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Abstract—The cross-line operation of suburban railway (SR)
and urban rail transit (URT) is a key way to improve
transportation efficiency and promote regional transportation
integration. Based on the cross-line operation of SR and URT,
this study introduces the event activity network theory,
constructs a mixed logit model to quantify the passenger route
choice behavior, and proposes the supply and demand capacity
matching index (SDCIM), which is used to measure the
matching degree of line capacity and passenger demand. On
this basis, a bi-objective nonlinear integer programming model
is further constructed with the objectives of minimizing SDCMI
and the total costs of cross-line operation. The research results
show that after implementing cross-line operation, SDCMI is
reduced by 37.1%, and the total costs are reduced by 10.3%.
This study presents a theoretical framework and provides
practical guidance for decision-making in multi-level rail
transit cross-line operations, taking into account both efficiency
and cost.

Index Terms—Suburban railway, Urban rail transit,
Cross-line operation, Event-activity network

1. INTRODUCTION

ITH the development of metropolitan areas and urban

agglomerations, the process of regional transportation
integration has advanced. Building on this, some cities utilize
existing surplus capacity in urban rail transit systems to
organize cross-line operation of suburban railway trains. This
approach combines the advantages of urban rail transit (URT)
and suburban railway (SR), thereby enhancing transportation
efficiency and optimizing resource allocation. However,
while enabling rapid cross-line operation of trains, operators
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must also accommodate the intensive service demands of
trains on the original line. Simultaneously, passengers face
complex travel scenarios under cross-line operation and must
make route selection decisions. Therefore, how to reasonably
formulate the cross-line train operation scheme according to
the complex operation mode and passenger demand has
become an urgent problem to be solved.

II. LITERATURE REVIEW

A. Cross-line operation

With the growth in demand for the integrated development
of multi-mode rail transit networks, early research on
cross-line operation schemes focused on optimizing the
cross-line organization of rail transit lines at the same level.
Wang [1] investigated strategies to maximize high-speed rail
capacity utilization when introducing cross-line trains,
providing theoretical support for the coordination of
multi-level rail networks. Liang et al. [2] developed a
multi-objective mixed-integer model of cross-line train
operation to balance enterprise costs and passenger service
level through the use of preference coefficients. Chen [3]
developed an optimization model for cross-line train
operation to balance vehicle usage costs, operational costs,
and passenger transfer times. Yang et al. [4] developed a
multi-objective programming model designed to minimize
passenger travel costs and enterprise operational costs, and
proposed an Improved Quantum Genetic Algorithm (IQGA)
to solve the model. Zhao et al. [5] defined the passenger flow
types under the “X” and “Y” line intersection modes. They
constructed an optimization model for cross-line train
operation, aiming to minimize passenger travel costs and
enterprise operational costs while balancing the section’s full
load rate. Zhang [6] optimized timetables for cross-line
routes under failure scenarios.

While studies as mentioned above have achieved notable
progress in same-tier cross-line operations, research focus is
shifting toward multi-level network coordination as demand
grows for integrated rail systems. Li et al. [7] developed a
mixed-integer nonlinear programming (MINLP) model for
SR-URT cross-line operations targeting multi-stakeholder
benefits. Peng et al. [8] developed an integrated
service-planning and passenger-flow assignment model for
SR-URT, optimizing cross-line routing through flexible
stopping patterns.

Facing multiple alternative routes after cross-line
operations, optimizing route choice and passenger flow
assignment can improve operational efficiency and service
quality. Yan [9] developed an optimization model for
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selecting cross-line train paths in high-speed rail systems.
Yin et al. [10] proposed an optimization framework for the
ART system that incorporates passenger path-choice
behavior while minimizing the combined costs of operators
and passengers. Tian [11] and Wang [122] emphasized
improving direct connectivity by maximizing non-transfer
passengers on cross-line services to optimize flow
distribution. Chen [13] utilized spatio-temporal network
diagrams to analyze passenger path choices, identifying
transfer-induced sectional flow variations as critical factors
in designing cross-line schemes. Sun [14] introduced the
concepts of “effective” and “ineffective” travel time and
applied a-fairness theory to optimize cross-line turnaround
station layouts, thereby significantly improving travel equity.
Huang [15] proposed a representative passenger path
generation method for cross-line timetable optimization,
demonstrating reduced transfer pressure and increased direct
services.

B. Supply and demand capacity matching

In terms of transport capacity and volume matching,
scholars have conducted systematic research on the
dimensions of traffic organization, passenger flow
distribution, and other related aspects.

