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A Comprehensive Analysis of Clique Vertex
Neighborhood Numbers

Swarna J B, K Arathi Bhat and Smitha Ganesh Bhat*

Abstract—The open neighborhood N (w) of a vertex w € V
consists of all vertices adjacent to w in an undirected graph. The
closed neighborhood N [w], includes w and all vertices reachable
from it. A complete maximal subgraph of G is a clique. A
clique ¥ € K(G) cv-covers a vertex v if v € (N[k]), where
(N[k]) is the subgraph induced by the closed neighborhood of
k. A set S C K(G) is a cv-neighborhood set if every vertex
v is cv-covered by some k € S, that is, G = |J (N[k]).

kEeK(G)
The minimum cardinality of such a set is the cligue vertex
neighborhood number n.,(G). In this paper, we establish
bounds for n.,, characterize graphs attaining these bounds,
and compute n., for various graph products.

Index Terms—Neighborhood number, clique coverings,
corona product, Cartesian product, join graph, clique vertex
neighborhood number.

I. INTRODUCTION

To establish a clear foundation, we introduce the basic
graph-theoretic terminology used throughout this work, fol-
lowing standard references such as [1] and [18]. We consider
a graph G to be a connected, finite, and simple. A clique is
a maximal complete subgraph. The vertex clique covering
number 6y(G) is the minimum number of cliques needed to
cover all vertices [1], while the edge clique covering number
01(G) covers all edges [5]. The vertex covering number
ap(G) is the size of the smallest vertex set covering all edges,
while the independence number [y(G) is the size of the
largest independent set. A dominating set is a vertex set such
that every vertex in G is either in the set or adjacent to it; the
domination number (@) is the size of a smallest dominating
set. Minimum number of vertices that cover all the cliques
of G is called clique transversal number, 7. = 7.(G).

The study of domination concepts in graphs has been
extensive; see, for example, [6], [17], [10]. Teffany et al.[8]
investigated clique-dominating sets in various graph opera-
tions, including the join, corona, composition, and Cartesian
product, and determined the corresponding clique domination
numbers for the resulting graphs. Margaret et al. [7] provided
forbidden subgraph characterizations for graphs possessing
a dominating clique or a connected dominating set of size
three. The problem of dominating cliques in interval graphs
has been explored by Sudhakaraiah et al. [16], motivated
by the relevance of interval graphs in applications such as
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scheduling and genetics; their work identifies dominating
cliques within specific classes of interval graphs. Mohana-
selvi et al. [14] determined the exact clique neighborhood
domination numbers for several graph families, including
complete graphs, complete bipartite graphs, star graphs,
wheel graphs, fan graphs, banana trees, book graphs, n-
barbell graphs, and friendship graphs. In addition, Edward
et al. [12] demonstrated that for any k,n € Z% with
n < 4and 1 < k < n, there exists a connected graph
G with |V(G)| = n and clique secure domination number
Ye1s(G) = k. They further showed that for any k,n,m € ZT
satisfying 1 < k < m, there exists a connected graph G
with |V(G)| = n, vas(G) = m, and clique domination
number 7. (G) = k, along with a characterization of the
clique-secure dominating set resulting from the join of two
graphs.

ITI. CLIQUE VERTEX NEIGHBORHOOD NUMBERS

Another notable graph invariant is the neighborhood cover-
ing (n-covering) number, introduced by Sampathkumar and
Neeralagi [15] and further explored in [2], [4], [9], [11],
[13]. A vertex v, n-covers an edge e, if e € (N[v]), and
a set § C V is an n-covering set if it n-covers all edges
of G. The lower and upper n-covering numbers, n(G) and
No(G), are the minimum and maximum sizes of minimal
n-coverings, respectively.

Motivated by the duality between the independence num-
ber 5y(G) and the vertex covering number ag(G), Surekha
et al. [3] introduced the complementary notion of n-
independent sets: a set D C V is n-independent if every
edge in (D) is m-covered by a vertex in V \ D. The
corresponding parameters an(G) and «,(G) denote the
maximum and minimum orders of maximal n-independent
sets, respectively.

