
 

 
Abstract—The cross-line operation of suburban railway (SR) 

and urban rail transit (URT) is a key way to improve 
transportation efficiency and promote regional transportation 
integration. Based on the cross-line operation of SR and URT, 
this study introduces the event activity network theory, 
constructs a mixed logit model to quantify the passenger route 
choice behavior, and proposes the supply and demand capacity 
matching index (SDCIM), which is used to measure the 
matching degree of line capacity and passenger demand. On 
this basis, a bi-objective nonlinear integer programming model 
is further constructed with the objectives of minimizing SDCMI 
and the total costs of cross-line operation. The research results 
show that after implementing cross-line operation, SDCMI is 
reduced by 37.1%, and the total costs are reduced by 10.3%. 
This study presents a theoretical framework and provides 
practical guidance for decision-making in multi-level rail 
transit cross-line operations, taking into account both efficiency 
and cost. 
 

Index Terms—Suburban railway, Urban rail transit, 
Cross-line operation, Event-activity network 
 

I. INTRODUCTION 

ITH the development of metropolitan areas and urban 
agglomerations, the process of regional transportation 

integration has advanced. Building on this, some cities utilize 
existing surplus capacity in urban rail transit systems to 
organize cross-line operation of suburban railway trains. This 
approach combines the advantages of urban rail transit (URT) 
and suburban railway (SR), thereby enhancing transportation 
efficiency and optimizing resource allocation. However, 
while enabling rapid cross-line operation of trains, operators 
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must also accommodate the intensive service demands of 
trains on the original line. Simultaneously, passengers face 
complex travel scenarios under cross-line operation and must 
make route selection decisions. Therefore, how to reasonably 
formulate the cross-line train operation scheme according to 
the complex operation mode and passenger demand has 
become an urgent problem to be solved. 
 

II. LITERATURE REVIEW 

A. Cross-line operation 

With the growth in demand for the integrated development 
of multi-mode rail transit networks, early research on 
cross-line operation schemes focused on optimizing the 
cross-line organization of rail transit lines at the same level. 
Wang [1] investigated strategies to maximize high-speed rail 
capacity utilization when introducing cross-line trains, 
providing theoretical support for the coordination of 
multi-level rail networks. Liang et al. [2] developed a 
multi-objective mixed-integer model of cross-line train 
operation to balance enterprise costs and passenger service 
level through the use of preference coefficients. Chen [3] 
developed an optimization model for cross-line train 
operation to balance vehicle usage costs, operational costs, 
and passenger transfer times. Yang et al. [4] developed a 
multi-objective programming model designed to minimize 
passenger travel costs and enterprise operational costs, and 
proposed an Improved Quantum Genetic Algorithm (IQGA) 
to solve the model. Zhao et al. [5] defined the passenger flow 
types under the “X” and “Y” line intersection modes. They 
constructed an optimization model for cross-line train 
operation, aiming to minimize passenger travel costs and 
enterprise operational costs while balancing the section’s full 
load rate. Zhang [6] optimized timetables for cross-line 
routes under failure scenarios. 

While studies as mentioned above have achieved notable 
progress in same-tier cross-line operations, research focus is 
shifting toward multi-level network coordination as demand 
grows for integrated rail systems. Li et al. [7] developed a 
mixed-integer nonlinear programming (MINLP) model for 
SR-URT cross-line operations targeting multi-stakeholder 
benefits. Peng et al. [8] developed an integrated 
service-planning and passenger-flow assignment model for 
SR-URT, optimizing cross-line routing through flexible 
stopping patterns.  

Facing multiple alternative routes after cross-line 
operations, optimizing route choice and passenger flow 
assignment can improve operational efficiency and service 
quality. Yan [9] developed an optimization model for 
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selecting cross-line train paths in high-speed rail systems. 
Yin et al. [10] proposed an optimization framework for the 
ART system that incorporates passenger path-choice 
behavior while minimizing the combined costs of operators 
and passengers. Tian [11] and Wang [122] emphasized 
improving direct connectivity by maximizing non-transfer 
passengers on cross-line services to optimize flow 
distribution. Chen [13] utilized spatio-temporal network 
diagrams to analyze passenger path choices, identifying 
transfer-induced sectional flow variations as critical factors 
in designing cross-line schemes. Sun [14] introduced the 
concepts of “effective” and “ineffective” travel time and 
applied α-fairness theory to optimize cross-line turnaround 
station layouts, thereby significantly improving travel equity. 
Huang [15] proposed a representative passenger path 
generation method for cross-line timetable optimization, 
demonstrating reduced transfer pressure and increased direct 
services. 
 

B. Supply and demand capacity matching 

 In terms of transport capacity and volume matching, 
scholars have conducted systematic research on the 
dimensions of traffic organization, passenger flow 
distribution, and other related aspects. 

