞−−−−→ ∞, the
intermediate value theorem guarantees that q (λ) possesses
a positive real root. We have therefore proved the following
theorem.

Theorem 4. The endemic equilibrium E1 of the model (1)
is unstable if R0 < 1, is non-hyperbolic if R0 = 1, and is
locally asymptotically stable if R0 > 1.

III. DISCRETISATION

To facilitate our numerical simulations, in this section we
apply the forward Euler method to construct a discretised
version of our model (1) that possesses the same equilibria
E0 and E1, and determine sufficient conditions on the dis-
cretisation step size under which E0 is locally asymptotically
stable in the case of R0 < 1 and E1 is locally asymptotically
stable in the case of R0 > 1. To carry out the discretisation,

we first fix a step size ∆ > 0 and define the time steps
ti = i∆t for every i ∈ {0, 1, . . .}. Next, we define the time-
evolving approximants Si ≈ S (ti), Ei ≈ E (ti), Ii ≈ I (ti),
and Ri ≈ R (ti) governed by the recursion

Si+1 = Si +
[
(1− vp) b− d0Si − βSiIi

]
∆t,

Ei+1 = Ei +
[
βSiIi − (α+ d1)Ei

]
∆t,

Ii+1 = Ii +
[
αEi − (γ + d2) Ii

]
∆t,

Ri+1 = Ri +
(
vpb+ γIi − d3Ri

)
∆t,

(11)

with
(
S0, E0, I0, R0

)
= (S (0) , E (0) , I (0) , R (0)).

Clearly, the discrete model (11) possesses the same equilibria
E0 and E1 as our continuous model (1). The Jacobian
J
(
S,E, I,R

)
of the discrete model (11) reads

1−
(
d0+βI

)
∆t 0 −βS∆t 0

βI∆t 1−(α+d1) ∆t βS∆t 0
0 α∆t 1−(γ+d2) ∆t 0
0 0 γ∆t 1−d3∆t

 .
The discrete model’s Jacobian J (E0) at the disease-free

equilibrium E0 has the characteristic polynomial∣∣λI− J (E0)
∣∣ = (λ− 1 + d0∆t) (λ− 1 + d3∆t) p (λ) ,

where

p (λ) =

∣∣∣∣∣∣λ− 1 + (α+ d1) ∆t − (α+ d1) (γ + d2)

α
R0∆t

−α∆t λ− 1 + (γ + d2) ∆t

∣∣∣∣∣∣
= λ2 +A1λ+A2,

with

A1 = −2 + (α+ d1 + γ + d2) ∆t,

A2 = 1− (α+ d1 + γ + d2) ∆t

+ (α+ d1) (γ + d2) (1−R0) (∆t)
2
.

Suppose that R0 < 1. We seek a sufficient condition for the
local asymptotic stability of the disease-free equilibrium E0.
First, the real eigenvalues 1−d0∆t and 1−d3∆t lie inside the
unit circle if and only if ∆t < 2/d0 and ∆t < 2/d3. Next,
the Schur-Cohn criterion [13, sec. 5.1] guarantees that the
other two eigenvalues also lie inside the unit circle provided
that

∣∣A1

∣∣ < 1 +A2 < 2. The second inequality is equivalent
to

∆t <
α+ d1 + γ + d2

(α+ d1) (γ + d2) (1−R0)
, (12)

whereas the first inequality is equivalent to 1+A1 +A2 > 0
and 1−A1 +A2 > 0. While the former is a tautology, the
latter reads

0 < (α+ d1) (γ + d2) (1−R0) (∆t)
2

− 2 (α+ d1 + γ + d2) ∆t+ 4

which can be rewritten as[
∆t− α+ d1 + γ + d2

(α+ d1) (γ + d2) (1−R0)

]2
>

(α+ d1 + γ + d2)
2 − 4 (α+ d1) (γ + d2) (1−R0)

(α+ d1)
2

(γ + d2)
2

(1−R0)
2 .
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If the numerator of the expression on right-hand side is neg-
ative, then the inequality is a tautology. Otherwise, knowing
that (12) must be satisfied, the inequality is equivalent to

∆t <
α+ d1 + γ + d2 −

√
K

(α+ d1) (γ + d2) (1−R0)
,

where

K = (α+ d1 + γ + d2)
2 − 4 (α+ d1) (γ + d2) (1−R0) .

