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Abstract—Recommender systems, as the core engine of infor-
mation distribution, have evolved from early collaborative filter-
ing to an intelligent paradigm that fuses multimodal data with
deep learning techniques. However, extant approaches generally
suffer from a series of problems, such as insufficient modelling
of implicit feedback signals, limited exploitation of collaborative
relationships, and weak fusion of multimodal information. The
paper proposes a novel multimodal recommendation model,
DMCFRec, which adopts a parallel modelling mechanism of
structural and temporal paths, extracts higher-order synergistic
structural information through graph convolutional networks,
and models the temporal dependencies of user behaviors in
combination with an improved Transformer-Hawkes process.
The model introduces an implicit event modelling layer, which
fuses implicit feedback signals such as click frequency and
browsing duration to enhance the expression of users’ potential
preferences. It also designs a multimodal adaptive fusion
mechanism, which dynamically integrates graph structure,
temporal features, and implicit behaviours through multi-head
attention. Meanwhile, in order to enhance the recommendation
effect in sparse scenarios, the model introduces a lightweight
collaborative filtering module as an auxiliary supervision. The
experimental findings, derived from two publicly accessible
datasets, Beauty and ML-1M, demonstrate that DMCFRec
enhances the Recall@10 and NDCG@10 metrics by 4.62% and
7.71%, respectively, when compared with established models
such as EEDN, NGCF, LightGCN, and SGL (p ¡ 0.01). The
analysis further reveals that DMCFRec exhibits substantial
advantages in terms of recommendation accuracy and ranking
quality. The ablation experiments further validate the critical
contribution of each module to the overall performance. In
summary, DMCFRec provides an efficient and scalable solution
for personalised recommendation in complex scenarios. It
demonstrates good theoretical value and application prospects.

Index Terms—Keywords: implicit feedback; graph neural
networks; collaborative filtering; multimodal fusion; time series
recommendation.

I. INTRODUCTION

INthe contemporary digital economy, the development of
the Internet information ecosystem has led to the emer-

gence of recommender systems as a pivotal mechanism for
the dissemination of information. These systems have gained
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significant relevance across diverse domains, capable of
generating personalised recommendations for consumers[1].
Recommender systems have been identified as a significant
medium for the filtration of information and the provision
of personalised services, with a wide range of applications
across various domains, including e-commerce, content dis-
tribution, and social networks. These systems have been
demonstrated to effectively mitigate the challenges posed by
information overload, enhancing user engagement through
the provision of a personalised experience, and propelling
business growth[2]. The prevailing recommendation methods
are predicated on explicit feedback, such as user ratings or
click data, yet these methods frequently prove ineffective in
capturing the evolving interests of users due to their dynamic
nature. Consequently, the enhancement of the diversity of
recommendations has progressively emerged as a pivotal
area of focus within the domain of research concerning
recommender systems, with the objective of catering to the
escalating demand for diversified material life[3]. Concur-
rently, challenges such as cold start and data sparsity have
persisted in the domain of recommender systems. Despite
extensive research, effective solutions remain elusive[4], and
frequently encounter limitations[5], resulting in diminished
effectiveness in scenarios involving new users and items.

In addressing these challenges, researchers have proposed
numerous solutions to enhance the system. Collaborative
filtering methods provide a preliminary solution to the cold-
start problem by constructing similarity matrices between
users and items and mining potential correlation informa-
tion, while the effective use of implicit feedback signals
such as browsing length and click frequency provides new
perspectives for modelling users’ deeper interests. More-
over, with the continuous emergence of multimodal data,
including text, image, and behavioural data, the issue of
how to adaptively fuse different modal information to make
full use of their complementary advantages has become a
major focus in the field of recommender system research
in recent years. Concurrently, user behaviour is reflected
not only as static points of interest, but also accompanied
by clear time-dynamic features. This aspect is frequently
disregarded by conventional models; however, enhancing
temporal modelling capabilities can facilitate the capture of
temporal user interest evolution, thereby facilitating more
precise prediction. Consequently, the amalgamation of graph
structure modelling and temporal modelling, in conjunction
with the implementation of advanced techniques such as the
Transformer-Hawkes process[6], has emerged as a pioneering
research direction within the domain of recommender sys-
tems. This approach facilitates a comprehensive and multi-
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level characterisation of user behaviours.
This study is conducted in this particular context with the

objective of overcoming the limitations of existing methods
in implicit feedback, collaborative information exploitation
and multimodal fusion. The aim is to enhance the overall
performance and robustness of recommender systems in
complex scenarios. This is achieved by introducing collabo-
rative filtering modules, designing implicit event modelling
layers, constructing multimodal adaptive fusion mechanisms
and implementing innovative temporal modelling techniques.