Dynamic adjustment of train operation plans serves as the 
primary mechanism for matching capacity and demand. In 
this regard, Xu et al. [16][17] considered the time-varying 
demand of passenger flow and the phenomenon of passenger 
retention in peak hours. They developed a large and small 
routing schedule optimization model, as well as a 
double-layer planning model, for full and short routing within 
cross-line operations to coordinate the departure interval and 
the train marshaling scale. Guo et al. [18] further proposed a 
Y-shaped shared-track trunk-branch joint operation scheme, 
which reduces enterprise operation costs while shortening 
passenger waiting time, providing a novel approach for 
capacity-demand matching in complex rail network 
structures. In recent research, Huo et al. [19] introduced an 
integer programming model to optimize departure ratios and 
headways for cross-line routes in a dynamic manner. Yan [20] 
refined capacity-demand matching to the service-route level 
through a two-level planning model, enhancing spatial 
flexibility in cross-line scheduling. While these studies 
advance static scenario solutions, coordinated scheduling of 
multiple routes under fully networked operations requires 
further investigation. 

Aiming to address the non-uniform characteristics of 
cross-line passenger flow in time and space, Wang et al. [21] 
developed a time-segmented nonlinear programming model 
to optimize the express/local service ratios on SR lines, 
thereby enhancing capacity-demand alignment. Zhang et al. 
[22] proposed a heterogeneous network timetable model that 
dynamically adjusts service frequencies based on 
boarding/alighting volumes, reducing station load factors. 
Huan et al. [23] further demonstrated how 
network-coordinated control models can alleviate bottleneck 
congestion through cross-line flow regulation. These studies 
confirm that incorporating dynamic demand into schedule 
optimization improves capacity adaptation efficiency under 
cross-line scenarios. 

Accurate passenger-flow assignment and balance 
evaluation form the foundation of capacity-matching 
optimization. Wei et al. [24] developed a spatio-temporal 
path inference system using AFC data and timetables to 
reconstruct passenger trip chains. For balance assessment, 
Huang et al. [25] innovatively applied the Gini coefficient 
and Theil index, revealing the need for differentiated capacity 
allocation to address spatio-temporal heterogeneity. Jian et al. 
[26] integrated genetic algorithms to optimize cross-line 
service plans, reducing peak-period service costs while 
improving load-factor balance across routes. Wu et al. [27] 
proposed an SSAPSO-based freight-bus planning model with 
static/dynamic stages, though its application to complex 
passenger services remains unexplored. 

 

C. Research gap and significant contributions 

In summary, research on the cross-line operation of trains 
has accumulated to a certain extent. However, studies 
addressing cross-line operation between SR and URT remain 
limited. Research on capacity-volume matching following 
the cross-line operation predominantly examines scenarios 
on a single line or at a single service level， rarely integrating 
line capacity-volume matching with cross-line train operation 
schemes at different levels. Based on this, this paper takes the 
cross-line operation of URT and SR as the research object, 
characterizes the cross-line operation process of trains by 
combining an event-activity network, and quantifies 
passengers’ path choice behavior using a mixed logit model. 
In response to the problem of matching capacity and volume 
after the cross-line operation of trains, a supply-demand 
capacity matching index (SDCMI) is introduced. An 
optimization model for cross-line operation schemes is 
constructed to minimize the total costs of cross-line operation 
and the SDCMI. The model fully considers the unbalanced 
interval strategies and comprehensively optimizes the train 
service frequency and stop plan of each route. Finally, the 
validity and feasibility of the proposed model are verified 
through a numerical example, providing theoretical support 
for cross-line operation decision-making in the context of 
multi-network integration. 
 

III. PROBLEM DESCRIPTION 

Define the set of alternative train operation routes on the 

line as  1 2, , , k      . Each route is defined by its set 

of potential stopping stations. The 𝑘-th operation route, 

denoted as  , ,k k
k i js s   , originates from station k

is  and 

terminates at station k
js , with an operating frequency f . Let 

S denote the set of all stations on the line, and X represent the 
set of available train units. Same-line trips (SLT) on the URT 

are denoted as  1 1, ns s   .SLT on the SR are denoted as 

 2 , ,o ms s   , and cross-line trips (CLT) as 

 3 , , , ,l o ps s s    . Routes 1  and 2  connect at 

interchange stations os , with frequencies 1f , 2f , and 3f  

( )s  is a binary variable equal to 1 if the train stops at station 
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s, and 0 otherwise. Fig. 1 illustrates the schematic diagram of 

cross-line operation between SR and URT. 
To model the coordinated operation of multi-tier trains and 

complex passenger travel behavior in cross-line service, an 
event–activity network is constructed to represent the train 
operation process.[28] The network 𝐺= (𝑉, 𝐸, 𝑇) comprises a 
set of event nodes 𝑉, a set of activity arcs 𝐸, and time 
attributes 𝑇. Each event node v V  denotes a state of a train 
or passenger, covering key events such as departure, arrival, 
and turnback. Each activity arc e E  describes a transition 
between states, including train movement, dwell, passenger 
ticketing, waiting, or transferring actions. The time attributes 
𝑇 accurately quantifies the time parameters and activity 
duration of each event node. Detailed symbols and their 
definitions are listed in Table 1. 

