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Abstract—The open neighborhood N(w) of a vertex w ∈ V
consists of all vertices adjacent to w in an undirected graph. The
closed neighborhood N [w], includes w and all vertices reachable
from it. A complete maximal subgraph of G is a clique. A
clique k ∈ K(G) cv-covers a vertex v if v ∈ ⟨N [k]⟩, where
⟨N [k]⟩ is the subgraph induced by the closed neighborhood of
k. A set S ⊆ K(G) is a cv-neighborhood set if every vertex
v is cv-covered by some k ∈ S, that is, G =

⋃
k∈K(G)

⟨N [k]⟩.

The minimum cardinality of such a set is the clique vertex
neighborhood number ncv(G). In this paper, we establish
bounds for ncv , characterize graphs attaining these bounds,
and compute ncv for various graph products.

Index Terms—Neighborhood number, clique coverings,
corona product, Cartesian product, join graph, clique vertex
neighborhood number.

I. INTRODUCTION

To establish a clear foundation, we introduce the basic
graph-theoretic terminology used throughout this work, fol-
lowing standard references such as [1] and [18]. We consider
a graph G to be a connected, finite, and simple. A clique is
a maximal complete subgraph. The vertex clique covering
number θ0(G) is the minimum number of cliques needed to
cover all vertices [1], while the edge clique covering number
θ1(G) covers all edges [5]. The vertex covering number
α0(G) is the size of the smallest vertex set covering all edges,
while the independence number β0(G) is the size of the
largest independent set. A dominating set is a vertex set such
that every vertex in G is either in the set or adjacent to it; the
domination number γ(G) is the size of a smallest dominating
set. Minimum number of vertices that cover all the cliques
of G is called clique transversal number, τc = τc(G).

The study of domination concepts in graphs has been
extensive; see, for example, [6], [17], [10]. Teffany et al.[8]
investigated clique-dominating sets in various graph opera-
tions, including the join, corona, composition, and Cartesian
product, and determined the corresponding clique domination
numbers for the resulting graphs. Margaret et al. [7] provided
forbidden subgraph characterizations for graphs possessing
a dominating clique or a connected dominating set of size
three. The problem of dominating cliques in interval graphs
has been explored by Sudhakaraiah et al. [16], motivated
by the relevance of interval graphs in applications such as
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scheduling and genetics; their work identifies dominating
cliques within specific classes of interval graphs. Mohana-
selvi et al. [14] determined the exact clique neighborhood
domination numbers for several graph families, including
complete graphs, complete bipartite graphs, star graphs,
wheel graphs, fan graphs, banana trees, book graphs, n-
barbell graphs, and friendship graphs. In addition, Edward
et al. [12] demonstrated that for any k, n ∈ Z+ with
n ≤ 4 and 1 ≤ k ≤ n, there exists a connected graph
G with |V (G)| = n and clique secure domination number
γcls(G) = k. They further showed that for any k, n,m ∈ Z+

satisfying 1 ≤ k ≤ m, there exists a connected graph G
with |V (G)| = n, γcls(G) = m, and clique domination
number γcl(G) = k, along with a characterization of the
clique-secure dominating set resulting from the join of two
graphs.

II. CLIQUE VERTEX NEIGHBORHOOD NUMBERS

Another notable graph invariant is the neighborhood cover-
ing (n-covering) number, introduced by Sampathkumar and
Neeralagi [15] and further explored in [2], [4], [9], [11],
[13]. A vertex v, n-covers an edge e, if e ∈ ⟨N [v]⟩, and
a set S ⊆ V is an n-covering set if it n-covers all edges
of G. The lower and upper n-covering numbers, n0(G) and
N0(G), are the minimum and maximum sizes of minimal
n-coverings, respectively.

Motivated by the duality between the independence num-
ber β0(G) and the vertex covering number α0(G), Surekha
et al. [3] introduced the complementary notion of n-
independent sets: a set D ⊆ V is n-independent if every
edge in ⟨D⟩ is n-covered by a vertex in V \ D. The
corresponding parameters αN (G) and αn(G) denote the
maximum and minimum orders of maximal n-independent
sets, respectively.

Motivated by these definitions, we introduced a novel
graph invariant called the clique vertex neighborhood num-
ber, which combines the ideas of neighborhood numbers and
clique covering. This new invariant investigates the interac-
tion between vertex neighborhoods and cliques, offering a
fresh perspective on how these parameters function within
different graph families. In essence, this paper highlights
the concepts of the clique vertex neighborhood number
and examines their connections with other established graph
invariants.