From a theoretical standpoint, the field of recommender
systems encompasses a multitude of interdisciplinary do-
mains, including data mining, machine learning, and social
network analysis, among others. The findings of the research
not only serve to enhance the extant theoretical framework
of artificial intelligence, but also furnish novel concepts for
the modelling of complex systems. In particular, the research
on recommender systems has made significant progress in
overcoming the limitations of traditional algorithms, facili-
tating a more profound and multidimensional analysis of user
behaviour, particularly in the domains of dynamic capture of
user interest and fusion of multimodal information. From
a pragmatic standpoint, recommender systems have been
extensively utilised in a plethora of domains, including e-
commerce, news, video, and social networking. Enterprises
stand to benefit from the employment of accurate recommen-
dation algorithms, which facilitate enhanced comprehension
of user preferences, elevated user stickiness, and augmented
market conversion rates. Concurrently, these enterprises are
able to furnish precise data support for the realms of adver-
tising and product customisation. The practical application
of recommender systems has been shown to enhance the
competitiveness of enterprises whilst simultaneously pro-
viding consumers with a more personalised and superior
service experience. In the future, the development of rec-
ommender systems will be characterised by an increased
focus on real-time functionality, enhanced robustness, and
the comprehensive integration of cross-domain information.
Advances in big data, the Internet of Things and artificial in-
telligence technologies have led to significant developments
in recommendation systems. These systems are capable of
achieving more accurate modeling and intelligent decision-
making, thereby promoting efficient information circulation
and resource allocation in the digital economy. This, in
turn, has the potential to enhance the overall level of social
informatization.

In recent years, the role of implicit feedback in recom-
mender systems has been the focus of increased attention.
Conventional recommendation methodologies predominantly
depend on explicit rating data, such as Matrix Factorization
(MF)[7] and Collaborative Filtering (CF)[8]. However, in prac-
tice, explicit ratings are frequently sparse and challenging
to encompass the entire range of user preferences. Conse-
quently, researchers have adopted the utilisation of modelling
data, such as users’ clicks, browsing behaviour, dwell time,
and purchasing behaviour, as an indirect indicator of users’
interests. For instance, the Implicit MF[9] model proposed by
Hu et al. builds a trust matrix based on the intensity of users’
behaviours; He et al. fused implicit signals with a neural
network structure in NCF (Neural Collaborative Filtering)[10];
while behavioural sequence-based models such as DIN[11]

and DIEN[12] use attentional mechanisms to enhance the
portrayal of behavioural preferences. As demonstrated above,
the existing methods have enhanced the performance of the
models to a certain extent. However, the majority of these
methods do not systematically integrate the joint modelling
of multiple implicit signals, such as behavioural frequencies
and durations. Furthermore, they lack deep integration with
temporal dynamics modelling, which results in an insufficient
ability to capture the interests of long-term users.

In the context of collaborative relationship modelling
and multimodal fusion, conventional collaborative filtering
methodologies such as ItemKNN[13] and SVD++[14] have
attained certain outcomes by means of explicit modelling
of the interaction similarities between users or items. The
development of graph neural networks (GNN) has led to
significant advancements in recommendation efficiency, with
LightGCN[15] being a notable example of this progress.
This improvement is achieved by simplifying graph convo-
lution operations (removing nonlinear activations and feature
transformations), focusing on neighbourhood aggregation.
Furthermore, SGL (Self-supervised Graph Learning)[16] in-
troduces a self-supervised comparison learning task, which
optimises graph representations through data augmentation
and node contrast to optimise graph representation. HCCF
(Hypergraph-enhanced Cross-view Contrastive Learning)[17]

further exploits the hypergraph structure to capture higher-
order semantic relationships and combines cross-view con-
trastive learning to enhance the model’s generalisation ability.
Conversely, NCL (Node Contrastive Learning)[18] strength-
ens the differentiation between positive and negative samples
through node-level contrast learning, which improves the
robustness in sparse scenarios. Moreover, EEDN (Enhanced
Encoder-Decoder Network)[19] illustrates the merits of multi-
modal feature integration in POI recommendation by means
of the fusion of local interactions with global graph structure
information through an encoder-decoder architecture.

Nevertheless, extant approaches are still manifestly limited
in scope. Firstly, the majority of graph models, including
LightGCN and NGCF[20], neglect to fully consider the
implicit feedback differences in user behaviours. Despite
their ability to capture higher-order collaborative signals,
this results in biased node representations. Furthermore, the
fusion mechanisms of sequences and graph structures, such
as SR-GNN[21] and TAGNN[22], predominantly adopt static
weight assignments. These assignments are challenging to
adapt to the dynamic changes of multi-source heterogeneous
data, especially in scenarios where data is noisy or cold-
start, resulting in significant performance degradation. Ad-
ditionally, although comparative learning frameworks such
as SGL and NCL alleviate the problem of sparsity through
data augmentation, the joint modelling of positive and neg-
ative feedback in implicit behaviours remains inadequate.
For instance, EEDN does not explicitly differentiate be-
tween preference strength and time decay effects in user
behaviour, despite introducing global interaction features.
These shortcomings have a deleterious effect on the accuracy
and interpretability of existing models in complex scenarios.
Consequently, there is still scope for enhancement in the fine-
grained characterisation of implicit feedback modelling, mul-
timodal dynamic fusion mechanisms, and temporal-structural
co-optimisation. There is also a significant requirement for
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a novel recommender framework that can integrate user
behaviour signals in a consolidated manner, adaptively assign
modal weights, and enhance the robustness of sparse data.