Downward 
direction

9s

1s 4s 5s2s 3s

ms

ls

os
ps ns

Line2

1

2

3Line1

Fig. 1.  Schematic diagram of cross-line operation between SR and URT. 

TABLE I 
 SYMBOLS RELATED TO THE EVENT-ACTIVITY NETWORK 

Symbol Definition 

( )dt s  
Arrival event time, i.e., the time when a train arrives at 
the station s, s S  

( )ft s  Departure event time, i.e., the time when a train departs 
from the station s, s S  

( )st s  Dwell time activity, i.e., the duration a train stops at the 
station s, s S  

( )wt s  Passenger waiting activity time at the station s 

rt  Passenger onboard activity time 

ht  Passenger transfer activity time 

1Y  Cost of purchasing a URT ticket 

2Y  Cost of purchasing an SR ticket 

Station

Line1

Line2

Time

Departure arc
Arrival arc

Cross-line arc
Transfer arc
Running arc
Dwelling arc

 Virtual sink node
Trip Origin and 
destination node

Virtual source node1s
2s
3s

4s
5s

10s
9s

ls

ms

ns

os

ps

Oq
Oq

Oq

 Dq

 Dq

 os
 1

sv 

 2
sv   3

sv 

 1
tv 

 2
tv 

 3
tv 

 Dq

Fig. 2.  Schematic diagram of cross-line operation between SR and URT. 

To characterize each operation route, a virtual source event 

 k
sv   is defined to represent the initial state of a route  , 

connecting to its origin station. Similarly, a virtual sink event 

 k
tv   is defined to represent the terminal state of a route  , 

linking to its terminus station. A pair of origin-destination 
events , )O Dq q（  thus represents one feasible travel option 

for a passenger between those endpoints. The construction of 
this event–activity network is illustrated in Fig. 2. 
 

IV. PASSENGER FLOW ASSIGNMENT 

Existing studies frequently employ the “optimal path” 
concept to model passenger choice behavior, where 
passengers select the route with minimal generalized travel 
costs among feasible alternatives. Let  1 2, , ,OD r      

denote the set of feasible paths from origin O to destination D. 

For any OD pair, the utility rV  of a passenger   choosing a 

path r  under the scenario  is expressed by the passenger’s 

travel costs tC . Therefore, the utility rV  is as follows: 

 r
tV C    (1) 

The passenger’s travel costs tC  comprise time costs from 

travel activities and fare differences across rail modes. Time 
components are calculated as follows. 

Assuming uniform passenger arrival distributions at 
stations, the waiting time at the station s depends on the train 
departure frequency. Let f  be the operating frequency of 

the route  . Therefore, the passenger’s waiting activity time 

wt  at the station s is as follows: 

 
1 60

2wt f
   (2) 

The running time of a train within the activity arc e is 
related to the train’s stoppage at the front and rear stations of 
the section. Therefore, for any train running within the 
activity arc e, the train’s running time et  is as follows: 

 ( ) ( 1) ,
2 2

e e e
e

e

l v v
t s s s S

v a b
          (3) 

Where, el  is the line length of the activity arc e, ev  is the 

average running speed of the train on the activity arc e, a, and 
b are the acceleration when the train starts and brakes, 
respectively. Then, the in-train time rt  of a passenger   is as 

follows: 

 ( )
e

q
r e e

e E

t t


 
 

    (4) 

Where, ( )et   is the running time of the train on the activity 

arc e within the route  .  

The passenger transfer activity time includes the walking 
time for the transfer and the waiting time. Let the average 
walking time for transfer be walkt . Then the passenger 

transfer time trt  is as follows: 

 tr walk wt t t   (5) 
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Let 1  and 2  be the basic fares of URT and SR, 

respectively; 1  and 2  be the per capita cost per kilometer 

of URT and SR, respectively. Then, the cost for passengers to 
purchase tickets for different trains is as follows: 
 11 1

e E
eY l 


    (6) 

 22 2
e E

eY l 


    (7) 

Where, qE  is the passenger activity set,  is the value of 

passenger time. Then the generalized travel time costs tC  for 

a passenger   is as follows: 

   1 2

q

q
t e w r tr

e E

C t t t Y Y  


           (8) 

The utility rU  for an individual   choosing the path r  

under the scenario   is as follows: 

 r r r rU V        (9) 