Dynamic adjustment of train operation plans serves as the
primary mechanism for matching capacity and demand. In
this regard, Xu et al. [16][17] considered the time-varying
demand of passenger flow and the phenomenon of passenger
retention in peak hours. They developed a large and small
routing schedule optimization model, as well as a
double-layer planning model, for full and short routing within
cross-line operations to coordinate the departure interval and
the train marshaling scale. Guo et al. [18] further proposed a
Y-shaped shared-track trunk-branch joint operation scheme,
which reduces enterprise operation costs while shortening
passenger waiting time, providing a novel approach for
capacity-demand matching in complex rail network
structures. In recent research, Huo et al. [19] introduced an
integer programming model to optimize departure ratios and
headways for cross-line routes in a dynamic manner. Yan [20]
refined capacity-demand matching to the service-route level
through a two-level planning model, enhancing spatial
flexibility in cross-line scheduling. While these studies
advance static scenario solutions, coordinated scheduling of
multiple routes under fully networked operations requires
further investigation.

Aiming to address the non-uniform characteristics of
cross-line passenger flow in time and space, Wang et al. [21]
developed a time-segmented nonlinear programming model
to optimize the express/local service ratios on SR lines,
thereby enhancing capacity-demand alignment. Zhang et al.
[22] proposed a heterogeneous network timetable model that
dynamically adjusts service frequencies based on
boarding/alighting volumes, reducing station load factors.
Huan et al. [23] further demonstrated how
network-coordinated control models can alleviate bottleneck
congestion through cross-line flow regulation. These studies
confirm that incorporating dynamic demand into schedule
optimization improves capacity adaptation efficiency under
cross-line scenarios.

Accurate passenger-flow assignment and balance
evaluation form the foundation of capacity-matching
optimization. Wei et al. [24] developed a spatio-temporal
path inference system using AFC data and timetables to
reconstruct passenger trip chains. For balance assessment,
Huang et al. [25] innovatively applied the Gini coefficient
and Theil index, revealing the need for differentiated capacity
allocation to address spatio-temporal heterogeneity. Jian et al.
[26] integrated genetic algorithms to optimize cross-line
service plans, reducing peak-period service costs while
improving load-factor balance across routes. Wu et al. [27]
proposed an SSAPSO-based freight-bus planning model with
static/dynamic stages, though its application to complex
passenger services remains unexplored.

C. Research gap and significant contributions

In summary, research on the cross-line operation of trains
has accumulated to a certain extent. However, studies
addressing cross-line operation between SR and URT remain
limited. Research on capacity-volume matching following
the cross-line operation predominantly examines scenarios
on a single line or at a single service level, rarely integrating
line capacity-volume matching with cross-line train operation
schemes at different levels. Based on this, this paper takes the
cross-line operation of URT and SR as the research object,
characterizes the cross-line operation process of trains by
combining an event-activity network, and quantifies
passengers’ path choice behavior using a mixed logit model.
In response to the problem of matching capacity and volume
after the cross-line operation of trains, a supply-demand
capacity matching index (SDCMI) is introduced. An
optimization model for cross-line operation schemes is
constructed to minimize the total costs of cross-line operation
and the SDCMI. The model fully considers the unbalanced
interval strategies and comprehensively optimizes the train
service frequency and stop plan of each route. Finally, the
validity and feasibility of the proposed model are verified
through a numerical example, providing theoretical support
for cross-line operation decision-making in the context of
multi-network integration.

III. PROBLEM DESCRIPTION
Define the set of alternative train operation routes on the
line as @ = {¢|¢1,¢2,- . -,¢k} . Each route ¢ is defined by its set
of potential stopping stations. The k-th operation route,

denoted as ¢, = { Sl!f ,...,Sj‘.} , originates from station slk and

terminates at station sﬂ‘? R

S denote the set of all stations on the line, and Xrepresent the
set of available train units. Same-line trips (SLT) on the URT

are denoted as ¢ ={s;,--s, | .SLT on the SR are denoted as
¢2={so,~-,sm} , (CLT) as
%:{sl,...,so’...’sp} _

interchange stations s

with an operating frequency qu . Let

and cross-line trips

Routes ¢ and ¢, connect at

with frequencies f;, f,, and f3

0

7(s) is abinary variable equal to 1 if the train stops at station
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s, and 0 otherwise. Fig. 1 illustrates the schematic diagram of
cross-line operation between SR and URT.

To model the coordinated operation of multi-tier trains and
complex passenger travel behavior in cross-line service, an
event—activity network is constructed to represent the train
operation process.[28] The network G= (V, E, T) comprises a
set of event nodes V, a set of activity arcs E, and time
attributes T. Each event node v € V' denotes a state of a train
or passenger, covering key events such as departure, arrival,
and turnback. Each activity arc e € E describes a transition
between states, including train movement, dwell, passenger
ticketing, waiting, or transferring actions. The time attributes
T accurately quantifies the time parameters and activity
duration of each event node. Detailed symbols and their
definitions are listed in Table 1.