The purpose of this paper is to propose a dual-path mul-
timodal recommendation model, termed DMCFRec (Dual-
path Multi-modal Collaborative Filtering Framework with
Implicit Feedback), and to develop an innovative design
around the following two key directions:

(1) In the context of implicit feedback modelling, this
paper proposes the Implicit Event Layer (IEL), which, for
the first time, incorporates implicit behavioural signals, such
as the number of user clicks and browsing duration, into the
sequence modelling process, instead of relying on explicit
ratings or item access sequences. This development signifi-
cantly enriches the semantic representation of user behaviour.
Concurrently, in order to enhance the model’s capacity to
simulate the temporal patterns of user behaviours, this paper
proposes a temporal fusion predictor (TFP) founded on
the time-perceived intensity function (Hawkes process). The
probability of non-event occurrence is estimated through
Monte Carlo integration, facilitating the model’s discernment
of the distinction between actual and potential non-occurred
behaviours concurrently. This enables a more precise de-
piction of the trend in the evolution of user interest. The
model can be used to achieve a more accurate portrayal of
the evolutionary trend of user interests.

(2) In the context of collaborative fusion mechanisms, the
present paper proposes a structural fusion system comprising
a collaborative filtering (CF) module and a multi-modal
adaptive fusion (MAF) module. Firstly, the introduction
of a cosine similarity matrix between user-user and item-
item relationships enables the construction of a lightweight
collaborative filtering module. This module has been shown
to enhance the robustness of the model’s recommendations in
cold-start and sparse data scenarios. Secondly, the paper puts
forward a proposal for an adaptive fusion strategy based on
a multi-modal attention mechanism. This strategy is capable
of dynamically assigning different importance weights to
different modal features. This, in turn, enhances the recom-
mendation robustness in cold-start and sparse data scenarios.
The strategy is also able to provide graph structural informa-
tion and time-series representations in the user’s behavioural
sequences. The employment of distinct importance weights
has been demonstrated to enhance the fusion capability and
generalisation performance of the model when processing
heterogeneous information from multiple sources.

The integration of the aforementioned dual-path modelling
and collaborative fusion mechanism has been demonstrated
to enhance the accuracy and stability of the recommendation
results, while preserving model flexibility and scalability.

II. METHODOLOGY
A. Overall structure of the model

Research in the field of recommender systems is charac-
terised by ongoing developments in dynamic interest mod-
elling and multimodal fusion. The graph neural network-
based model NFARec[23] is notable for its extraction of long-
term dependencies in user behaviour sequences through a
self-attention mechanism, and its encoding of co-occurrence
relationships between items in conjunction with graph con-
volutional networks (GCNs). The model captures the global

topology of item interactions using adjacency and relevance
matrices, and performs end-to-end optimisation through
event prediction loss with ranking loss. Nevertheless, the
model exhibits notable deficiencies. Firstly, the model de-
pends exclusively on a single deep learning path, which is
not combined with the explicit similarity computation of tra-
ditional collaborative filtering. This results in underutilisation
of global user-item association signals. Secondly, it lacks
fine-grained modelling of implicit feedbacks, such as click
frequency and browsing time, which makes it difficult to
capture short-term preferences. Thirdly, it has a rigid fusion
mechanism for multi-modal features, such as time, context,
and graph structure, and is unable to dynamically adapt to
changes in the data distribution.

In order to address the aforementioned issues, this paper
puts forward the DMCFRec framework, which attains sys-
tematic innovation through the implementation of a modular
design. In the dual-path collaborative filtering module, the
model separates and co-optimises the traditional collabo-
rative filtering and deep learning paths for the first time.
The conventional collaborative filtering approach involves
the calculation of user-user and item-item cosine similarity
matrices, with the introduction of a time decay factor to
dynamically update weights, thereby addressing the lim-
itation of static similarity calculation. The deep learning
approach enhances the original Transformer/THP encoder by
integrating short-term click signals in behavioural sequences
with long-term interest evolution through the gated attention
mechanism. The outputs of the two types of paths are then
fused by an adaptive weight assignment module, which takes
into account the global stability of collaborative filtering and
the local sensitivity of deep learning. In order to further
explore the value of multimodal data, the model designs
a multimodal dynamic fusion module that integrates user
behavioural embedding, temporal embedding, contextual em-
bedding, and collaborative filtering features, and dynamically
adjusts the contribution weights of each modality through
the gating network. For instance, the temporal embedding
layer encodes time bins as low-dimensional vectors to cap-
ture the time decay effect, while the context-aware graph
convolutional network injects external information such as
item categories and prices to enhance topological relationship
modelling. Additionally, the model explicitly parses implicit
signals in user behaviours through the implicit feedback
enhancement module, quantifies the user’s recent activity
through the click frequency calculator, and filters noisy
signals through the gated time-attention mechanism. This
highlights the impact of high-confidence behaviours, thus
solving the difficulty of preference capture in scenarios where
explicit ratings are scarce.