Consequently, we have the following theorem.

Theorem 5. Suppose that R0 < 1. The disease-free equilib-
rium E0 of the discrete model (11) is locally asymptotically
stable if

∆t < min

{
2

d0
,

2

d3
,
α+ d1 + γ + d2 −

√
max {K, 0}

(α+ d1) (γ + d2) (1−R0)

}
,

where

K = (α+ d1 + γ + d2)
2 − 4 (α+ d1) (γ + d2) (1−R0) .

On the other hand, the discrete model’s Jacobian J (E1) at
the endemic equilibrium E1 has the characteristic polynomial∣∣λI− J (E1)

∣∣ = (λ− 1 + d3∆t) q (λ) ,

where
q (λ) = λ3 + B1λ2 + B2λ+ B3,

with

B1 = −3 + (α+ d1 + γ + d2 + d0R0) ∆t,

B2 = 3− 2 (α+ d1 + γ + d2 + d0R0) ∆t

+ d0R0 (α+ d1 + γ + d2) (∆t)
2
,

B3 = 1− (α+ d1 + γ + d2 + d0R0) ∆t

+ d0R0 (α+ d1 + γ + d2) (∆t)
2

− d0 (R0 − 1) (α+ d1) (γ + d2) (∆t)
3
.

Suppose that R0 > 1. We seek a sufficient condition for
the local asymptotic stability of the endemic equilibrium E1.
First, the real eigenvalue 1−d3∆t lies inside the unit circle if
and only if ∆t < 2/d3. Next, the Schur-Cohn criterion [13,
sec. 5.1] guarantees that the other three eigenvalues also lie
inside the unit circle provided that

∣∣B1 + B3
∣∣ < 1 + B2 and∣∣B2 − B1B3∣∣ < 1− B23. The first inequality is equivalent to

1 + B1 + B2 + B3 > 0 and 1− B1 + B2 − B3 > 0,

where the former is a tautology. The following theorem thus
follows.

Theorem 6. Suppose that R0 > 1. The endemic equilibrium
E1 of the discrete model (11) is locally asymptotically stable
if ∆t < 2/d3, 1 − B1 + B2 − B3 > 0, and

∣∣B2 − B1B3∣∣ <
1− B23.

IV. NUMERICAL SIMULATIONS AND SENSITIVITY
ANALYSIS

In this section, we utilise our discrete model (11) to
generate numerical solutions of our continuous model (1)
in two scenarios characterised by two sets of parameter
values presented in Table I. The two sets of parameter
values are made to differ only on the value of the disease’s
incubation coefficient, so that the lower incubation coefficient
lead to a disease-free scenario R0 < 1 (subsection IV-A),
while the higher incubation coefficient lead to an endemic
scenario R0 > 1 (subsection IV-B). For each scenario, we
shall visualise and describe the dynamical behaviour of the
generated numerical solution, before conducting a sensitivity
analysis of the basic reproduction number with respect to
the existing parameters, in order to determine the parameter
upon which the basic reproduction number depends most
sensitively (subsection IV-C).

A. A disease-free scenario

Our disease-free scenario is represented by the parameter
values presented in Table I with α = 0.02, for which
the formulae (9) and (7) lead to R0 ≈ 0.96 < 1 and
E0 = (S0, E0, I0, R0) ≈ (43.33, 0, 0, 23.33), respectively.
Let us now specify a value of the discretisation step size ∆t
that guarantees the desired dynamical consistency: the local
asymptotic stability of the disease-free equilibrium E0. Direct
computation shows that the upper bound for ∆t provided
by Theorem 5 evaluates to approximately 8.75. Choosing
∆t = 1.00 < 8.75 and carrying out 800 iterations, we obtain
the numerical solution

((
Si, Ei, Ii, Ri

))800
i=0

visualised in the
left panel of Figure 2. As expected, the solution converges
to the disease-free equilibrium E0.