Definition 2.1: Let K(G) denote the set of all cliques in
a graph G. A clique k ∈ K(G) is said to cv-covers a vertex
v if v ∈ ⟨N [k]⟩, where ⟨N [k]⟩ denotes the subgraph induced
by the N [k]. A set of cliques S ⊆ K(G) is called a cv-
neighborhood set, if every vertices v in G is cv-covered by
at least one clique in S, that is, G =

⋃
k∈K(G)

⟨N [k]⟩. The
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minimum cardinality of a cv-neighborhood set is called a
clique vertex neighborhood number, ncv = ncv(G).
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Fig. 1.

Example 2.1: For the graph G of Fig. 1, the cliques
formed by vertices {v2, v3, v4}, {v5, v8} and {v7, v9} form
a ncv set. Therefore ncv(G) = 3.

Theorem 2.2:

• For any cycle, ncv(Cn) =

{⌈
n
3

⌉
, if n ≥ 5⌊

n
3

⌋
, if n = 4

• For any path, ncv(Pn) =
⌈
n−1
3

⌉
, n ≥ 2.

• For any star, ncv(Sn) = 1.
• For any wheel, ncv(Wn) = 1.
• For any complete bipartite graph, ncv(Km, n) = m,

(m ≤ n).
Theorem 2.3: Let G be a connected graph of order n. If

G ∼= Kn, then ncv(G) = 1.
Proof: If G ∼= Kn, then G itself is a clique. Let k =

V (G). The closed neighborhood N [k] is also V (G), and the
induced subgraph ⟨N [k]⟩ = G. Thus, the single clique k,
cv-covers all the vertices, so ncv(G) = 1.

Corollary 2.3.1: For a connected graph G, ncv(G) = 1
for the following graph types:

• Star Graph (Sn): For n ≥ 3, ncv(Sn) = 1.
Proof: Let c be the central vertex of Sn. Consider any
edge involving c, say k0 = {c, vi}. This is a clique.
The closed neighborhood of the central vertex N [c]
includes c and all its neighbors, which are all vertices
of Sn. Since k0 contains c, N [k0] = N [c] ∪N [vi]. As
N [c] already covers all vertices, N [k0] also covers all
vertices. Thus, ⟨N [k0]⟩ = Sn, and ncv(Sn) = 1.

• Wheel Graph (Wn): For n ≥ 4, ncv(Wn) = 1.
Proof: Let c be the central vertex of Wn. Wn consists
of a central vertex connected to all vertices of a cy-
cle Cn−1. Consider any triangle involving c and two
adjacent cycle vertices, say k0 = {c, vi, vi+1}. This
is a clique. The closed neighborhood of the central
vertex N [c] includes c and all vertices on the cycle,
i.e., all vertices of Wn. Since k0 contains c, N [k0] =
N [c] ∪ N [vi] ∪ N [vi+1]. As N [c] covers all vertices,
N [k0] also covers all vertices. Thus, ⟨N [k0]⟩ = Wn,
and ncv(Wn) = 1.

• Fan Graph (Fn): For n ≥ 2, ncv(Fn) = 1.
Proof: Let c be the central vertex of Fn. Fn consists of
a central vertex connected to all vertices of a path Pn.
Consider any triangle involving c and two adjacent path
vertices, say k0 = {c, vi, vi+1}. This is a clique. The
closed neighborhood of the central vertex N [c] includes
c and all vertices on the path, i.e., all vertices of Fn.
Since k0 contains c, N [k0] = N [c]∪N [vi]∪N [vi+1]. As
N [c] covers all vertices, N [k0] also covers all vertices.
Thus, ⟨N [k0]⟩ = Fn, and ncv(Fn) = 1.

• Friendship Graph (Fm): For m ≥ 1, ncv(Fm) = 1.
Proof: Let c be the common central vertex of the m
triangles in Fm. Consider any one of these triangles,
say k0 = {c, u, v}. This is a clique. The closed
neighborhood of the central vertex N [c] includes c
and all other vertices in the graph (which are the
2m outer vertices of the triangles). Since k0 contains
c, N [k0] = N [c] ∪ N [u] ∪ N [v]. As N [c] already
covers all vertices, N [k0] also covers all vertices. Thus,
⟨N [k0]⟩ = Fm, and ncv(Fm) = 1.

Theorem 2.4: If G1 and G2 are isomorphic, then
ncv(G1) = ncv(G2).