Where, r
  is a random term, which follows a normal 

distribution among individuals with a mean of 0; r
  is a 

random term with an IID extreme value distribution. 
For the path r  under the scenario  , the choice 

probability of an individual   can be allocated using the 
mixed logit model [29] 

 
 

 1

exp

exp
r OD

r r
T

r r r

V
L

V

 

  








 
 
  
 
 
 


 (10) 

Let  f    be the probability density function of  . Let 

  be a fixed parameter. The choice probability rP  of the 

mixed logit model is the integral of rL  over the distribution 

of the random term   

  ( )r rP L f d       (11) 

Define the set of passenger flows  1,2,3,r
e eQ q r    

on each activity arc e of the route, and the passenger flow r
eq  

choosing the path r  under different scenarios can be 

obtained as 

 r r
e eq Q P     (12) 

 

V. MODEL CONSTRUCTION 

A. Assumptions 

(1) The technical conditions for train crossing between 
lines have been met, and facilities such as signals, vehicles, 
communications, power supply, and line boundaries have 
been compatible or unified. 

(2) Without considering the complex situation of multiple 
shared stations, it is assumed that there is a unique connection 
transfer station between the lines. 

(3) The models and the number of train formations of SR 
trains and URT trains are the same, and both adopt a 6-car 

formation. 
(4) Assuming that the operation of the up and down trains 

is consistent, only the optimization of the operation 
frequency of the unidirectional trains is studied. 
 

B. Objective function 

The primary objective of operational planning is to 
optimize the alignment between transportation capacity 
supply and passenger demand. Effective demand-capacity 
matching prevents both resource underutilization and service 
shortages. To ensure maximum matching of transportation 
capacity and volume while comprehensively considering the 
interests of passengers and operating enterprises, both the 
matching of line capacity and volume and the total costs of 
cross-line operation are selected as the dual objective 
functions for optimization. 

(1) Minimize the supply-demand capacity matching index  
The supply-demand level of the cross-line operation 

system can be represented by constructing the 
supply-demand capacity matching index (SDCMI). The 
SDCMI quantifies the equilibrium between route capacity 
and passenger demand in cross-line operations. To eliminate 
scale effects from absolute capacity differences, we construct 
this index using relative deviations through dimensionless 
normalization. 

Let B denote the number of train formations. Z represents 
the train’s capacity. max  is the maximum load factor of the 

cross-section. e  is the set of all train running routes in the 

active arc e. q
e  is a 0-1 variable of passenger flow q in the 

active arc e; if the route   includes arc e, take 1. The road 

transportation capacity is as follows: 

  max

e

q
e eH BZ f


 


    (13) 

Define the cross-sectional passenger flow of the active arc 
e in the network as eQ . Let the SDCMI be recorded as 1Z , 

and minimize the SDCMI. 

 
 1

e

min
max ,

e e

e eE

H Q
Z

H Q


   (14) 

Where,  1 0,1Z  , the value of 0 indicates perfect 

capacity-demand alignment, while 1 signifies complete 
imbalance. Lower index values reflect better supply-demand 
matching. 

(2) Minimize the Total Costs of Cross-Line Operation 
The total costs comprise passenger travel costs and 

operator costs. Operator costs include train operation costs 
and additional stopping costs. Train operation costs depend 
on service frequency, train-kilometers, and per-kilometer 
operational expenses. The train operation cost opC  can be 

calculated as 

 2op e l
e E

C l f c
 

      (15) 

Where, lc  denotes the per-kilometer operational cost. 

The extra stop cost represents the additional expense 
incurred by the cross-line train stopping at the station, which 
includes the increased energy consumption resulting from the 
frequent acceleration and deceleration required for these 
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stops. Let stC  represent the additional stop cost, then stC  is 

calculated as 

 

3

32 ( ) ,st s
s

C f s c s S




       (16) 

Where, sc  represents the average cost per stop. 

Let 2Z  denote the comprehensive cross-line operation 

total costs, with eq  representing the passenger flow on 

activity arc e. The minimized total costs are expressed as 

 2min
e e

e t op st
q Q

Z q C C C


     (17) 

 

C. Constraint Conditions 

To ensure the service level of cross-line operation and the 
feasibility of cross-line operation plans, the basic constraints 
of cross-line operation should include service level 
constraints and cross-line capacity constraints. 

(1) Basic constraints of cross-line operation 
To ensure the cross-line service level, the maximum load 

factor within each area should be set within a reasonable 
range to avoid excessive congestion and waste of resources. 
When the waiting time exceeds the passengers’ maximum 
acceptable waiting time, it will affect the travel level of 
passengers. Let ,eq   be the passenger flow of the active arc e 

on the route  , then the full load factor constraint of each 

route is as follows: 

 
,

min max ,,  
e

e e
e E

q
q Q

f BZ





 


    (18) 

The waiting time limit for passengers is as follows: 

 max
30

,w
f

    (19) 

Where, maxw  is the longest waiting time for passengers. 