More specifically, we see that the number of susceptible
individuals starts at a relatively large value but decreases
rapidly at the beginning of the epidemic, due to the ini-
tial spread of the infection. Over time, it converges to its
equilibrium value S0 ≈ 43.33. Meanwhile, the number of
exposed individuals begins at a small value, experiences an
initial slight increase, but eventually vanishes, indicating that
the spread of the infection has terminated, so that E0 = 0
individuals are exposed in the long term. Similarly, the
number of infected individuals, which also starts at a low
value, shows a slight increase due to the spread of the infec-
tion, before decreasing significantly to its equilibrium value
I0 = 0, signifying that the infection has been controlled,
with no new cases emerging in the long term. By contrast,
the number of recovered individuals increases gradually from
zero as infected individuals recover and gain immunity. In
the long term, where the epidemic has effectively ended, the
number of recovered individuals remains in the vicinity of
its equilibrium value R0 ≈ 23.33.

B. An endemic scenario

Let us now turn to our endemic scenario, which is
represented by the parameter values presented in Table I
with α = 0.90. In this scenario, using (9) and (8), one
computes that R0 ≈ 2.33 > 1 and E1 = (S1, E1, I1, R1) ≈
(18.60, 0.80, 3.99, 43.28). To verify that the value of the
discretisation step size selected in the previous scenario,
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Fig. 2. Plots of the points
(
ti, Si

)
(blue),

(
ti, Ei

)
(amber),

(
ti, Ii

)
(red),

and
(
ti, Ri

)
(green) for i ∈ {0, . . . , 800} in our disease-free scenario (left)

and in our endemic scenario (right).

∆t = 1.00, also satisfies the sufficient condition prescribed
in Theorem 6, we compute that 2/d3 ≈ 66.67 and

B1 = −1.82, B2 = −0.72, and B3 = −0.11,

so that
1− B1 + B2 − B3 ≈ 3.65 > 0

and ∣∣B2 − B1B3∣∣ ≈ 0.52 < 0.99 ≈ 1− B23.

Utilising, therefore, the same values of discretisation step
size and number of iterations, we obtain the numerical
solution

((
Si, Ei, Ii, Ri

))800
i=0

visualised in the right panel of
Figure 2, which —as expected— converges to the endemic
equilibrium E1.

More specifically, the number of susceptible individuals,
which starts at the same relatively large value as in our
disease-free scenario, experiences a sharper decline due to
the rapid infection spread in the beginning of the epidemic.
Over time, the number converges to a lower equilibrium
value than in the disease-free condition: S1 ≈ 18.60, signify-
ing that a considerable portion of the population is infected.
On the other hand, the number of exposed individuals, which
starts at a small value, undergoes an initial sharp increase
towards a peak, before declining towards its equilibrium
value E1 ≈ 0.80. This implies that, at the equilibrium
state, individuals belonging to the exposed compartment still
exist, despite the number remaining constant as opposed to
surging as in the beginning of the epidemic. Meanwhile,
the number of infected individuals, which also begins at a

TABLE II
THE VALUES OF ΥR0

p FOR ALL p ∈ {α, β, γ, v, p, b, d0, d1, d2, d3} IN
OUR DISEASE-FREE AND ENDEMIC SCENARIOS.

Sensitivity index
Value in

disease-free
scenario

Value in
endemic
scenario

ΥR0
α 0.600 0.032

ΥR0
β 1.000 1.000

ΥR0
γ −0.833 −0.833

ΥR0
v −0.538 −0.538

ΥR0
p −0.538 −0.538

ΥR0
b 1.000 1.000

ΥR0
d0

−1.000 −1.000

ΥR0
d1

−0.600 −0.032

ΥR0
d2

−0.166 −0.166

ΥR0
d3

0.000 0.000

small value, increases rapidly towards a peak that is higher
than that in the disease-free scenario. Following the peak,
the number of infected individuals decreases and converges
to its equilibrium value I1 ≈ 3.99. Thus, the disease
does not disappear entirely but remains in the population,
with a constant number of infected individuals in the long
term. Finally, the number of recovered individuals, which
also starts at zero as in our disease-free scenario, increases
significantly before converging non-monotonically towards
its notably large equilibrium value R1 ≈ 43.28.