Proof: Assume G1
∼= G2, with an isomorphism ϕ :

V (G1) → V (G2).
Let S1 be a minimum cv-neighborhood set for G1, so
|S1| = ncv(G1) and G1 =

⋃
k1∈S1

⟨NG1
[k1]⟩. Consider

S2 = {ϕ(k1) | k1 ∈ S1}, where ϕ(k1) are the corre-
sponding cliques in G2. For any w ∈ V (G2), there exists
v = ϕ−1(w) ∈ V (G1). Since S1 is a cv-neighborhood set,
v ∈ ⟨NG1

[k1]⟩G1
for some k1 ∈ S1. Due to the isomorphism,

ϕ(v) = w ∈ ⟨ϕ(NG1
[k1])⟩G2

= ⟨NG2
[ϕ(k1)]⟩G2

. Thus,
S2 is a cv-neighborhood set for G2 with |S2| = |S1| =
ncv(G1), implying ncv(G2) ≤ ncv(G1). By symmetry, if
S′
2 is a minimum cv-neighborhood set for G2, then S′

1 =
{ϕ−1(k2) | k2 ∈ S′

2} is a cv-neighborhood set for G1 with
|S′

1| = |S′
2| = ncv(G2), implying ncv(G1) ≤ ncv(G2).

Therefore, ncv(G1) = ncv(G2).
Theorem 2.5: Let G be a graph of order n. If

G1, G2, ..., Gk are the components of G, then ncv(G) =∑k
i=1 ncv(Gi).

Proof: Let G have components G1, G2, ..., Gk. For
each component Gi, let Si be a minimum cv-neighborhood
set with |Si| = ncv(Gi). Consider S =

⋃k
i=1 Si. Since

components are disconnected, a clique in Si is also a clique
in G, and its closed neighborhood and induced subgraph
are the same in G as in Gi. Thus,

⋃
k∈S⟨NG[k]⟩G =⋃k

i=1

(⋃
k∈Si

⟨NGi
[k]⟩Gi

)
=

⋃k
i=1 Gi = G.

So, S is a cv-neighborhood set for G, and ncv(G) ≤
|S| =

∑k
i=1 ncv(Gi). Let S be a minimum cv-neighborhood

set for G, |S| = ncv(G). If a clique k ∈ S, cv-covers
a vertex in Gi, then k must be entirely within Gi. Let
Si = {k ∈ S | k ⊆ V (Gi)}. Si must cv-cover all
vertices of Gi, so |Si| ≥ ncv(Gi). Since the S′

is partition
S, ncv(G) = |S| =

∑k
i=1 |Si| ≥

∑k
i=1 ncv(Gi). Therefore,

ncv(G) =
∑k

i=1 ncv(Gi).

Theorem 2.6: For a graph G and a proper subgraph G1

of G such that ncv(G1) ≤ ncv(G).

Proof: Consider a graph G and a proper induced sub-
graph G1. Any set of cliques in G that cv-covers V (G) also
provides a means to cv-cover the subset V (G1) using the
same cliques and their neighborhoods within G1. Thus, the
minimum number of cliques needed for G1 cannot exceed
that for G, so ncv(G1) ≤ ncv(G).

Theorem 2.7: There exist a graph G and a proper sub-
graph G1 of G such that ncv(G1) = ncv(G).

Proof: Let G be a graph and G1 be a proper subgraph
of G. Here K be a clique which cv-covers all the vertices
V (G) also provides a means to cv-cover the subset V (G1).
We have to consider the clique in such a way that, clique
must contain a vertex where that particular vertex must be
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adjacent to all other vertices in graph G. Thus, the above
equality ncv(G1) = ncv(G) holds.

Note:- For star graph, wheel graph, fan graph, K3 and
friendship graph the above theorem holds.

Theorem 2.8: There exist a graph G and a proper sub-
graph G1 of G such that ncv(G1) ≥ ncv(G).

Proof: Consider a graph G where a few cliques effi-
ciently cv-cover all vertices due to high connectivity. By
removing edges to form a spanning subgraph G1, these
cliques significantly reduced, required more cliques for cv-
coverage. Thus, ncv(G1) ≥ ncv(G).

Theorem 2.9: For any graph G, ncv(G) ≤ τc(G).
Proof: Let T be a vertex transversal of the maximal

cliques of G with |T | = τc(G). For each t ∈ T , choose a
maximal clique Kt that contains t. Put S = {Kt : t ∈ T}.
We show that S is a cv-neighborhood set.

Take any vertex u ∈ V (G). Let M be a maximal clique
that contains u. Since T meets every maximal clique, there
exists t ∈ T ∩M . Because t, u ∈ M and M is a clique, u
is adjacent to t, so u ∈ N [t]. As t ∈ Kt, we have N [t] ⊆
N [Kt]; hence u ∈ N [Kt]. Therefore u lies in the induced
subgraph ⟨N [Kt]⟩.