To ensure the feasibility of the cross-line operation plan, 
the operation frequencies of SR trains and URT trains in each 
section and at the turnaround stations in the operation plan 
must comply with the infrastructure capacity limitations. The 
constraint is as follows: 
 ,f C      (20) 

 ,f N     (21) 

 ( ) ( ) ( ) 1i j os s s      (22) 

Where, Equation(20) is the constraint of the line’s passing 
capacity. Equation(21) is the integer constraint of the opening 
frequency. Equation(22) is the constraint on stopping at the 
first and last stations and transfer stations. 

(2) Unbalanced departure interval constraints 
The non-stop passage of cross-line trains will lead to an 

increase in the departure interval. However, adopting an 
unbalanced departure strategy allows for interval adjustments 
while satisfying minimum separation requirements, 
enhancing operational flexibility, and mitigating the impact 
on main-line capacity. 

The departure intervals of trains at the starting station are 
classified into three types: the departure interval B ATF   

between a train on the same line ahead and a cross-line train 
behind; the departure interval A BTF   between a cross-line 

train ahead and a train on the same line behind; and the 
departure interval x xTF   between trains of the same type. 

The schematic diagram of the unbalanced departure mode is 
shown in Fig. 3. 

The intervals B ATF  , A BTF  , and x xTF   are constrained 

as follows: 

 min max
3

60
B ATF TF TF TF

f      (23) 

  
min

3 max
3

60

60
1 , 1, 2

A B B A

k

TF TF TF

f f TF k
f

   

     
 (24) 

 min max
3

60
x xTF TF TF

f    (25) 

Where, minTF  and maxTF  denote the minimum and 

maximum allowable departure intervals, respectively, and 
TF  represents the additional interval time required for 

non-stopping cross-line trains. 

B ATF  A BTF  x xTF 

Station

Time

s+1

s

s+2

Fig. 3.  Schematic diagram of the unbalanced departure mode. 

(3) Events-Activity Constraints 
Within the event-activity network, each train activity or 

event permits at most one train flow route.  Any train event 
node on each route must satisfy the train flow balance 

constraint. Let vE  and vE  denote the train activity sets of 

the inflow event v and the outflow event v respectively. The 
event-activity constraints are expressed as 

 
3

1

1,ey e E


    (26) 

 
3

1

1, ,
v

ee E
y e E v V





       (27) 

 , , ,
v v

e ee E E e E E
y y e E v V 
            (28) 

Where, ey  is a 0-1 variable. If the train starts at the route  , 

it is 1; otherwise, it is 0. E  is the collection of train 
activities at the route  . 

 

VI. ALGORITHM DESIGN 

The model above is essentially a large-scale, nonlinear, 
multi-objective integer programming problem. Considering 
that the Particle Swarm Optimization (PSO) algorithm is 
prone to falling into local optima when dealing with 
high-dimensional, complex issues and has insufficient global 
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search ability, the chaotic concept is introduced into PSO to 
construct the Chaotic Particle Swarm Optimization (CPSO) 
algorithm, thereby improving the global optimization ability 
of PSO. The algorithm steps for solving the chaotic particle 
swarm model are as follows. 

Step 1: Initialize particle swarm size N. Define candidate 
solutions 1 2 3, , ,solution stopX f f f n , which respectively 

represent the departure frequency of URT trains, the 
operation frequency of SLT trains, the operation frequency of 
CLT trains, and the stop schemes. 

Step 2: Chaotic sequences are generated by using logistic 
chaotic mapping. Map the chaotic variables to the velocity 
and position value ranges, and initialize the velocity and 
position of the particles. 

Step 3: Update the velocity and position of the particle h 
based on its current position and historical optimal position. 

Step 4: For each particle, construct a passenger flow 
distribution model, compute objective function values, 
calculate the new fitness value of each particle, and conduct 
particle fitness evaluation. 

Step 5: To prevent premature convergence of the 
algorithm, chaotic perturbations are introduced to a subset of 
particles at regular intervals, forcing them out of local 
optimal regions. The dynamic disturbance ( 1)hV d  can be 

expressed as follows: 

 
 

 
1 1

2 2

( 1) ( ) ( )

( ) ( )

hBest

Be

h h h

hst

V d V d c r P X d

c r G X d Chaos d

       

     
 (29) 

 ( 1) ( ) ( 1)h h hX d X d V d     (30) 

Where, d is the number of iterations, α is the inertia weight, 

1c  and 2c  are the learning factors, 1r  and 2r  are random 

numbers, ( )Chaos d  is the perturbation term selected from 

the chaotic sequence;   is the disturbance intensity 
coefficient. 