Motivated by these definitions, we introduced a novel
graph invariant called the clique vertex neighborhood num-
ber, which combines the ideas of neighborhood numbers and
clique covering. This new invariant investigates the interac-
tion between vertex neighborhoods and cliques, offering a
fresh perspective on how these parameters function within
different graph families. In essence, this paper highlights
the concepts of the clique vertex neighborhood number
and examines their connections with other established graph
invariants.

Definition 2.1: Let K(G) denote the set of all cliques in
a graph G. A clique k € K(G) is said to cv-covers a vertex
v if v € (N[k]), where (N[k]) denotes the subgraph induced
by the N[k]. A set of cliques S C K(G) is called a cv-
neighborhood set, if every vertices v in G is cv-covered by

at least one clique in S, thatis, G = |J (N[k]). The
keK(G)
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minimum cardinality of a cv-neighborhood set is called a
clique vertex neighborhood number, ncy = ney(G).

Fig. 1.

Example 2.1: For the graph G of Fig. 1, the cliques
formed by vertices {va,v3,v4}, {v5,v8} and {v7,v9} form
a Ny, set. Therefore n.,(G) = 3.

Theorem 2.2:

1, ifn>5

o For any cycle, nq,(C,) = {{ZJ if 4
|, ifn=

« For any path, n.,(P,) = {%1 n > 2.

« For any star, n.,(S,) = 1.

o For any wheel, n.,(W,) = 1.

o For any complete bipartite graph, nc, (K, ») = m,

(m < n).

Theorem 2.3: Let G be a connected graph of order n. If
G = K, then n.,(G) = 1.

Proof: If G = K,, then G itself is a clique. Let k =
V(G). The closed neighborhood N k] is also V' (G), and the
induced subgraph (N[k]) = G. Thus, the single clique k,
cv-covers all the vertices, so n¢,(G) = 1. [ |

Corollary 2.3.1: For a connected graph G, n.,(G) =1
for the following graph types:
e Star Graph (S,): For n > 3, n.,(S,) = 1.

Proof: Let ¢ be the central vertex of .S,,. Consider any

edge involving ¢, say kg = {c,v;}. This is a clique.

The closed neighborhood of the central vertex N|c]

includes ¢ and all its neighbors, which are all vertices

of Sp. Since ko contains ¢, N[ko] = N[c] U N[v;]. As

N|c] already covers all vertices, N[ko] also covers all

vertices. Thus, (N[ko]) = Sn, and n¢,(S,) = 1.

o Wheel Graph (W,,): For n > 4, n.,(W,) = 1.
Proof: Let ¢ be the central vertex of W,,. W,, consists
of a central vertex connected to all vertices of a cy-
cle C,_1. Consider any triangle involving ¢ and two
adjacent cycle vertices, say ko = {c,v;,v;41}. This
is a clique. The closed neighborhood of the central
vertex N|[c] includes ¢ and all vertices on the cycle,

i.e., all vertices of W,,. Since ko contains ¢, N[ko] =

Nlc] U N[v;] U N[vi1]. As Nlc] covers all vertices,

NJko] also covers all vertices. Thus, (N[ko]) = Wi,

and n.,(W,) = 1.

e Fan Graph (F,): For n > 2, ng,(F,) = 1.

Proof: Let ¢ be the central vertex of F),. Fj,, consists of

a central vertex connected to all vertices of a path P,.

Consider any triangle involving ¢ and two adjacent path

vertices, say ko = {c¢, v;,v;4+1}. This is a clique. The

closed neighborhood of the central vertex N|c] includes

c and all vertices on the path, i.e., all vertices of F),.

Since kg contains ¢, N[ko] = N[cJUN[v;]JUN [v;41]. As

N{¢] covers all vertices, N[kg] also covers all vertices.

Thus, (N[ko]) = F,,, and n.,(F,) = 1.

o Friendship Graph (F},,): For m > 1, ne,(Fp) = 1.
Proof: Let ¢ be the common central vertex of the m
triangles in F;,. Consider any one of these triangles,
say kg = {c,u,v}. This is a clique. The closed
neighborhood of the central vertex N[c| includes ¢
and all other vertices in the graph (which are the
2m outer vertices of the triangles). Since k( contains
¢, Nlko] = Nlc] U N[u] U N[v]. As N]|c| already
covers all vertices, N [kq] also covers all vertices. Thus,
(N[ko]) = Fin, and ne, (Fp) = 1.