C. Sensitivity analysis

To gain insight on appropriate strategies to maintain a
disease-free state and to resolve an endemic state, let us
conduct a sensitivity analysis of our model’s basic repro-
duction number R0 with respect to the involved parameters
P ∈ {α, β, γ, v, p, b, d0, d1, d2, d3}. The expression (9) im-
plies a differentiable dependence of R0 upon all parameters
P , thereby allowing the computation of the sensitivity index

ΥR0

P =
∂R0

∂P
· P
R0

of R0 with respect to P , which estimates the ratio of the
relative change in R0 to the relative change in P [31, p.
139]. For example,

ΥR0
α =

∂R0

∂α
· α
R0

=
d1

α+ d1
.

Substituting the parameter values in Table I gives ΥR0
α ≈

0.60 in the disease-free scenario and ΥR0
α ≈ 0.03 in

the endemic scenario. Carrying out a similar computation
for each parameter P ∈ {α, β, γ, v, p, b, d0, d1, d2, d3}, we
obtain the values of ΥR0

P presented in Table II.
Table II reveals that, in both scenarios, our model’s basic

reproduction number R0 depends most sensitively upon
the disease’s incidence coefficient β and the population’s
recruitment rate b, whose increases lead to an increase in R0,
and upon the death coefficient of the susceptible individuals
d0, whose increase leads to a decrease in R0. Of note is
that neither the proportion of successful vaccination v and
the vaccine’s efficacy p nor correspond to particularly large
absolute sensitivity index values. Since interventions manip-
ulating the population’s recruitment rate or the susceptible
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individuals’ death coefficient might be undesirable, as an
appropriate strategy both to maintain a disease-free state and
to resolve an endemic state, we recommend the reduction of
inter-individual contacts, such as through social distancing,
use of masks, self-isolations, and enforcement of adequate
hygiene-related protocols.

V. CONCLUSIONS AND FUTURE RESEARCH

We have constructed a continuous SEIR-type epidemic
model involving vaccination, which takes into account both
the proportion of successful vaccinations and the vaccine’s
efficacy. We have studied the non-negativity and boundedness
of the model’s solutions, determined the model’s equilibria
and basic reproduction number, and studied the stability
of the equilibria. We have also applied the forward Euler
method to construct a discrete version of our model, which
possesses the same equilibria. We have established sufficient
conditions on the discretisation step size that ensure the local
asymptotic stability of each equilibrium in the relevant case
characterised by the basic reproduction number. Finally, we
have used our discrete model to generate numerical solutions
of our original continuous model in two qualitatively differ-
ent scenarios represented by two sets of parameter values. In
both scenarios, we have also conducted a sensitivity analysis,
which reveals that an effective strategy both to maintain
a disease-free state and to resolve an endemic state is to
not to accelerate vaccinations but to reduce inter-individual
contacts.

In future research, one could firstly study the global
asymptotic stability of our model’s equilibria using Lyapunov
functions [31, sec. 7.3]. One could also investigate whether
our model could be fitted satisfactorily to empirical data
associated with a real-world epidemic, such as COVID-19.
For this purpose, one could employ machine-learning meth-
ods such as neural networks [3], [40] or Bayesian inference
[8], [27], [37] to generate error-minimising estimates for the
values of the involved parameters, and possibly evaluate the
model’s performance in making predictions. Furthermore,
one could modify the model by incorporating, for instance,
ongoing vaccinations of individuals belonging to the various
compartments with possibly different rates [51], vertical
transmission [29], quarantined individuals [35], [36], [38],
[39], [54], hospitalised individuals [18], [19], [24], [54], and
heterogeneity of the population [21], [45]. One could also
extend the model by taking into account multiple strains
of the spreading disease [16], [23], [47], [53] and apply
the model to design a health-and-life insurance policy for
individuals in the population under consideration [7], [14],
[17], [18], [33], [34], [55].
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