Step 6: Check whether the maximum number of iterations 
has been reached or whether other convergence conditions 
have been met. If satisfied, the algorithm ends. Otherwise, 
return to Step 3 to continue the iteration. 

Step 7: Output the global optimal position BestG  and the 

corresponding fitness value as the final solution of the 
algorithm.  

Beginning

Initialize the Particle Swarm

End

Obtain Velocity and Position 
by Chaotic Mapping

Y
N

Stop the iteration and output 
the result

d=1

Update Velocity and Position

d+=1

Calculate the objective function

Evaluate Particles’fitness

Introduce chaotic perturbations 
and update the particle velocities 

and positions

Construct the passenger flow 
distribution model

max ?d d

Fig. 4.  Algorithm process. 

To summarize, the process of the CPSO algorithm 
considering passenger flow distribution is shown in Fig. 4.  
 

VII. CASE ANALYSIS 

To verify the validity and rationality of the proposed model 
and algorithm, a case study was conducted on two Y-shaped 
interconnected rail lines implementing cross-line operations 
during the morning rush hour (8:00–9:00). Line 1 is a URT 
line, while Line 2 is an SR line. The line consists of 16 
operating stations and runs 6B formation trains with a rated 
passenger capacity of 1,460 people per train. The minimum 
load factor is 0.5, the maximum load factor is 0.9, and the 
minimum departure interval is 2 min. The cross-line train 
runs from Line 2 to Line 1, and CLT includes 12 stations, 

which are set  3 P, , M,C, I, J    . Among them, 

stations A, C, J, L and P are turnback stations. The operating 
cost of the train per kilometer is 60 CNY/km, and the cost of a 
single stop is 200 CNY/time. Trains require 2 minutes for 
turnaround operations at terminal stations. The walking time 
for transfer passengers is 0.5 min. The minimum departure 
frequency is 5 pairs per hour. The designed line capacity is 30 
pairs per hour. The value of passenger time is 0.6 CNY/min. 
The base fare for URT is 2 CNY; for SR, it is 4 CNY. 
Detailed train dwell times and inter-station distances are 
provided in Tables 2 and 3. 

TABLE 2 
PARAMETERS OF ROUTE 1 

Station Stop time/s Distance from the next station/km 

A 30 2.50 

B 25 1.06 

C 25 1.88 

D 25 2.43 

E 30 3.99 

F 30 4.37 

G 25 5.34 

H 25 4.49 

I 40 3.64 

J 30 0.96 

K 30 2.33 

L 30 -- 

TABLE 3 
PARAMETERS OF ROUTE 2 

Station Stop time/s Distance from the next station/km 

C 35 9.89 

M 30 8.52 

N 40 10.05 

O 30 7.18 

P 30 -- 

 
Given the initial OD passenger flow data, the spatial 

distribution characteristics of passenger flow were uncovered 
by developing a heat map of the OD passenger flow data, as 
depicted in Fig. 5. max ?d d  
 

A. Result Analysis 

The proposed algorithm was implemented using the 
Python programming environment. The model parameters 
were derived from the given operation data and existing 
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research, after which the model was solved. According to the 
relevant research in reference [30], the parameter values are 
shown in Table 4. Ten high-quality solutions were uniformly 
selected from the Pareto solution set obtained. The algorithm 
iteration curve and the Pareto optimal front comprising these 
ten Pareto solutions are presented in Fig. 6 and Fig. 7. 
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Fig. 5.  OD passenger flow data. 
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Fig. 6.  Algorithm convergence curve. 
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Fig. 6 indicates that the algorithm converges stably after 20 
iterations, verifying its convergence characteristics, which 
suggests that the algorithm can effectively approach the 
optimal solution and achieve convergence to the target value 
during iterations. The Pareto solution set in Fig. 7 exhibits a 
typical objective trade-off relationship inherent in 
multi-objective optimization. SDCMI optimization is often 
accompanied by an increase in total costs, and vice versa, 
highlighting the inherent conflicts among the objective 
functions. 

TABLE 4 
PARAMETER VALUES 

Parameters value 

Particle quantity 100 

Maximum number of iterations 100 

Decision variable dimension 3 

Chaotic sequence length 100 

Inertia weight 0.9 

Individual learning factor 2 

Social learning factor 2 

 

B. Selection of the Pareto front optimal solution 

Considering scheme diversity and the trade-off 
relationships among objectives, multiple solutions at 
different positions were separately chosen for comparison. 
Schemes with minimum objective values and balanced 
schemes with the objective value were selected to represent 
the Pareto solution set. The points on the left, middle, and 
right in Fig. 8 serve as the primary chosen solutions. 