Line2 7

S,y x Downward
direction
S50 ————
Linel T > ¢3
% ° . ° ° o0 — — —SO;‘.
g5 52 Sy S, Sy S5 S 2

Fig. 1. Schematic diagram of cross-line operation between SR and URT.

TABLEI
SYMBOLS RELATED TO THE EVENT-ACTIVITY NETWORK

Symbol

Definition
Arrival event time, i.c., the time when a train arrives at

t;(s .
a(s) the station s, s€ S
11(s) Departure event time, i.e., the time when a train departs
Y from the station s, se€ S
1.(s) Dwell time activity, i.e., the duration a train stops at the
s station s, se€ S
1,,(s) Passenger waiting activity time at the station s
t, Passenger onboard activity time
t, Passenger transfer activity time
h Cost of purchasing a URT ticket
43 Cost of purchasing an SR ticket
Station
rS. @ ->/
|
N

Linel <

; BVAAS
So // f
s ,\/ /

O Virtual source node

~S o 1|  Virtual sink node
o J J g» Trip Origin and
Ky DD esBnation node
) —-—»  Departure arc
Line2 < s — —>  Arrival arc

-+ Cross-line arc

s J @ ......... > Transfer arc
—>  Running arc
. ----> Dwelling arc

Fig. 2. Schematic diagram of cross—line operation between SR and URT.

Time

To characterize each operation route, a virtual source event
vk (#) is defined to represent the initial state of a route ¢,
connecting to its origin station. Similarly, a virtual sink event
v,k (¢) is defined to represent the terminal state of a route ¢,

linking to its terminus station. A pair of origin-destination
events (gp,qp) thus represents one feasible travel option

for a passenger between those endpoints. The construction of
this event—activity network is illustrated in Fig. 2.

IV. PASSENGER FLOW ASSIGNMENT
Existing studies frequently employ the “optimal path”
concept to model passenger choice behavior, where
passengers select the route with minimal generalized travel
={017027”'5O}"}

denote the set of feasible paths from origin O to destination D.

costs among feasible alternatives. Let Q,p

For any OD pair, the utility ¥, of a passenger ¢ choosing a
path o, under the scenario 7 is expressed by the passenger’s
travel costs C, . Therefore, the utility V', is as follows:
Ve =-C (1
The passenger’s travel costs C, comprise time costs from
travel activities and fare differences across rail modes. Time
components are calculated as follows.
Assuming uniform passenger arrival distributions at

stations, the waiting time at the station s depends on the train
departure frequency. Let fy be the operating frequency of

the route ¢ . Therefore, the passenger’s waiting activity time

t,, at the station s is as follows:

1 60
t, = > 2)

ped f ¢
The running time of a train within the activity arc e is
related to the train’s stoppage at the front and rear stations of
the section. Therefore, for any train running within the

activity arc e, the train’s running time ¢, is as follows:

t, :l—+;((s) —+;((s+1) VseS 3)

e

Where, [, is the line length of the activity arc e, v, is the

average running speed of the train on the activity arc e, @, and
b are the acceleration when the train starts and brakes,
respectively. Then, the in-train time ¢, of a passenger ¢ is as

follows:
=2, > X219 “4)
eckE ped,
Where, ¢,(@) is the running time of the train on the activity
arc e within the route ¢.

The passenger transfer activity time includes the walking
time for the transfer and the waiting time. Let the average
walking time for transfer be ¢,,; . Then the passenger

transfer time ¢, is as follows:

by =tyalk iy ()
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Let y; and y, be the basic fares of URT and SR,
respectively; a; and «a, be the per capita cost per kilometer

of URT and SR, respectively. Then, the cost for passengers to
purchase tickets for different trains is as follows:

h=n+a-) L (6)
ecE

Y2 :}/2+012'Zle (7)
ecE

Where, E, is the passenger activity set, d1is the value of
passenger time. Then the generalized travel time costs C, for
a passenger ¢ is as follows:
Co= > 20 [(ty+t,+ty @) 0+ +1, | (®)
eeEq
The utility U,, for an individual ; choosing the path o,
under the scenario 7 is as follows:
Uer = V;’; +/uzr +Klrz' ©)
Where, ,u,r is a random term, which follows a normal

distribution among individuals with a mean of 0; «;; is a
random term with an [ID extreme value distribution.