In order to account for the dynamic evolution of user inter-
ests, the model proposes a dynamic interest evolution mod-
ule. This module combines GRU[24] and LSTM[25] networks
in order to capture local mutations in short-term behavioural
sequences, such as promotion-induced click surges, and slow
changes in long-term interests, such as seasonal prefer-
ence migrations, respectively. The model dynamically aggre-
gates long- and short-term interest representations through a
collaborative attention mechanism. Concurrently, the graph
structure enhancement module enhances the static graph
convolution layer of the original model, designs a behaviour-
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aware graph construction strategy, dynamically adjusts the
item adjacency matrix weights according to the real-time
behaviour of the user, and introduces a time decay factor
to weaken the contribution of historical interactions so that
the graph structure can be adaptively updated in response to
the evolution of user behaviour. The model diagram is shown
in Figure 1.

B. Data Preprocessing Module

In order to comprehensively analyse the structured in-
formation between users and items, this module initially
discretises the raw rating data. The rating threshold is set,
and the raw ratings are transformed into positive and negative
binary feedbacks. Thereafter, a sparse rating matrix R is
generated. The rating matrix is then used to construct the
item co-occurrence matrix C, and the adjacency matrix A is
generated for subsequent graph modelling. The preprocessing
strategy of this module has been shown to enhance the
robustness of interaction signals and to provide fundamental
support for subsequent graph structure coding.

(1) Scoring matrix discretisation:

Rui =

 1, rui > τ
−1, rui ≤ τ
0, User not interacting with the item

(1)

In this study,Rui is used to denote the discrete rating of
item i by user u It is important to note that rui is the
original rating value (usually 1-5). In addition, τ is the rating
threshold, which is always 3.

(2) Item co-occurrence correlation matrix:

C =
RTR

max(RTR)
(2)

In this study, the term C ∈ R|I|×|I| is employed to denote
the normalised item relevance matrix, whilst RTR is used to
represent the number of times each pair of items is jointly
rated by the user. The denominator is utilised for maximum
value normalisation.

(3) Adjacency matrix construction:

Aij =

{
1, ∃u : Rui ̸= 0 ∧Ruj ̸= 0
0, if not (3)

In this study, Aij is employed to denote the presence of
co-occurring interactions between items i and j. In instances
where at least one user interacts with both i and j, this is
indicated by assigning a value of 1.

C. Event Sequence Coding Module

The behavioural sequences of a user, as recorded over
time, are indicative of the trend in that user’s evolving
preferences. The module utilises embedding vectors and
location coding to vectorise the behavioural sequences, in-
troducing a multi-head self-attention mechanism to capture
their long-term dependencies and local interest biases. In
comparison with the conventional RNN configuration, the
self-attention mechanism exhibits superior parallel efficiency
and long-term modelling capability, rendering it particularly
well-suited for data characterised by sparse sequences. The
items in the sequence are initially mapped by embedding

matrices and subsequently superimposed with their corre-
sponding position codes. Subsequently, the query, key, and
value matrices are obtained through linear mapping and
enter the attention mechanism for weight computation. The
multi-head attention’s output is then fused by splicing and
linear transformation into a final representation of the user’s
historical behaviour as an encoded vector of the user’s
personality preferences.

(1) Item sequence embedding and location coding:

zik = eik + pk, k = 1, . . . , t (4)

In this study, the term eik is used to denote the embedding
vector of item ik. The term pk is used to denote the coding
vector of the kth position in the sequence, and zik is used to
denote the final embedding of the fused position information.

(2) Linear transformation of the attention head:

Q = ZWQ, K = ZWK , V = ZWV (5)

In this study, the item sequence matrix is denoted by
Z. The mapping matrices for queries, keys and values are
denoted by WQ, WK , WV , respectively.

(3) Single-headed attention mechanisms:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6)

In this context, dk denotes the dimension of the key, and
softmax is employed to regulate the attention allocation
weights.

(4) Multi-attention fusion:

ht = Concat(head1, . . . ,headH)WO (7)

In this context, ht denotes a composite representation
of the user’s historical behaviour. The term WO signifies
a multi-head output projection matrix, and H denotes the
number of heads.

D. Collaborative Filtering Module

Conventional collaborative filtering methodologies have
demonstrated efficacy in the domains of cold-start and long-
tail item recommendations, through the utilisation of user
similarity metrics. The integration of collaborative filter-
ing information within the deep modelling framework is
achieved through the implementation of a collaborative sub-
module that facilitates neighbourhood score-weighted pre-
diction, utilising the cosine similarity metric between user
interaction sets. Specifically, the process commences with the
calculation of the similarity between users. Subsequently, the
neighbourhood users’ ratings are weighted and aggregated
based on the similarity to obtain the predicted score. The
cosine score will serve as a crucial supplementary feature,
facilitating participation in the subsequent fusion process in
conjunction with the sequence representation.

(1) User similarity calculation:

s(u, v) =
|Iu ∩ Iv|√
|Iu| · |Iv|

(8)

In this context, the term Iu is used to denote the set of
interaction items pertaining to user u, s(u, v) is employed to
represent the cosine similarity.
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Fig. 1. Diagram of the DMCFRec model

(2) Collaborative filtering score estimation:

r̂CF
ui =

∑
u∈Nu

s(u, v) ·Rvi (9)

The set of nearest neighbours of user u is denoted by
Nu, and the rating of item i by nearest neighbour user v is
denoted by Rvi.