Fig. 8 shows that the total costs decrease from left to right 
while the SDCMI increases. This trend persists to the far right. 
When optimizing solely for SDCMI, the CLT train stop 
scheme P-O-N-M-D-E-F-G-H-J yields the lowest, which is 
0.1668. At this point, the total cost is 367,400 CNY. The 
optimal operation scheme is shown in Fig. 8. 

A C D E F G H I J L

P

O

N

M

1

2

14 train/h, 20211 persons

11 train/h,
22242 

persons

3

4 train/h, 22662 persons

1 36.74Z 
2 0.1668Z 

Fig. 8.  Train operation plan with the smallest SDCMI. 

When optimizing solely for total costs, the cross-line train 
stop scheme P-O-N-M-D-E-J achieves the lowest total cost 
for the entire line at 321,200 CNY. At this point, the SDCMI 
is 0.3306. The optimal operation scheme is shown in Fig. 9. 

When optimizing for both SDCMI and total costs balance, 
the CLT train stop scheme P-O-N-M-C-D-F-J achieves a 
total cost of 323,200 CNY with an SDCMI of 0.2418. The 
optimal operation scheme is shown in Fig. 10. 
The three optimization schemes reveal that extreme 
optimization of any one target would lead to a significant 
deterioration of the other target. The balanced value is critical 
to resolving this conflict. 

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4394-4404

 
______________________________________________________________________________________ 



 

TABLE 5 
OPTIMIZATION RESULTS 

Route Operation Frequency (Trains per Hour) Stopping Scheme Passenger Flow (Persons) 1Z  2Z  (104 CNY) 

Urban Rail Route 16 All stations Stopping 21354 

0.2418 32.32 Suburban Route 12 All stations Stopping 22242 

Cross-line Route 9 P-O-N-M-C-D-F-J 18369 

Therefore, taking the balance between SDCMI and total 
costs as the optimization objectives, the Pareto solution set is 
obtained to obtain the optimal scheme. The values of each 
index are shown in Table 5. 
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Fig. 9.  Train operation plan with the lowest total cost. 
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Fig. 10. Train operation plan when the SDCMI and the total cost are 
balanced. 

 

C. Comparative analysis before and after the operation of 
cross-line trains 

The introduction of cross-line trains may significantly 
impact the frequency of train service, total costs, and SDCMI 
of the original line. To explore its impact on the operational 
efficiency of the original line, a comparative analysis of the 
train operation frequencies before and after cross-line 
operation was conducted, as shown in Fig. 11. 
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Fig. 11.  Train service frequency before and after cross-line operation. 

As shown in Fig. 11, cross-line operations have introduced 
9 trains per hour where none previously existed. These CLT 
trains now partially absorb passenger demand originally 
served by SLT trains, alleviating demand pressure on the 
latter. However, CLT trains also occupy a portion of track 
resources in shared sections of the URT line. Consequently, 
the operation frequency of URT’s SLT trains has been 
adjusted downward from 20 to 16 trains per hour, a 20% 
reduction. In contrast, SR’s SLT trains maintain a stable 
frequency of 12 trains per hour. This stability stems from 
CLT trains attracting long-distance passengers through 
regional connectivity, leaving short-distance demand 
relatively unaffected. Passenger demand on routes served by 
SLT trains remains unchanged mainly, preserving their 
original frequency. The changes in the objective function 
values before and after cross-line operation were further 
analyzed, with comparison results shown in Fig. 12. 

Fig. 12 shows that cross-line operations reduced the 
SDCMI from 0.3847 to 0.2418, indicating a 37.1% reduction 
in SDCMI, which demonstrates how CLT trains alleviate 
localized supply-demand imbalances through resource 
sharing and achieve capacity complementarity among 
different types of lines. The Total costs decreased by 10.3%, 
confirming the effectiveness of cross-line operations in 
reducing passenger travel time and improving system 
efficiency. However, the operator costs increased from 
45,600 CNY to 48,900 CNY, suggesting a trade-off between 
short-term economic efficiency and long-term network 
performance. Operators must balance peak-period service 
investments with off-peak cost controls by adjusting 
cross-line frequency. 
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 Fig. 12.  Objective function values before and after cross-line operation. 

 

D. Comparative analysis of unbalanced and balanced 
departure constraints 

Departure interval constraints have a significant impact on 
system costs and operational efficiency. To thoroughly 
explore the performance differences of algorithms under 
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varying constraint conditions, a comparative analysis of 
unbalanced and balanced departure interval strategies is 
conducted. Fig. 13 presents the algorithm convergence 
curves under different constraints. 

Fig. 13 reveals distinct convergence patterns between 
unbalanced and balanced departure interval constraints. The 
unbalanced constraint curve shows a steeper descent, 
achieving faster convergence to lower objective values. The 
cost impact comparison under different constraints is further 
analyzed in Table 6. 
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Fig. 13.  Algorithm convergence curves under different constraints. 