Theorem 2.4: If G; and Gy
ncv(Gl) = ncv(G2)~

Proof: Assume GG; = G4, with an isomorphism ¢ :
V(G1) = V(Ga).

Let S; be a minimum cv-neighborhood set for G, so
|S1] = nep(G1) and G = Uy, s, (NG, [k1]). Consider
Sy = {¢(k1) | k1 € Sy}, where ¢(k1) are the corre-
sponding cliques in Gs. For any w € V(G2), there exists
v = ¢ Y(w) € V(Gy). Since S; is a cv-neighborhood set,
v € (Ng, [k1])q, for some k1 € S;. Due to the isomorphism,
6(v) = w € (D(Ngyl])az = (Noylé(k:)])a,. Thus,
Sy is a cv-neighborhood set for G with |S3| = |Si| =
Nep(G1), implying 1., (G2) < ney(Gip). By symmetry, if
S% is a minimum cv-neighborhood set for Gg, then S7 =
{97 (ko) | k2 € S5} is a cv-neighborhood set for G; with
|Si| = |Sé| = nCU(GQ)’ implying ncv(Gl) < ncv(GQ)'
Therefore, 1., (G1) = Ny (Ga). [ |

Theorem 2.5: Let G be a graph of order n. If
G1,Ga,...,Gy, are the components of G, then n.,(G) =
St new(Go)-

Proof: Let G have components Gi,Go,...,Gy. For
each component G, let S; be a minimum cv-neighborhood
set with |S;| = n.(G;). Consider S = Ule S;. Since
components are disconnected, a clique in S; is also a clique
in G, and its closed neighborhood and induced subgraph
are the same in G as in G;. Thus, J,cq(Nclkl)e =
Uit (Ukes, (Na.[k)e,) = Uiy Gi = G.

So, S is a cv-neighborhood set for G, and n.,(G) <
|S| = Zle Neyp (Gy). Let S be a minimum cv-neighborhood
set for G, |S| = ne(G). If a clique k € S, cv-covers
a vertex in Gy, then k& must be entirely within G;. Let
S; = {k e S| k C V(Gy)}. S; must cv-cover all
vertices of G;, so |S;| > n.,(G;). Since the Ss partition
S, new(G) = 8] = 8 8| > 8 16y (Gy). Therefore,
o (G) = S8 16 (G). n

Theorem 2.6: For a graph G and a proper subgraph G4
of G such that n.,(G1) < ne, (G).

Proof: Consider a graph G and a proper induced sub-
graph G1. Any set of cliques in G that cv-covers V(G) also
provides a means to cv-cover the subset V(G7) using the
same cliques and their neighborhoods within G;. Thus, the
minimum number of cliques needed for G; cannot exceed
that for G, $0 Ny (G1) < ney (G). [ ]

Theorem 2.7: There exist a graph G and a proper sub-
graph G of G such that n.,(G1) = ne, (G).

Proof: Let G be a graph and G; be a proper subgraph
of G. Here K be a clique which cv-covers all the vertices
V(G) also provides a means to cv-cover the subset V(G ).
We have to consider the clique in such a way that, clique
must contain a vertex where that particular vertex must be

are isomorphic, then
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adjacent to all other vertices in graph G. Thus, the above
equality 7., (G1) = ney (G) holds. [ |

Note:- For star graph, wheel graph, fan graph, K3 and
friendship graph the above theorem holds.

Theorem 2.8: There exist a graph G and a proper sub-
graph G of G such that n.,(G1) > ne, (G).

Proof: Consider a graph G where a few cliques effi-
ciently cv-cover all vertices due to high connectivity. By
removing edges to form a spanning subgraph G, these
cliques significantly reduced, required more cliques for cv-
coverage. Thus, n¢, (G1) > new (G). [ |

Theorem 2.9: For any graph G, ng,(G) < 7.(G).

Proof: Let T be a vertex transversal of the maximal
cliques of G with |T'| = 7.(G). For each t € T, choose a
maximal clique K; that contains ¢. Put S = {K; : t € T'}.
We show that S is a cv-neighborhood set.