Since this holds for every u ∈ V (G), the union⋃
k∈S⟨N [k]⟩ equals G, so S is a cv-neighborhood set. Thus

|S| ≤ |T | = τc(G), and by the minimality of ncv(G) we
obtain

ncv(G) ≤ τc(G).

Theorem 2.10: For any graph G, ncv(G) ≤ θ0(G).
Proof: Let C = (c1, c2, ..., cθ0) be a minimum vertex

clique cover of G. By the definition, every vertex v ∈ V (G)
belongs to at least one clique ci ∈ C. Consider the closed
neighborhood of each clique ci, denoted by N [ci]. Since ci ⊆
N [ci], it follows that every vertex v ∈ ci is also in N [ci],
and therefore, v is in ⟨N [ci]⟩. Since every vertex v ∈ V (G)
is in at least one clique ci of the vertex clique cover C.
Therefore, the set of cliques C = (c1, c2, ..., cθ0) forms a
cv-neighborhood set for G. Thus, ncv(G) ≤ |C| = θ0(G).
Therefore, ncv(G) ≤ θ0(G).

Corollary 2.10.1: For any graph G, ncv(G) ≤ θ0(G) ≤
θ1(G).

Corollary 2.10.2: For a complete graph G, ncv(G) =
θ0(G) = θ1(G).

Theorem 2.11: For any graph G, ncv(G) ≤ n0(G).
Proof: Let G be a graph with given ncv(G) and n0(G).

Suppose in one of the clique which is required for ncv , if
none of the vertices of that clique are contained in n0 then
we show that we are getting n0 with less number of vertices,
which is a contradiction. Let us construct a graph with no

set without containing any vertices of the cliques of ncv . Let
v be any vertex. In order to cover the edges of the complete
graph Kr, v can be maximum adjacent to (r − 2) vertices.
We get complete graph Kr−1 . Then to cover the remaining
edges, that is, (2r − 3) edges of the complete graph kr, we
need another vertex say w. Again this w can be adjacent to
maximum (r− 2) vertices. Then the graph remaining is C4.
To cover the C4 one more vertex x needed. With this we are
getting no vertices from the clique Kr. From the original set,
we remove [v, w, x] and add the other 2 vertices which are
adjacent to v, w form a n0 set with lesser vertices, hence a
contradiction.

Theorem 2.12: For any infinite class of graph G,
ncv(G) < n0(G).

Proof: We construct an infinite class of triangle free
graphs G(k, n), n ≥ 4,, with the following steps:
Consider 2 copies of a cycle Cn for n ≥ 5, join its ith vertex
of first copy of Cn (inner cycle) with the ith vertex of second
copy of Cn (outer cycle). We denote graph as H = Cn⊕Cn.
Now obtain k-copies of a graph H as shown in Fig. 2. Here
the joined edge nothing but a clique. Here that cliques are
considered in ncv-set. We are going to name the joined clique
as cij , 1 ≤ i ≤ k, j = 1, 2, ..., n respectively. Let uij and
vij for 1 ≤ i ≤ k, j = 1, 2, ..., n respectively be the labels
of the vertices of inner and outer cycles Cn in the ith copy
of Hi of H.

Fig. 2. Infinite Class of graph G.

• When n is an even cycle. In this graph the alternate cij
cliques are enough for the cv-neighborhood set. Here,
{cij |1 ≤ i ≤ k, j = 2, 4, 6, ..., n} is a ncv-set.
Here, {uij |1 ≤ i ≤ k, j = 1, 3, 5, ..., n+ 1} ∪ {vij |1 ≤
i ≤ k, j = 2, 4, 6..., n} is a n0-set of G(k, n).

ncv(C2m ⊕ C2m) = mk, m ≥ 3. (II.1)

where k = number of copies.

n0(C2m ⊕ C2m) = 2ncv(C2m ⊕ C2m) = 2mk. (II.2)

• When n is an odd cycle. In this graph the alternate
cij cliques and additional one clique is enough for
the cv-neighborhood set. Here, {cij |1 ≤ i ≤ k, j =
1, 3, 5, ..., n, n− 1} is a ncv-set.
Here, {uij |1 ≤ i ≤ k, j = 1, 3, 5, ..., n} ∪ {vij |1 ≤ i ≤
k, j = 2, 4, 6..., n, n− 1} is a n0-set of G(k, n).

ncv(C2m+1 ⊕ C2m+1) = k

⌈
2m+ 1

2

⌉
, m ≥ 2.