For the path o, under the scenario z , the choice
probability of an individual : can be allocated using the
mixed logit model [29]

T exp(V,ﬁJrﬂf)
L =TI

Tl Y (V)

0,€Q0p

(10)

Let f ( ,u|Q) be the probability density function of x . Let

Q be a fixed parameter. The choice probability P! of the

mixed logit model is the integral of L, over the distribution

of the random term 4,
Pl =Ly f (u|Q)du (11)
Define the set of passenger flows O, = {qé |r =12, 3,---}

on each activity arc e of the route, and the passenger flow ¢,
choosing the path o, under different scenarios can be
obtained as

g =| 0.7 | (12)

V. MODEL CONSTRUCTION

A. Assumptions

(1) The technical conditions for train crossing between
lines have been met, and facilities such as signals, vehicles,
communications, power supply, and line boundaries have
been compatible or unified.

(2) Without considering the complex situation of multiple
shared stations, it is assumed that there is a unique connection
transfer station between the lines.

(3) The models and the number of train formations of SR
trains and URT trains are the same, and both adopt a 6-car

formation.

(4) Assuming that the operation of the up and down trains
is consistent, only the optimization of the operation
frequency of the unidirectional trains is studied.

B. Objective function

The primary objective of operational planning is to
optimize the alignment between transportation capacity
supply and passenger demand. Effective demand-capacity
matching prevents both resource underutilization and service
shortages. To ensure maximum matching of transportation
capacity and volume while comprehensively considering the
interests of passengers and operating enterprises, both the
matching of line capacity and volume and the total costs of
cross-line operation are selected as the dual objective
functions for optimization.

(1) Minimize the supply-demand capacity matching index

The supply-demand level of the cross-line operation
system can be represented by constructing the
supply-demand capacity matching index (SDCMI). The
SDCMI quantifies the equilibrium between route capacity
and passenger demand in cross-line operations. To eliminate
scale effects from absolute capacity differences, we construct
this index using relative deviations through dimensionless
normalization.

Let B denote the number of train formations. Z represents
the train’s capacity. B, i the maximum load factor of the

cross-section. @, is the set of all train running routes in the

active arc e. y? is a 0-1 variable of passenger flow q in the
active arc e; if the route ¢ includes arc e, take 1. The road

transportation capacity is as follows:

He = Z (Bzﬁmax 'f¢ lg)
Ped,

Define the cross-sectional passenger flow of the active arc

e in the network as O, . Let the SDCMI be recorded as Z;,
and minimize the SDCMI.

H —
minZ; = Z—' e Qe'
ecg MAX (He’ Qe )

Where, Z; €[0,1] , the value of 0 indicates perfect

(13)

(14)

capacity-demand alignment, while 1 signifies complete
imbalance. Lower index values reflect better supply-demand
matching.

(2) Minimize the Total Costs of Cross-Line Operation

The total costs comprise passenger travel costs and
operator costs. Operator costs include train operation costs
and additional stopping costs. Train operation costs depend
on service frequency, train-kilometers, and per-kilometer
operational expenses. The train operation cost C,, can be

calculated as

C0p=2~z Zle'f¢'cl (15)

pe® ecE
Where, ¢; denotes the per-kilometer operational cost.

The extra stop cost represents the additional expense
incurred by the cross-line train stopping at the station, which
includes the increased energy consumption resulting from the
frequent acceleration and deceleration required for these
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stops. Let C,; represent the additional stop cost, then Cy; is

calculated as
Cy=2-f3- 2, x(s)-¢c;,VseS
KA

Where, ¢, represents the average cost per stop.

(16)

Let Z, denote the comprehensive cross-line operation
total costs, with g, representing the passenger flow on
activity arc e. The minimized total costs are expressed as

minZ, = Y ¢,-C +C,, +Cy (17)
9.€0,

C. Constraint Conditions

To ensure the service level of cross-line operation and the
feasibility of cross-line operation plans, the basic constraints
of cross-line operation should include service level
constraints and cross-line capacity constraints.

(1) Basic constraints of cross-line operation

To ensure the cross-line service level, the maximum load
factor within each area should be set within a reasonable
range to avoid excessive congestion and waste of resources.
When the waiting time exceeds the passengers’ maximum
acceptable waiting time, it will affect the travel level of
passengers. Let ¢, 4 be the passenger flow of the active arc e
on the route ¢, then the full load factor constraint of each
route is as follows:

ﬂmin < z qe—’¢ < ﬂmaxa Qe,¢ € Qe
eckE f ¢BZ

The waiting time limit for passengers is as follows:

(18)

30
—= Whax »
¢

is the longest waiting time for passengers.