E. Implicit Feedback Enhancement Module

Explicit ratings frequently prove inadequate in providing
a comprehensive representation of user preferences. To ad-
dress this limitation, we propose the integration of implicit
behavioural signals, such as the number of clicks and the
duration of browsing sessions, as enhancement features.
These additions are designed to complement the latent in-
terest exhibited by users during interactions, offering a more
holistic perspective on user behaviour. These implicit signals
are characterised by their realism and continuity, particularly
in circumstances where users demonstrate an absence of
active rating behaviour or where ratings are subject to noise.
In this module, implicit features are modelled by a multi-
layer perceptual machine and fused with user embeddings
in a linearly weighted manner to form an augmented user
representation that improves the granularity and dynamic
adaptability of user interest expression.

(1) Implicit feedback representation:

f imp
ui = ϕ (Wimp · [cui, tui] + bimp) (10)

In this equation,[cui, tui] is the implicit feedback input vec-
tor, Wimp and bimp are the MLP (Multi-Layer Perceptron)
weights and biases, and ϕ(·) is the activation function.

(2) User-embedded enhancements:

ẽu = eu + λ · f imp
ui (11)

In the context of the aforementioned theoretical frame-
work, the term eu is used to denote the original user
embedding, λ is employed to represent the fusion weight,
and ẽu is used to denote the enhanced user vector.

F. Multi-attention Fusion Module

A plethora of sources can be utilised to ascertain user
preference information, including behavioural sequences,
collaborative scores and implicit feedbacks, amongst others.

The efficacy with which various types of features can be
integrated is a critical factor in determining the ultimate
performance of the recommender system. The module em-
ploys a multi-channel attention mechanism to weight the
fusion of multiple feature sources, with each feature channel
learning its relative importance through the attention network
to avoid information redundancy and conflict. Specifically,
the attention score for each feature channel is calculated, and
the fusion is weighted according to the attention weights to
produce a unified user-item interaction representation vector.

(1) Attention weight calculation:

αj =
exp(ω⊤

j tanh(Wxj))∑
k exp(ω

⊤
k tanh(Wxk))

(12)

In this context, xj denotes the jth feature channel (e.g.,
sequence, CF, implicit feedback), and W and wj represent
the attention parameters.

(2) Feature fusion representation:

zui =
∑
j

αj · xj (13)

The final fused interaction representation is denoted by
Zui.

G. Temporal Feedback Modelling Module
Conventional models have historically neglected to con-

sider the impact of temporal information between behaviours
on alterations in preference. The Monte Carlo integration
approach is utilised in this module to model ’non-event’
behaviours, defined as those that do not occur within the
specified time span of the user. The module employs this
modelling to estimate the effect of the time period on the
user’s interest, distinguishing between periods of weakening
or strengthening. This mechanism enhances the model’s ca-
pacity to discern short-term interest mutation and long-term
interest dilution. The model samples multiple time points
within a time interval and models the non-event contributions
using the softplus function. This is then fed into the fusion
module as a feature complement.

(1) Time-feedback integral estimation:

Itime
ui =

1

N

N∑
n=1

softplus(hui + α · δtn) ·∆t (14)

In this study, the term δtn is employed to denote the nth
sampling time point. The parameter α is utilised to denote
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the time scaling parameter, whilst hui is employed to denote
the intermediate preference representation. The term ∆t is
employed to denote the time interval length.

H. Dynamic Fusion and Prediction Module

The function of this module is to integrate the output
representations of multiple modules, as previously described,
to form a complete feature. The prediction score of the user-
item preference is then output through a fully connected
neural network with a Sigmoid activation function. The
outputs of all modules are spliced into a multidimensional
feature vector, which is then nonlinearly transformed and
normalised by the neural network to output the prediction
score, namely the user u recommended preference for item
i.

(1) Feature splicing:

z =
[
ht ∥ r̂CF

ui ∥ f imp
ui ∥ Itime

ui

]
(15)

The symbol || is used to denote the splicing operation, and
z is the final feature vector.

(2) Predictive scoring output:

Ŷuī = σ(ω⊤z+ b) (16)

The function σ(·) is known as the Sigmoid function, and
the predicted probability of the user’s preference for the item,
ŷui is defined as belonging to the interval [0, 1].

III. EXPERIMENTATION

A. Experimental Setting

Two public datasets are utilised in the experimental pro-
cess: the Amazon beauty category and the MovieLens-1M
movie rating dataset. The data are arranged according to
timestamp and divided into training, validation and test sets
with a ratio of 8:1:1. When ratings ≥ 4 are considered as im-
plicit feedback, the number of user interactions in the Beauty
dataset displays a power law distribution (with a significant
long-tail effect). In contrast, ml-1M approaches a normal
distribution, and the amalgamation of these two approaches
provides a comprehensive evaluation of the model’s adapt-
ability to varying distribution patterns. In order to eliminate
the presence of data bias, the long-tailed distributions of
users and items were truncated, and users and items with
a minimum of five interactions were retained, as shown in
Table I.