Take any vertex v € V(G). Let M be a maximal clique
that contains u. Since 7' meets every maximal clique, there
exists t € T'N M. Because t,u € M and M is a clique, u
is adjacent to t, so u € N[t]. As t € K, we have N[t] C
N[K¢]; hence v € N[K;]. Therefore u lies in the induced
subgraph (N[Ky]).

Since this holds for every uw € V/(G), the union
Ures(N[k]) equals G, so S is a cv-neighborhood set. Thus
|S| < |T| = 7.(G), and by the minimality of n.,(G) we
obtain

New(G) < 7e(G).

|
Theorem 2.10: For any graph G, n.,(G) < 00(G).

Proof: Let C' = (cq,¢2,...,¢g,) be a minimum vertex
clique cover of G. By the definition, every vertex v € V(QG)
belongs to at least one clique ¢; € C. Consider the closed
neighborhood of each clique ¢;, denoted by N|¢;]. Since ¢; C
Nle;], it follows that every vertex v € ¢; is also in N|¢;],
and therefore, v is in (N|[¢;]). Since every vertex v € V(Q)
is in at least one clique ¢; of the vertex clique cover C.
Therefore, the set of cliques C' = (cy,co, ..., cp,) forms a

cv-neighborhood set for G. Thus, n.,(G) < |C] = 6p(G)
Therefore, n.,(G) < 6y(G). |

Corollary 2.10.1: For any graph G, n.,(G) < 0p(G) <
01(G).

Corollary 2.10.2: For a complete graph G, nc,(G)
00(G) = 01(G).
Theorem 2.11: For any graph G, n.,(G) < no(G).
Proof: Let G be a graph with given n.,(G) and no(G).
Suppose in one of the clique which is required for n.,, if
none of the vertices of that clique are contained in ng then
we show that we are getting ny with less number of vertices,
which is a contradiction. Let us construct a graph with n,
set without containing any vertices of the cliques of n.,. Let
v be any vertex. In order to cover the edges of the complete
graph K., v can be maximum adjacent to (r — 2) vertices.
We get complete graph K,._; . Then to cover the remaining
edges, that is, (2r — 3) edges of the complete graph k,, we
need another vertex say w. Again this w can be adjacent to
maximum (7 — 2) vertices. Then the graph remaining is Cl.
To cover the C; one more vertex x needed. With this we are
getting no vertices from the clique K. From the original set,
we remove [v,w, x| and add the other 2 vertices which are
adjacent to v, w form a ng set with lesser vertices, hence a
contradiction. []

Theorem 2.12: For any

New(G) < no(G).
Proof: We construct an infinite class of triangle free

graphs G(k,n), n > 4,, with the following steps:
Consider 2 copies of a cycle C,, for n > 5 Jom its ¢*" vertex
of first copy of C,, (inner cycle) with the i vertex of second
copy of C,, (outer cycle). We denote graph as H = C,,&C),.
Now obtain k-copies of a graph H as shown in Fig. 2. Here
the joined edge nothing but a clique. Here that cliques are
considered in n.,-set. We are going to name the joined clique
as ¢, 1 <i <k, j =1,2,...,n respectively. Let u;; and
vy; for 1 <4 <k, j = 1,2,...,n respectively be the labels
of the vertices of inner and outer cycles C,, in the i*" copy
of H; of H.

infinite class of graph G,

‘th

Fig. 2.

Infinite Class of graph G.

e When n is an even cycle. In this graph the alternate c;;
cliques are enough for the cv-neighborhood set. Here,
{cijIl1 <i<k,j=2,4,6,....,n} is a ne,-set.

Here, {u;;|1 <i<k,j=1,3,5,...,n+1}U{v;|l <
i <k,j=2,4,6....n} is a ng-set of G(k,n).
Nev (CQm @ CQm) = mk»

m > 3. (L1)

where k£ = number of copies.
no (C2m ¥ CQm) = 2ncv (C2m D CQm) = 2mk. (HZ)

e When n is an odd cycle. In this graph the alternate
¢;j cliques and additional one clique is enough for
the cv-neighborhood set. Here, {c;;|1 < ¢ < k,j =
1,3,5,...,n,n — 1} is a n,-set.