Véed (19)

Where, w

max

To ensure the feasibility of the cross-line operation plan,
the operation frequencies of SR trains and URT trains in each
section and at the turnaround stations in the operation plan
must comply with the infrastructure capacity limitations. The
constraint is as follows:

[3<CpNpe® (20)
fpeN" Ve (21)
x(si)=x(s;)=x(s5) =1 (22)

Where, Equation(20) is the constraint of the line’s passing
capacity. Equation(21) is the integer constraint of the opening
frequency. Equation(22) is the constraint on stopping at the
first and last stations and transfer stations.

(2) Unbalanced departure interval constraints

The non-stop passage of cross-line trains will lead to an
increase in the departure interval. However, adopting an
unbalanced departure strategy allows for interval adjustments
while satisfying minimum separation requirements,
enhancing operational flexibility, and mitigating the impact
on main-line capacity.

The departure intervals of trains at the starting station are
classified into three types: the departure interval TFp_ 4

between a train on the same line ahead and a cross-line train
behind; the departure interval TF,_p between a cross-line

train ahead and a train on the same line behind; and the
departure interval TF,_, between trains of the same type.

The schematic diagram of the unbalanced departure mode is
shown in Fig. 3.

The intervals TFg_,, TF,_g, and TF,_, are constrained

X

as follows:
60
TFin < TFp_4 =7+ATF < TFax (23)
3
TFmin S TFA—B = 60_TFB—A
60 (24)
—(fk -f3 +1)-7 STFpax k=12
3
60
TFin <TF,_, = 7 < TFpax (25)
J3

Where, TFn, and TF,,,  denote the minimum and

maximum allowable departure intervals, respectively, and
ATF represents the additional interval time required for
non-stopping cross-line trains.

Station,
s+2

st1

TFB—A TFA—BTF;(—x

Fig. 3. Schematic diagram of the unbalanced departure mode.

(3) Events-Activity Constraints

Within the event-activity network, each train activity or
event permits at most one train flow route. Any train event
node on each route must satisfy the train flow balance

constraint. Let E; and E, denote the train activity sets of

the inflow event v and the outflow event v respectively. The
event-activity constraints are expressed as

3
>y <LVecE (26)
g=1
3
ZEEE,ZijSI,VeeE,VVEV 27)
v¢:1

ZeeE;nE¢ 4 :zeeEmE¢ VP VeeE,VveV,ped(28)

Where, y¢ is a 0-1 variable. If the train starts at the route ¢,

e

it is 1; otherwise, it is O. E? is the collection of train
activities at the route ¢ .

VI. ALGORITHM DESIGN

The model above is essentially a large-scale, nonlinear,
multi-objective integer programming problem. Considering
that the Particle Swarm Optimization (PSO) algorithm is
prone to falling into local optima when dealing with
high-dimensional, complex issues and has insufficient global
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search ability, the chaotic concept is introduced into PSO to
construct the Chaotic Particle Swarm Optimization (CPSO)
algorithm, thereby improving the global optimization ability
of PSO. The algorithm steps for solving the chaotic particle
swarm model are as follows.

Step 1: Initialize particle swarm size N. Define candidate
solutions  Xousion = f1/25 /35 M510p » Which  respectively

represent the departure frequency of URT trains, the
operation frequency of SLT trains, the operation frequency of
CLT trains, and the stop schemes.

Step 2: Chaotic sequences are generated by using logistic
chaotic mapping. Map the chaotic variables to the velocity
and position value ranges, and initialize the velocity and
position of the particles.

Step 3: Update the velocity and position of the particle 4
based on its current position and historical optimal position.

Step 4: For each particle, construct a passenger flow
distribution model, compute objective function values,
calculate the new fitness value of each particle, and conduct
particle fitness evaluation.

Step 5: To prevent premature convergence of the
algorithm, chaotic perturbations are introduced to a subset of
particles at regular intervals, forcing them out of local
optimal regions. The dynamic disturbance V},(d +1) can be

expressed as follows:
Vild+D)=a-Vy(d)+e-n '(PBesth _Xh(d))"'
¢3 13 (Gpesy = X4 (d)) +0- Chaos(d)
Xp(d+1) =X, (d)+V,(d +1) (30)

Where, d is the number of iterations, a is the inertia weight,
¢, and ¢, are the learning factors, 7; and », are random

(29)

numbers, Chaos(d) is the perturbation term selected from

the chaotic
coefficient.
Step 6: Check whether the maximum number of iterations
has been reached or whether other convergence conditions
have been met. If satisfied, the algorithm ends. Otherwise,
return to Step 3 to continue the iteration.
Step 7: Output the global optimal position Gg,; and the

sequence; O 1is the disturbance intensity

corresponding fitness value as the final solution of the
algorithm.