TABLE I
STATISTICS OF THE EXPERIMENTAL DATASETS. ”#AVG.” DENOTES THE

AVERAGE COUNT OF USERS’ INTERACTIONS. ”PERC.(#POS/#NEG)”
REFERS TO THE PERCENTAGE OF POSITIVE AND NEGATIVE SAMPLES

Dataset #Users #Items #Interaction Perc.(#Pos/#Neg) #Avg

Beauty 22363 12101 198,502 80.2%/19.8% 8.9
MovieLens 6041 3955 1,000,209 73.5%/26.5% 165.6

The model has been implemented using the PyTorch
framework, with the optimiser set to Adam, a learning
rate of 0.001, a batch size of 2048, and an embedding
dimension of 64. In order to prevent overfitting, Dropout
(with probability 0.2) and L2 regularisation (with coefficients
1e-4) are utilised. It has been established that, during the

training process, the early stopping mechanism is triggered if
the validation set loss does not decrease for five consecutive
rounds. The model employs the conventional metrics of
recall at k and the Normalized Discounted Cumulative Gain
(NDCG) at k, which are widely utilised in the domain of
recommender systems (k=5, 10).

The recall@k metric is a quantitative assessment of the
model’s capacity for recall within the context of the Top-k
recommendation list, calculated as follows:

Recall@k =
Number of positive sample hits

Number of all positive samples of the user

The NDCG@k metric is employed to evaluate the ranking
quality of recommendation lists, with the formula used to
calculate this being as follows:

NDCG@k =

∑K
i=1

2reli−1

log2(i+1)

DCG@k in ideal ordering

The experiment was replicated on five occasions, and the
resulting data were analysed as a mean with standard devi-
ation. Statistical significance was determined by two-tailed
Student’s t-test, with p-values and confidence intervals (95%)
being reported. The calculation of percentage performance
improvement was based on mean comparison.

B. Overall Performance Comparison

In order to verify the validity of the models, this paper
compares the following classic cutting-edge models:

The EEDN model is a recommendation model that fuses
augmented representation learning with deep neural network
structure. It employs multi-layer neural networks to model
non-linear interactions between users and item embeddings.

LightGCN is a lightweight graph convolutional network
with simplified feature transformations and nonlinear activa-
tion, emphasising neighbourhood aggregation.

SGL is a self-supervised graph learning framework that
enhances data representation through contrast learning.

The HCCF (Hypergraph Collaborative Filtering) model
is a data mining technique that exploits the structure of
hypergraphs to capture higher-order semantic relationships.

The NCL recommendation model is predicated on the
principle of node contrast learning, a methodology that has
been demonstrated to enhance the robustness of the model
through the augmentation of positive and negative sample
comparisons.

As demonstrated by the experimental results presented
in the table, as shown in Table II, DMCFRec exhibits a
substantial enhancement in recommendation accuracy and
ranking quality when compared to the existing baseline
model on both datasets. To elaborate, the DMCFRec model’s
Recall@10 and NDCG@10 values, calculated for the Beauty
dataset, demonstrate a 4.62% and 7.71% enhancement over
the EEDN baseline, respectively. A similar enhancement
is observed for the ml-1M dataset, with Recall@10 and
NDCG@10 values of 0.1205 and 0.3341, respectively, in-
dicating an improvement of 6.07% and 16.08% over the
EEDN model. It is noteworthy that all these enhancements
surpass the statistical significance threshold of p < 0.01, as
determined by the applied significance test. The experimental

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4405-4414

 
______________________________________________________________________________________ 



TABLE II
PERFORMANCE COMPARISON BETWEEN DMCFREC AND BASELINE MODEL

Dataset Metric EEDN[19] HCCF[17] LightGCN[15] NCL[18] SGL[16] SHT[26] Ours

Beauty

Recall@5 0.0548 0.0367 0.0489 0.0521 0.0522 0.0520 0.0598
Recall@10 0.0779 0.0517 0.0704 0.0688 0.0737 0.0719 0.0815
NDCG@5 0.0476 0.0344 0.0414 0.0453 0.0467 0.0415 0.0523

NDCG@10 0.0558 0.0387 0.0499 0.0502 0.0530 0.0513 0.0601

ml-1M

Recall@5 0.0737 0.0603 0.0603 0.0673 0.0665 0.0698 0.0783
Recall@10 0.1136 0.0967 0.0863 0.1029 0.1069 0.1072 0.1205
NDCG@5 0.3222 0.2490 0.2438 0.2579 0.2767 0.2822 0.3716

NDCG@10 0.2878 0.2539 0.2476 0.2497 0.2829 0.2739 0.3314

results provide validation of the effectiveness of the dual-path
collaborative filtering and multimodal fusion mechanism,
especially in sparse scenarios (e.g., Beauty), where the model
captures fine-grained behavioural signals through the implicit
feedback enhancement module to further alleviate the data
sparsity problem.

C. Analysis of ablation experiments

In order to validate the effectiveness of the core modules
of the model, the present paper conducts systematic ablation
experiments on each of the two datasets, removing the
following modules in turn for comparative experiments, as
shown in Table III. The Collaborative Filtering Path (w/o CF)
denotes the elimination of the direct propagation path for
user–item interactions. The Interest Evolution Module (w/o
IEL) is characterised by the disablement of temporal feature
extraction and the attention mechanism. The Multimodal
Fusion Mechanism (w/o MAF) involves the retention of a
single modality, such as text or images, instead of integrating
multiple data sources. The absence of Temporal Feature Pro-
cessing (w/o TFP) entails the disregard of temporal context
information pertaining to user behaviour.