Here, {u”|1 <1< If,j = 1,3757...777/} @] {vij|1 <1<

k,j=2,4,6...,n,n — 1} is a ng-set of G(k,n).
2m +1
ncv(C2m+1 57 CQerl) =k ’7 B s m Z 2.
(IL3)

Therefore,

10(Cam+1 B Com+1) = 21y (Comy1 B Cam1)
_ ok Fm + 1—‘ .
2

(IL4)
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Corollary 2.12.1: For C4 graph, where k£ = number of
copies.

new(Ca®Cy) =k [ﬂ (IL.5)

no(Cy @ Cy) = 2kne, (Cy ® Cy). (I1.6)

Remark:- Let NV be an even positive number, where N > 10.
We can determine the number of cliques in an n.,-set by
applying the above theorem

Proof: As N is an even integer and N > 10, we can
write N = 2n, where n = N/2. Since N > 10, it follows
that n > 5. We will analyze the number of cliques in an
ney-set based on the properties of n.

Case 1: n is a prime number.

In this case, since n > 5 and n is prime, 7 must be an odd
number (e.g., 5, 7, 11, etc., as 2 is the only even prime, and
n # 2). We calculate the number of cliques in the n.,-set by
constructing a graph isomorphic to C,, as specified by the
above theorem. This construction involves only one copy of
H. The number of cliques can then be directly computed
using the odd cycle formula.

Case 2: n is a composite number.

If n is composite, it can be factored as n = rs for integers
r,s > 2. Consequently, N = 2rs. We subdivide this case
further based on the values of r and s.

Subcase 2.1: One factor is small (r < 4) and the other
is large (s > 5).: Without loss of generality, let » < 4 and
s > 5. We interpret r as the number of k-copies of some
graph component. The factor s represents the number of
vertices in the graph structure we are constructing, following
the principles of the above theorem. The relevant formula is
then applied accordingly to determine the number of cliques
in the n.,-set.

Subcase 2.2: Both factors are small (r < 4 and s < 4).:
In this situation, n = rs will be a relatively small composite
number (e.g., if r = 2,5 =3, then n =6; if r = 3,5 = 3,
then n = 9). We treat m = rs as a single effective size for
the graph construction. The calculation proceeds similarly to
Case 1, likely by constructing a C,, or similar small graph
as per the above theorem and applying the relevant formula.

Subcase 2.3: Both factors are large (r > 5 and s > 5).:
Here, r can be considered as the number of k-copies of a
base structure, and s as the number of vertices in the main
graph construction, or vice-versa. The formulas derived from
the above theorem are applied.

Specific Example within Subcase 2.3:: If r > 5 and
s > b, and r is even while s is odd (or vice versa):

ncv(Crs ) Crs) = nc*u(cr 3] Cr) < ncv(cs 3 Cs)

|
The maximum strength of a clique (Aj;) is the number of
vertices in (N[k]). Now we obtain a bound for n.,(G) in
terms of maximum strength A;.
Theorem 2.13: For any graph, 3= < ne,(G) < n—A,+1.
Proof: Let k be the clique of maximum strength Ag.
Then k, n.,-cover all the vertices in (N[k]). Let S be the
set of cliques that are needed to cv-covers all the vertices.
Then to cover all the vertices A cliques are needed. Then

remaining that many vertices from n results in a graph
(V(G) — (Nk])). Thus |[V(G) — (N[k])| = n — As. Thus
S, ney covers all the vertices in (V(G) — (N[k])) of every
clique formed by choosing one end. Hence (S U k) is a n,
-covering of graph G.
Therefore, n., < |[SUk| < n— A; 4+ 1. So to cover all
the vertices outside the graph of (N[k]). We need maximum
n—A;s+1 provided every vertex is of degree 1. Since a clique
can ngy-cover at most A4 (G) vertices to n.,-cover all the
vertices, we needed at least ﬁ. Therefore, AL; < ney(G).
|

The clique vertex neighborhood number n., of a complete
graph K, is 1, and same holds for the line graph of a
complete graph, that is, n.,(L(K,,)) = 1. For any graph G,
New(L(GQ)) = ne, (G), except for path. In a cycle graph, the
number of vertices is equal to the number of cliques formed
by its edges. The clique vertex neighborhood number n.,
remains unchanged in the total graph transformation, where
Ney(G) = ney (T(G)), except for Cy. Here, total graph T'(G)
of a graph G is the graph obtained by combining G' and
its line graph L(G). Its vertex set is V(G) U E(G), and
two vertices in T'(G) are adjacent if they are adjacent in G,
adjacent in L(G), or if a vertex and an edge are incident in
G.