* '
Construct the passenger flow
distribution model

[ Initialize the Particle Swarm |
1

i
Obtain Velocity and Position | Calculate the objective function|

To summarize, the process of the CPSO algorithm
considering passenger flow distribution is shown in Fig. 4.

VII. CASE ANALYSIS

To verify the validity and rationality of the proposed model
and algorithm, a case study was conducted on two Y-shaped
interconnected rail lines implementing cross-line operations
during the morning rush hour (8:00-9:00). Line 1 is a URT
line, while Line 2 is an SR line. The line consists of 16
operating stations and runs 6B formation trains with a rated
passenger capacity of 1,460 people per train. The minimum
load factor is 0.5, the maximum load factor is 0.9, and the
minimum departure interval is 2 min. The cross-line train
runs from Line 2 to Line 1, and CLT includes 12 stations,

which are set ¢3={P,-~,M,C,---I,J}

stations A, C, J, L and P are turnback stations. The operating
cost of the train per kilometer is 60 CNY/km, and the cost of a
single stop is 200 CNY/time. Trains require 2 minutes for
turnaround operations at terminal stations. The walking time
for transfer passengers is 0.5 min. The minimum departure
frequency is 5 pairs per hour. The designed line capacity is 30
pairs per hour. The value of passenger time is 0.6 CNY/min.
The base fare for URT is 2 CNY; for SR, it is 4 CNY.
Detailed train dwell times and inter-station distances are
provided in Tables 2 and 3.

Among them,

TABLE 2
PARAMETERS OF ROUTE 1

Station Stop time/s Distance from the next station/km
A 30 2.50
B 25 1.06
C 25 1.88
D 25 243
E 30 3.99
F 30 4.37
G 25 5.34
H 25 4.49
I 40 3.64
J 30 0.96
K 30 233
L 30 -

TABLE 3
PARAMETERS OF ROUTE 2

Station Stop time/s Distance from the next station/km
C 35 9.89
M 30 8.52
N 40 10.05
(¢} 30 7.18
P 30 --

by Chaotic Mappi
y 0 1lc 2PPTE | Evaluate Particles’fitness |
| =1 | Introduce chaotic perturbations

and update the particle velocities
and positions

o =

N
Stop the iteration and output
the result

1
[Update Velocity and Position|—
i

| d+=1

End
Fig. 4. Algorithm process.

Given the initial OD passenger flow data, the spatial
distribution characteristics of passenger flow were uncovered
by developing a heat map of the OD passenger flow data, as
depicted in Fig. 5.d <d,, ?

max

A. Result Analysis

The proposed algorithm was implemented using the
Python programming environment. The model parameters
were derived from the given operation data and existing
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research, after which the model was solved. According to the
relevant research in reference [30], the parameter values are
shown in Table 4. Ten high-quality solutions were uniformly
selected from the Pareto solution set obtained. The algorithm
iteration curve and the Pareto optimal front comprising these
ten Pareto solutions are presented in Fig. 6 and Fig. 7.

Persons
P -}77 257 263238369 147 0 578
O 344346 339 323339346347 0
N
M 462
L
K
- J - 347
S 1
S|
N
G - 231
F
E
D - 116
C 364 0 212
B -B1s o 303
Ao 235 L1y
ABCDEFGHIJKLMNOP
Station
Fig. 5. OD passenger flow data.
le6
1.8}
o
S1.6F
S
o 141
8
‘g 1.2F
LE 1.0F
2
‘= 0.8F
(&7
R
0.6
o
04r 1 L L L 1
0 20 40 60 80 100

Iteration Times
Fig. 6. Algorithm convergence curve.

T

37

Total Costs (10* CNY)
(98] (98] W
B W (o))
[ )

[O8)
[O8)
T

(O8]
\S]
T

1

0.18

020 022 024 026 028 0.30
Supply-Demand Capacity Matching Index

Fig. 7. Pareto frontier solution set.

Fig. 6 indicates that the algorithm converges stably after 20
iterations, verifying its convergence characteristics, which
suggests that the algorithm can effectively approach the
optimal solution and achieve convergence to the target value
during iterations. The Pareto solution set in Fig. 7 exhibits a
typical objective trade-off relationship inherent in
multi-objective optimization. SDCMI optimization is often
accompanied by an increase in total costs, and vice versa,
highlighting the inherent conflicts among the objective
functions.