In the context of the Beauty dataset, the full model attains
0.0815 and 0.0601 for Recall@10 and NDCG@10, respec-
tively. Conversely, the removal of the collaborative filtering
path (w/o CF) results in a decline of approximately 7.9% in
NDCG@10, indicating that this module plays a pivotal role
in enhancing the robustness of recommendations through the
mechanism of explicit similarity propagation. Disabling the
interest evolution module (without IEL) similarly leads to a
performance degradation, with NDCG@10 decreasing from
0.0601 to 0.0543, validating the importance of temporal mod-
elling in capturing users’ dynamic preferences. Furthermore,
the elimination of the multimodal fusion mechanism (w/o
MAF) and temporal feature processing (w/o TFP) has been
shown to result in a 9.3% and 9.1% performance degradation,
respectively. This suggests that both mechanisms contribute
positively to the effective integration of heterogeneous in-
formation and temporal context modelling.The experimental
results for the Beauty dataset are illustrated in Figure 2.

In the ml-1M dataset, the full model achieves a recall@5
of 0.0783 and a recall@10 of 0.1205. A series of ablation
experiments were conducted to ascertain the impact of re-
moving various components on the model’s performance.
It was found that the removal of the Interest Evolution
Module (w/o IEL) had the greatest impact on recall@5,

with a significant decrease from 0.0783 to 0.0532, repre-
senting a 32.0% reduction. This result further corroborates
the importance of the temporal perception mechanism in
capturing the evolution of user interests, emphasising the
pivotal role of the time-aware mechanism in this process. The
elimination of the collaborative filtering path (w/o CF) and
the multimodal fusion mechanism (w/o MAF) also results
in varying degrees of decrease in the Recall and NDCG
metrics, respectively, suggesting that collaborative modelling
of multi-source information is of significant importance in
enhancing recommendation accuracy. The elimination of the
temporal feature processing module (TFP) has also been
demonstrated to result in a reduction in the model’s capacity
to discern temporal context. The experimental outcomes
derived from the ml-1M dataset are presented in Figure 3.

In summary, the DMCFRec model has been demonstrated
to enhance the performance and stability of the recommender
system in complex data environments through the synergistic
action of the modules of collaborative filtering paths, interest
evolution modelling, multimodal fusion and temporal context
processing.

In order to investigate the synergistic effects between dif-
ferent modules, joint ablation experiments were conducted.
In these experiments, two core modules were simultane-
ously removed from the complete model. These modules
included collaborative filtering (CF), adaptive multimodal
fusion (MAF), interest evolution learning (IEL), and time-
aware feature processing (TFP). The experiments were con-
ducted on the Beauty and ML-1M datasets, with evaluation
metrics including Recall@{5, 10} and NDCG@{5, 10}. It is
noteworthy that all ablation configurations were maintained
at the same level of hyperparameterisation as the complete
model. Furthermore, the removed modules were replaced
with equidimensional linear mappings in order to circum-
vent any potential interference that might have arisen from
disparities in parameter counts.

The experimental results are displayed in Table IV. In
comparison with the complete model, all joint ablations
resulted in a decline in performance. Among them, the
most significant degradation was observed in the absence
of both collaborative filtering (CF) and adaptive multimodal
fusion (MAF) (w/o CF+MAF). On the Beauty dataset,
the Recall@10 decreased from 0.0815 to 0.0786, and the
NDCG@10 decreased from 0.0601 to 0.0581. On the ML-
1M dataset, the Recall@10 decreased from 0.1205 to 0.1150,
while the NDCG@10 declined from 0.3314 to 0.3129,

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4405-4414

 
______________________________________________________________________________________ 



TABLE III
ABLATION STUDY ON BEAUTY AND ML-1M DATASETS

Dataset Beauty ml-1M

Metric Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10

Full model 0.0598 0.0815 0.0523 0.0601 0.0783 0.1205
w/o CF 0.0547(-8.53%) 0.0753(-7.61%) 0.0478(-8.61%) 0.0553(-7.97%) 0.0748(-4.47%) 0.1150(-4.56%)
w/o IEL 0.0537(-10.2%) 0.0736(-9.69%) 0.0472(-9.75%) 0.0543(-9.65%) 0.0532(-32.06%) 0.0738(-38.76%)
w/o MAF 0.0539(-9.87%) 0.0751(-7.85%) 0.0468(-10.52%) 0.0545(-9.32%) 0.0752(-3.96%) 0.1152(-4.39%)
w/o TFP 0.0534(-10.71%) 0.0752(-7.73%) 0.0469(-10.33%) 0.0547(-8.98%) 0.0745(-4.85%) 0.1153(-4.32%)

Fig. 2. Comparison of ablation experiments on the Beauty dataset

Fig. 3. Comparison of ablation experiments on the ml-1M dataset
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TABLE IV
JOINT ABLATION STUDY RESULTS ON BEAUTY AND ML-1M DATASETS.