Theorem 2.14: For any graph G, ne,(T(G)) < neo(G) +
Nep (L(G)).

Proof: Suppose a clique k is said to be n., cover a
vertex v if v C (N(k)). Here, T(G) contains both G and
L(G) as subgraphs. Let S be a cv-neighborhood set of G,
|Sc| = new(G) and S, be a cv-neighborhood set of L(G),
|SL| = new(L(G)). T(G) consist of both the vertices of G
and the edges of (G, we can combine the clique cover of
G and L(G) to form a valid covering for T'(G). The union
S = SgUSy form a valid cv-neighborhood set for T'(G).

S| <[5l +[SLl.
which gives:
Nev (T(G)) < nm)(G) + ncv(L(G))'

|

Corollary 2.14.1: The bound is sharp for Cy graph.

The corona product of two graphs G and H, denoted by
GoH, is formed by taking one copy of G and |V (G)| copies
of H. For each vertex v in G, every vertex in the i-th copy
of H is connected by an edge to u. The total number of
vertices in (G o H) is:

V(G o H)|=[V(G)|+ V(G- [V(H)]. (IL7)

Theorem 2.15: If G and H be any graph, n is the number
of vertices in GG and [ is the number of vertices in the cliques
forming a minimum cv-neighborhood set in G, then n.,(Go
H) <ne,(G) + (n=1).

Proof: Let S be a minimum cv-neighborhood set of G,
with |S| = e, (G). For each s € S, let C be a maximal
clique in G containing s, and let L = (J, 4 V(Cs) with
|L| = I. Consider S" = SU (V(G) \ L) in G o H, with
|S'] = new(G) + (n —1). We show S’ is a cv-neighborhood
set for Go H. Let v € V(G o H).

Case 1: If v € V(G): Since S cv-covers G, v is in 1y (s)
for some s € S C S, both in G and in the G part of Go H.

Case 2: If v € V(H;) (attached to g; € V(G)):
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e If g; € L, then g; is near a maximal clique related to
some s € S, so v is covered by n.,(s) in Go H due to

the adjacency between g¢; and H;.

o If g; ¢ L, then g; € S’. The cv-neighborhood of g;
includes all of H;, so v is covered.
Thus, S’ is a cv-neighborhood set for G o H, and n.,(G o
H) < |5 =nep(G) + (n=1).
|
Theorem 2.16: If G is a tree on n vertices, H be any
graph and [ is the number of vertices involved in the cliques
forming a minimum cv-neighborhood set of G, then n.., (G o
H)y=n-1.

Proof: Since G is a tree, its only maximal clique are
edges (K2). Suppose we select ¢t cliques in G, since each
clique cover exactly 2 vertices, the total number of vertices
covered is:

=2t

The number of remaining uncovered vertices in G is

n—1l=n—2t (IL8)

Thus the remaining vertices will determine n.,(GoH). Since
the added copies of H are only connected to their respective
vertex in GG, we must include cliques covering these original
vertices to extend coverage to all new vertices in H.

From general inequality,

New(G o H) <ney(G) + (n—1).

Since,
ne(G) =1, =2t

Nep(GoH)<mn—t
New(GoH)<m—2t=n-—1

New(Go H) <n—1. (IL9)

We have to show that, n.,(Go H) >n — 1.

Here the number of additional clique neighborhoods required
by the number of uncovered vertices in G after selecting the
minimal clique set. Since the uncovered vertices required
clique neighborhoods, we must add at least one clique per
uncovered vertex. This gives us an lower bound for n — k
additional clique.