TABLE 4
PARAMETER VALUES
Parameters value
Particle quantity 100
Maximum number of iterations 100
Decision variable dimension 3
Chaotic sequence length 100
Inertia weight 0.9
Individual learning factor
Social learning factor
B. Selection of the Pareto front optimal solution
Considering scheme diversity and the trade-off
relationships among objectives, multiple solutions at

different positions were separately chosen for comparison.
Schemes with minimum objective values and balanced
schemes with the objective value were selected to represent
the Pareto solution set. The points on the left, middle, and
right in Fig. 8 serve as the primary chosen solutions.

Fig. 8 shows that the total costs decrease from left to right
while the SDCMI increases. This trend persists to the far right.
When optimizing solely for SDCMI, the CLT train stop
scheme P-O-N-M-D-E-F-G-H-J yields the lowest, which is
0.1668. At this point, the total cost is 367,400 CNY. The
optimal operation scheme is shown in Fig. 8.
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Fig. 8. Train operation plan with the smallest SDCMI.

When optimizing solely for total costs, the cross-line train
stop scheme P-O-N-M-D-E-J achieves the lowest total cost
for the entire line at 321,200 CNY. At this point, the SDCMI
is 0.3306. The optimal operation scheme is shown in Fig. 9.

When optimizing for both SDCMI and total costs balance,

the CLT train stop scheme P-O-N-M-C-D-F-J achieves a
total cost of 323,200 CNY with an SDCMI of 0.2418. The
optimal operation scheme is shown in Fig. 10.
The three optimization schemes reveal that extreme
optimization of any one target would lead to a significant
deterioration of the other target. The balanced value is critical
to resolving this conflict.
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TABLE 5
OPTIMIZATION RESULTS
Route Operation Frequency (Trains per Hour) Stopping Scheme Passenger Flow (Persons) Z, Z, (10*CNY)
Urban Rail Route 16 All stations Stopping 21354
Suburban Route 12 All stations Stopping 22242 0.2418 32.32
Cross-line Route 9 P-O-N-M-C-D-F-J 18369

Therefore, taking the balance between SDCMI and total
costs as the optimization objectives, the Pareto solution set is
obtained to obtain the optimal scheme. The values of each
index are shown in Table 5.
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Fig. 9. Train operation plan with the lowest total cost.
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Fig. 10. Train operation plan when the SDCMI and the total cost are
balanced.

C. Comparative analysis before and after the operation of
cross-line trains

The introduction of cross-line trains may significantly
impact the frequency of train service, total costs, and SDCMI
of the original line. To explore its impact on the operational
efficiency of the original line, a comparative analysis of the
train operation frequencies before and after cross-line
operation was conducted, as shown in Fig. 11.
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Fig. 11. Train service frequency before and after cross-line operation.
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As shown in Fig. 11, cross-line operations have introduced
9 trains per hour where none previously existed. These CLT
trains now partially absorb passenger demand originally
served by SLT trains, alleviating demand pressure on the
latter. However, CLT trains also occupy a portion of track
resources in shared sections of the URT line. Consequently,
the operation frequency of URT’s SLT trains has been
adjusted downward from 20 to 16 trains per hour, a 20%
reduction. In contrast, SR’s SLT trains maintain a stable
frequency of 12 trains per hour. This stability stems from
CLT trains attracting long-distance passengers through
regional connectivity, leaving short-distance demand
relatively unaffected. Passenger demand on routes served by
SLT trains remains unchanged mainly, preserving their
original frequency. The changes in the objective function
values before and after cross-line operation were further
analyzed, with comparison results shown in Fig. 12.

Fig. 12 shows that cross-line operations reduced the
SDCMI from 0.3847 to 0.2418, indicating a 37.1% reduction
in SDCMI, which demonstrates how CLT trains alleviate
localized supply-demand imbalances through resource
sharing and achieve capacity complementarity among
different types of lines. The Total costs decreased by 10.3%,
confirming the effectiveness of cross-line operations in
reducing passenger travel time and improving system
efficiency. However, the operator costs increased from
45,600 CNY to 48,900 CNY, suggesting a trade-off between
short-term economic efficiency and long-term network
performance. Operators must balance peak-period service
investments with off-peak cost controls by adjusting
cross-line frequency.
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Fig. 12. Objective function values before and after cross-line operation.

D. Comparative analysis of unbalanced and balanced

departure constraints

Departure interval constraints have a significant impact on
system costs and operational efficiency. To thoroughly
explore the performance differences of algorithms under
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varying constraint conditions, a comparative analysis of
unbalanced and balanced departure interval strategies is
conducted. Fig. 13 presents the algorithm convergence
curves under different constraints.

Fig. 13 reveals distinct convergence patterns between
unbalanced and balanced departure interval constraints. The
unbalanced constraint curve shows a steeper descent,
achieving faster convergence to lower objective values. The
cost impact comparison under different constraints is further
analyzed in Table 6.
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Fig. 13. Algorithm convergence curves under different constraints.