Metric Beauty ML-1M

Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

W/O CF+MAF 0.0573 0.0786 0.0505 0.0581 0.0758 0.1150 0.3515 0.3129
W/O IEL+TFP 0.0567 0.0776 0.0498 0.0574 0.0755 0.1160 0.3522 0.3142
W/O MAF+TFP 0.0563 0.0774 0.0496 0.0572 0.0745 0.1155 0.3478 0.3111
W/O IEL+MAF 0.0557 0.0775 0.0493 0.0572 0.0761 0.1166 0.3533 0.3150

Full model 0.0598 0.0815 0.0523 0.0601 0.0783 0.1205 0.3715 0.3314

indicating that the collaborative filtering group-preference
prior and the multimodal fusion mechanism have substan-
tial complementary effects in terms of feature alignment
and the mitigation of data sparsity. Furthermore, the elim-
ination of MAF and time-aware feature processing (TFP)
(w/o MAF+TFP), as well as the elimination of interest
evolution learning (IEL) and MAF (w/o IEL+MAF), also
led to noticeable degradation, highlighting that temporal
dynamics modelling and interest evolution are indispensable
in multimodal information fusion.

D. λlambda Parameter Sensitivity Analysis

This paper conducts a univariate sensitivity analysis to
investigate the impact of the λ parameter, which controls
the fusion ratio between the enhancement vectors generated
from implicit behavioural features such as click frequency,
browsing time and the original user embeddings, on model
performance. The parameter λ serves as the core hyper-
parameter in the implicit feedback enhancement module.
Different values of λ directly affect the model’s ability to
balance capturing users’ potential interests and suppressing
noisy signals.

The experiments involved training and validating six dif-
ferent values of λ ({0.0, 0.1, 0.2, 0.5, 1.0, 2.0}) on the Beauty
dataset, while keeping all other hyperparameters consistent
with the main experiments. To minimise the influence of
randomness, each parameter configuration was evaluated
under random seeds {0, 1, 2}, and the optimal NDCG@10
results were recorded. The final average was then taken as
the performance indicator for each configuration.

TABLE V
EXPERIMENTAL RESULTS UNDER DIFFERENT λ VALUES.

λ Seed=0 Seed=1 Seed=2 Mean ± Standard deviation

0.0 0.0103 0.0107 0.0105 0.0105 ±0.0002
0.1 0.0156 0.0163 0.0158 0.0159 ±0.0004
0.2 0.0206 0.0210 0.0210 0.0209 ±0.0002
0.5 0.0320 0.0317 0.0323 0.0320 ±0.0003
1.0 0.0402 0.0405 0.0407 0.0405 ±0.0003
2.0 0.0473 0.0471 0.0476 0.0473 ±0.0003

The results in Table V show that as λ increases from 0 to the
range of 0.5–1.0, the model’s performance steadily improves.
This demonstrates that introducing an appropriate amount of
implicit feedback features can effectively complement fine-
grained information regarding users’ interest expression and
enhance the model’s dynamic adaptability. When λ = 0,
the model degenerates into a baseline structure without
implicit feedback enhancement, resulting in significantly
lower performance compared to the optimal configuration.

In contrast, when λ is excessively large (e.g., λ = 2.0), the
NDCG@10 metric decreases due to over-amplification of the
implicit feedback signal, which diminishes the contribution
of structured and temporal features. This overemphasis leads
to a bias towards short-term behavioural patterns in interest
representation. Overall, these results verify the sensitivity of
λ to model performance and provide a solid basis for select-
ing an appropriate parameter value in practical deployments.

IV. SUMMARY

The proposed model, designated as DMCFRec, is a
dual-path multimodal collaborative filtering recommenda-
tion model intended for complex recommendation scenarios.
The aim of the model is to address the core problems
of traditional recommendation systems, namely insufficient
implicit feedback modelling, limited use of collaborative
information, and weak multimodal feature fusion capability.
The model introduces a collaborative modelling mechanism
between structural and temporal paths, and combines a
graph convolutional network and an improved Transformer-
Hawkes process to effectively capture higher-order structural
relationships and time-dependent features of user behaviours.
Concurrently, the design of an implicit feedback enhance-
ment module and a multimodal adaptive fusion mechanism
enables the exploration of implicit behavioural signals, such
as clicking frequency and browsing time, and contextual fea-
tures, thereby significantly improving the representation of
users’ interests. This development has been shown to enhance
the granularity and robustness of user interest representation.
A series of comparison experiments were conducted on two
representative datasets, Beauty and MovieLens-1M, to assess
the performance of DMCFRec in relation to existing main-
stream recommendation models. The experimental results
demonstrated that DMCFRec exhibited superior performance
in key metrics such as Recall@10 and NDCG@10. This
observation serves to substantiate the effectiveness and valid-
ity of DMCFRec under diverse conditions characterised by
sparsity and variations in data domains. Subsequent experi-
mentation has demonstrated that the proposed sub-modules
fulfil pivotal functions in optimising model performance,
with particular emphasis on the collaborative filtering path
and implicit feedback modelling modules, which have been
shown to enhance accuracy and ranking ability to a signifi-
cant degree. Consequently, DMCFRec not only enhances the
theoretical comprehension of implicit feedback and multi-
modal fusion, but also offers a pragmatic approach to the de-
velopment of efficient and robust personalised recommender
systems. This approach holds considerable promise for future
applications and expansion.
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