Thus, we conclude,

Ney(GoH) >n — k. (11.10)

Therefore, n.,(Go H) =n — k.
|
Theorem 2.17: For any graph G, 1., (G) < ne, (G o G).
Proof: Let G be any graph, the total number of vertices
in GoG isn+n?

Let S be a clique vertex neighborhood cover for G,
|S| = ne(G). This cover partially cover G o G, but ad-
ditional clique is needed to cover a vertex. Since each of the
additional |V (G)| copies of G must be cv-covered, at least
some additional cliques must be added to S. Therefore the
clique vertex neighborhood number cannot decrease when

constructing G o GG. Thus, we conclude:
ncu(G) < ncv(G o G) (IL.11)

Theorem 2.18: For a cycle and a complete graph with n
vertices, ey, (Cr 0 Kp) = ney (Cr) + My (K-
Proof: The total number of vertices in C,, 0 K, is n+n?2.
In C,, number of cliques is equal to number of vertices,
k=n.
The minimum number of cliques needed to cover all the
vertices in a cycle C,, is

New(C) = [g] - m , n>5.

Since K, is a complete graph, a single clique covers all its
vertices so

Ney(Ky) = 1.

Thus to cover C,, o K,

Ny (Cn) + New (Kp) = {g-‘ + 1.
Hence the result follows. [ |

Theorem 2.19: For a cycle, ne,(Cp,) < nep(Cry 0 C).

Proof: The total number of vertices in C,,, o C,, is m +
m-n.

The clique vertex neighborhood number for a cycle on m
vertices i8S 7y, (Cr) = [%] for m > 5, and n.,(Cy) =
|2] = 1. Since Cy, o C,, contains Cy,, as a subgraph, at
least all the cliques required for C),, must also be present in
Cp o Cp. In ngy (Cyy 0 Cy) the total clique count cannot be
smaller than that of n.,(C,,). Therefore

Ny (Cm) < Ny (Cr 0 C). (I1.12)

|
The Cartesian product GLJH combines two graphs G and H.
Its vertices are ordered pairs (u,v) where u is a vertex in
G and v is a vertices in H. Two vertices (u,v) and (v, ")
are adjacent if either u = u’ and v is adjacent to v’ in H, or
v =10’ and u is adjacent to v’ in G.
Theorem 2.20: For a path graph, n.(P,0P,) >
Ney(Prm) 4 new(Pr), except for m = 2 and n = 2,3, 5.
Proof: Let

New(Py) = [" ; 1} : (IL13)
The P,,[0P, forms a grid graph where each vertex (u,v)
connects to vertices along its row (v’,v) and column (u,v’).
To cv-cover all vertices, cliques must be selected to cover
both rows and columns independently.
For a path graph Py, the cv-neighborhood number n., (Py)
equals [%51], the minimum cliques needed to cv-cover
all vertices. In P,,UP,, every vertex in a row of P,
and every vertex in a column of P, must be cv-covered
independently. Therefore the total cv-neighborhood set size
cannot be smaller than the sizes of P,, and P,. Hence,
nc’u(PmDPn> > ncv(Pm) + ncv(Pn)- u
The graph join operation combines two or more graphs into
a single graph. It involves taking the original vertices and
edges, plus adding new edges to connect every vertex in the
first graph to every vertex in the second graph.

Theorem 2.21: For any two non-empty graphs, G; and
G, the clique vertex neighborhood number of their join,
denoted as G V Ga, is 1. That is, n.,(G1 V G3) = 1.
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Proof: Let G = G1 V G5. By definition, the vertex set
of G is V(G) = V4 U V4, and its edge set includes all edges
connecting every vertex in V; to every vertex in Va.

To find 7., (G), we need to find the minimum number of
cliques whose closed neighborhoods cover all vertices in G.

Consider any single vertex v from the graph G. A single
vertex is a clique of size 1. Let’s examine the closed
neighborhood of this vertex.

o If v € V4, its neighbors in G are all of its neighbors
in G1 plus all vertices in V5. Therefore, the closed
neighborhood of v in G is Ng[v] = V1 UV, = V(G).

o If v € V5, a similar argument shows that the closed
neighborhood of v in G is also Ng[v] = V1 U Ve =
V(G).