The SDCMI under unbalanced departure intervals shows a
32.5% improvement compared to balanced intervals, with
total costs reduced by 7.1%. These results demonstrate that
the non-equilibrium headway constraint can accelerate the
convergence of the algorithm, reduce costs, and enhance the
matching degree between transport capacity supply and
demand. Therefore, it is recommended to adopt the
unbalanced departure interval mode in cross-line operation.

TABLE 6
COST IMPACT COMPARISON UNDER DIFFERENT CONSTRAINTS

Constraint type Z Z,
Balanced departure interval constraints 0.3580 34.79
Unbalanced departure interval constraints 0.2418 32.32

E. Sensitivity analysis of the maximum load factor [,

The maximum load factor plays a crucial role in balancing
capacity and enhancing the passenger experience. The
sensitivity of the objective function to the variation of S,

was analyzed, and the influence of S, on the objective
function is shown in Fig. 14.
Fig. 14 shows that B, =0.8 is a critical point. At this

value, the total cost is 322,300 CNY and the SDCMI is
0.2314. Below this crucial point, increasing yields provides
dual benefits of cost reduction and degree improvement
matching. When f,,,, exceeds the critical point, adverse

effects on optimization occur. The research results guide
decision-makers in setting the optimal B, to balance

achieve cost efficiency and supply-demand consistency in the
operational plan.
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Fig. 14. The influence of S, on the objective function.

F. Sensitivity analysis of the value of passenger time 6

The value of passenger time is primarily determined by
local GDP. Analysis of the influence of different values of
passenger time on the model helps verify the model’s
adaptability under varying economic levels. The influence of
6 on the objective function is presented in Fig. 15.

Fig. 15 shows that when the Value of Passenger Time
increased from 0.4 CNY/min to 1.2 CNY/min, total cost rose
from 262,700 to 629,000 CNY, and the SDCMI increased
from 0.2329 to 0.3132. This demonstrates that higher
passenger time values elevate passenger travel costs and
transportation efficiency. € impact on the number of stops of
cross-line trains is shown in Table 7.

When the Value of Passenger Time increases from 0.4
CNY/min to 0.8 CNY/min, the optimal scheme reduces
cross-line train stops, indicating that passengers within this
economic level range increasingly prefer direct services as
the time value rises. When the Value of Passenger Time
increases from 0.8 CNY/min to 1.2 CNY/min, cross-line train
stops increase, showing that among passengers in this
economic level range, the long-distance passenger flow
proportion rises. The model must cover more OD pairs by
increasing the number of stops to reduce the time from station
departure to destination.
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Fig. 15. The influence of & on the objective function.
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TABLE 7
6 IMPACT ON THE NUMBER OF STOPS ON CLT
0 0.4 0.6 0.8 1.0 12
Number of Stops on CLT 9 8 7 8 9

V. CONCLUSION AND DISCUSSION

(1) Focusing on cross-line operation between SR and URT,
this paper establishes a bi-objective programming model.
This model prioritizes optimizing the SDCMI and
minimizing the total costs. Optimization results demonstrate
a 37.1% reduction in the SDCMI and a 10.3% decrease in
total costs, enhancing both efficiency and operational
economy. By integrating a mixed logit model with
event-activity network theory, the model accurately describes
multi-tier train coordination and the complex behavior of
passenger route choice.

(2) Comparative analysis shows cross-line operation trains
reduce overall line operation frequency by consolidating
long-distance passenger flow. However, the enterprise
experiences minor short-term cost increases, which provides
a basis for operators to implement differentiated
peak/off-peak strategies. Implementing non-equilibrium
departure intervals accelerates algorithm convergence,
reduces costs, and improves the SDCMI. Therefore,
asymmetric headways are recommended for cross-line
operation.

(3) Sensitivity analysis of key parameters indicates that
moderately increasing the maximum load factor improves
supply and demand capacity matching precision while
lowering operational costs. The objective function achieves
an optimal value at a maximum load factor of 0.8.
Excessively high load factors cause negative impacts.
Passengers from differing economic regions exhibit distinct
travel preferences. To accommodate these variations,
dynamic adjustment of station-specific stopping patterns is
necessary.

(4) There are still some limitations in this study. The
current framework does not incorporate dynamic passenger
flow real-time adjustment mechanisms, leaving the model’s
adaptability to sudden passenger flow fluctuations requiring
verification. Future research should account for passengers’
bounded rationality while integrating dynamic flow
prediction to extend the model’s adaptability to more

complex contexts.
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