The SDCMI under unbalanced departure intervals shows a 
32.5% improvement compared to balanced intervals, with 
total costs reduced by 7.1%. These results demonstrate that 
the non-equilibrium headway constraint can accelerate the 
convergence of the algorithm, reduce costs, and enhance the 
matching degree between transport capacity supply and 
demand. Therefore, it is recommended to adopt the 
unbalanced departure interval mode in cross-line operation. 

TABLE 6 
COST IMPACT COMPARISON UNDER DIFFERENT CONSTRAINTS 

Constraint type 1Z  2Z  

Balanced departure interval constraints 0.3580 34.79 

Unbalanced departure interval constraints 0.2418 32.32 

 

E. Sensitivity analysis of the maximum load factor max  

The maximum load factor plays a crucial role in balancing 
capacity and enhancing the passenger experience. The 
sensitivity of the objective function to the variation of max  

was analyzed, and the influence of max  on the objective 

function is shown in Fig. 14. 
Fig. 14 shows that max 0.8   is a critical point. At this 

value, the total cost is 322,300 CNY and the SDCMI is 
0.2314. Below this crucial point, increasing yields provides 
dual benefits of cost reduction and degree improvement 
matching. When max  exceeds the critical point, adverse 

effects on optimization occur. The research results guide 
decision-makers in setting the optimal max  to balance 

achieve cost efficiency and supply-demand consistency in the 
operational plan. 
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 Fig. 14.  The influence of max  on the objective function. 

 

F. Sensitivity analysis of the value of passenger time  

The value of passenger time is primarily determined by 
local GDP. Analysis of the influence of different values of 
passenger time on the model helps verify the model’s 
adaptability under varying economic levels. The influence of 
  on the objective function is presented in Fig. 15. 

Fig. 15 shows that when the Value of Passenger Time 
increased from 0.4 CNY/min to 1.2 CNY/min, total cost rose 
from 262,700 to 629,000 CNY, and the SDCMI increased 
from 0.2329 to 0.3132. This demonstrates that higher 
passenger time values elevate passenger travel costs and 
transportation efficiency.   impact on the number of stops of 
cross-line trains is shown in Table 7. 

When the Value of Passenger Time increases from 0.4 
CNY/min to 0.8 CNY/min, the optimal scheme reduces 
cross-line train stops, indicating that passengers within this 
economic level range increasingly prefer direct services as 
the time value rises. When the Value of Passenger Time 
increases from 0.8 CNY/min to 1.2 CNY/min, cross-line train 
stops increase, showing that among passengers in this 
economic level range, the long-distance passenger flow 
proportion rises. The model must cover more OD pairs by 
increasing the number of stops to reduce the time from station 
departure to destination.  
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Fig. 15.  The influence of   on the objective function. 
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TABLE 7 
  IMPACT ON THE NUMBER OF STOPS ON CLT 

  0.4 0.6 0.8 1.0 1.2 

Number of Stops on CLT 9 8 7 8 9 

 

V.  CONCLUSION AND DISCUSSION 

(1) Focusing on cross-line operation between SR and URT, 
this paper establishes a bi-objective programming model. 
This model prioritizes optimizing the SDCMI and 
minimizing the total costs. Optimization results demonstrate 
a 37.1% reduction in the SDCMI and a 10.3% decrease in 
total costs, enhancing both efficiency and operational 
economy. By integrating a mixed logit model with 
event-activity network theory, the model accurately describes 
multi-tier train coordination and the complex behavior of 
passenger route choice. 

(2) Comparative analysis shows cross-line operation trains 
reduce overall line operation frequency by consolidating 
long-distance passenger flow. However, the enterprise 
experiences minor short-term cost increases, which provides 
a basis for operators to implement differentiated 
peak/off-peak strategies. Implementing non-equilibrium 
departure intervals accelerates algorithm convergence, 
reduces costs, and improves the SDCMI. Therefore, 
asymmetric headways are recommended for cross-line 
operation. 

(3) Sensitivity analysis of key parameters indicates that 
moderately increasing the maximum load factor improves 
supply and demand capacity matching precision while 
lowering operational costs. The objective function achieves 
an optimal value at a maximum load factor of 0.8. 
Excessively high load factors cause negative impacts. 
Passengers from differing economic regions exhibit distinct 
travel preferences. To accommodate these variations, 
dynamic adjustment of station-specific stopping patterns is 
necessary. 

(4) There are still some limitations in this study. The 
current framework does not incorporate dynamic passenger 
flow real-time adjustment mechanisms, leaving the model’s 
adaptability to sudden passenger flow fluctuations requiring 
verification. Future research should account for passengers’ 
bounded rationality while integrating dynamic flow 
prediction to extend the model ’ s adaptability to more 

complex contexts. 
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