In both cases, the closed neighborhood of a single vertex
covers the entire vertex set of the graph, V(G). A single
vertex is a clique, so the subgraph induced by the closed
neighborhood of this clique covers all vertices. Since we only
need one clique to form a cv-neighborhood set, the minimum
cardinality of such a set is 1. Thus, n.,(G;1 VG2)=1. R

Corollary 2.21.1: For any finite collection of non-empty

graphs, Gl, G27 ceey Gn, nw(Gl V G2 V..V Gn) =1.

III. CLIQUE INDEPENDENCE NUMBER

A set of cliques are clique independent if no two cliques
have a vertex in common. A set L C K(G) is said to
be a clique independent set if no two cliques in L have
a vertex in common. The clique independence number
Bee = Bee(G) is the maximum number of cliques in a clique
independent set of G. A clique graph K(G) is a graph with
vertex set /{(G) and any two vertices in K¢ (G) are adjacent
if corresponding cliques in G have a vertex in common. A
graph G is called a clique path, if K¢(G) is a path. A graph
G is called a clique cycle, if Kg(G) is a cycle. A graph G is
called a clique complete, if Kg(G) is a complete. A graph
G is called a clique star, if Kg(G) is a clique complete
graph.

Now we give clique independence number of some stan-
dard graphs.

Proposition 3.1:

k
1) If G is a clique path, 8..(G) = {2—‘
k
2) If G is a clique cycle, B..(G) = 5|
3) If G is a clique complete graph, S5..(G) = 1.
4) If G is a clique star with ¢ cut-vertices, B..(G) = c.
Proposition 3.2: For any connected graph G,

k
500 S ’72—‘ .

Further, the bounds are sharp.

Proof: Let B.. = t. If G has k number of cliques, out
of which ¢ cliques are independent and at least ¢ — 1 cliques
are connecting k cliques. Therefore

E>t+(t—1)
k>2t—1
Thus, t< E
2
The bound is sharp for any block graph. ]

Let ¥ be the minimum clique number, then we have the
following proposition.
Proposition 3.3: For any graph G,

Bee < 5.
Further, the bound is sharp.

PVOOf:’ Let ﬁcc =t. Let L = {kl, kz, .. .71925} - K(G)
be the f..-set of G. Let |k;| denote the number of vertices
in the clique k;. Then |k;| > ¥(G), 1 < i < ¢. Since each
k;, 1 < i <t is an independent clique, any two cliques are
mutually disjoint and |k1|U |k2|U--- U |k:| C V. Therefore,
t¥(G) < |k1|U|ko|U- - -U]ks| < |V| = p proving the desired

inequality.
The bound is sharp for a complete graph and an even cycle
Cap,. | |

Proposition 3.4: For any graph G,

ﬁcc S ml’n{ﬁOv Bl}

Proof: Let .. = k and suppose L = {l1,1ls,...,l5} be
the [..-set of G. Since all the cliques in L are mutually
independent, we can choose an edge z; € I[; for each
i = 1,2,...,k. Then Ly = {z1,29,...,2x} is an edge
independent set of cardinality k. Then k = B.. = |L| =
|L1] < Bir.

Let L = {l1,la,...,l5} be the B..-set of G. Clearly, we
can select a vertex v; from each clique /; in L such that
{v1,v2, ..., vt} is an independent set of vertices. Thus .. <
Bo. u

Let .. be the minimum clique clique degree of a graph
G.

Proposition 3.5: For any graph G,

ﬁcc(G) S k - 5CC(G)

Further, the bound is sharp.

Proof: Let L be the set of all cliques with cc-degree
dce. Then we can find a S.. set S such that L NS # ¢.
Hence there exists a [ € L NS with cc-degree ... Then
S C K(G) — Ngc(1). Therefore B..(G) < k — d..(G). The
bound is attained for any clique complete graph. ]

IV. APPLICATION

Application of clique vertex neighborhood number (n.,)
to network analysis 7., (G), the minimum cliques needed to
cv-cover all vertices, offers a novel lens for network analysis,
particularly in assessing vulnerability and robustness.

A low n., suggests efficient coverage through local clique
structures, potentially indicating better resilience to failures.
Conversely, a high n., might imply fragmented coverage and
increased susceptibility.
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