(II.3)
Therefore,

n0(C2m+1 ⊕ C2m+1) = 2ncv(C2m+1 ⊕ C2m+1)

= 2k

⌈
2m+ 1

2

⌉
. (II.4)
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Corollary 2.12.1: For C4 graph, where k = number of
copies.

ncv(C4 ⊕ C4) = k

⌈
4

3

⌉
(II.5)

n0(C4 ⊕ C4) = 2kncv(C4 ⊕ C4). (II.6)

Remark:- Let N be an even positive number, where N ≥ 10.
We can determine the number of cliques in an ncv-set by
applying the above theorem

Proof: As N is an even integer and N ≥ 10, we can
write N = 2n, where n = N/2. Since N ≥ 10, it follows
that n ≥ 5. We will analyze the number of cliques in an
ncv-set based on the properties of n.

Case 1: n is a prime number.

In this case, since n ≥ 5 and n is prime, n must be an odd
number (e.g., 5, 7, 11, etc., as 2 is the only even prime, and
n ̸= 2). We calculate the number of cliques in the ncv-set by
constructing a graph isomorphic to Cn as specified by the
above theorem. This construction involves only one copy of
H . The number of cliques can then be directly computed
using the odd cycle formula.

Case 2: n is a composite number.

If n is composite, it can be factored as n = rs for integers
r, s ≥ 2. Consequently, N = 2rs. We subdivide this case
further based on the values of r and s.

Subcase 2.1: One factor is small (r ≤ 4) and the other
is large (s ≥ 5).: Without loss of generality, let r ≤ 4 and
s ≥ 5. We interpret r as the number of k-copies of some
graph component. The factor s represents the number of
vertices in the graph structure we are constructing, following
the principles of the above theorem. The relevant formula is
then applied accordingly to determine the number of cliques
in the ncv-set.

Subcase 2.2: Both factors are small (r ≤ 4 and s ≤ 4).:
In this situation, n = rs will be a relatively small composite
number (e.g., if r = 2, s = 3, then n = 6; if r = 3, s = 3,
then n = 9). We treat m = rs as a single effective size for
the graph construction. The calculation proceeds similarly to
Case 1, likely by constructing a Cm or similar small graph
as per the above theorem and applying the relevant formula.

Subcase 2.3: Both factors are large (r ≥ 5 and s ≥ 5).:
Here, r can be considered as the number of k-copies of a
base structure, and s as the number of vertices in the main
graph construction, or vice-versa. The formulas derived from
the above theorem are applied.

Specific Example within Subcase 2.3:: If r ≥ 5 and
s ≥ 5, and r is even while s is odd (or vice versa):

ncv(Crs ⊕ Crs) = ncv(Cr ⊕ Cr) < ncv(Cs ⊕ Cs).

The maximum strength of a clique (∆s) is the number of
vertices in ⟨N [k]⟩. Now we obtain a bound for ncv(G) in
terms of maximum strength ∆s.

Theorem 2.13: For any graph, n
∆s

≤ ncv(G) ≤ n−∆s+1.
Proof: Let k be the clique of maximum strength ∆s.

Then k, ncv-cover all the vertices in ⟨N [k]⟩. Let S be the
set of cliques that are needed to cv-covers all the vertices.
Then to cover all the vertices ∆s cliques are needed. Then

remaining that many vertices from n results in a graph
(V (G) − ⟨N [k]⟩). Thus |V (G) − ⟨N [k]⟩| = n − ∆s. Thus
S, ncv covers all the vertices in (V (G) − ⟨N [k]⟩) of every
clique formed by choosing one end. Hence (S ∪ k) is a ncv

-covering of graph G.
Therefore, ncv ≤ |S ∪ k| ≤ n − ∆s + 1. So to cover all
the vertices outside the graph of ⟨N [k]⟩. We need maximum
n−∆s+1 provided every vertex is of degree 1. Since a clique
can ncv-cover at most ∆s(G) vertices to ncv-cover all the
vertices, we needed at least n

∆s(G) . Therefore, n
∆s

≤ ncv(G).

The clique vertex neighborhood number ncv of a complete
graph Kn is 1, and same holds for the line graph of a
complete graph, that is, ncv(L(Kn)) = 1. For any graph G,
ncv(L(G)) = ncv(G), except for path. In a cycle graph, the
number of vertices is equal to the number of cliques formed
by its edges. The clique vertex neighborhood number ncv

remains unchanged in the total graph transformation, where
ncv(G) = ncv(T (G)), except for C4. Here, total graph T (G)
of a graph G is the graph obtained by combining G and
its line graph L(G). Its vertex set is V (G) ∪ E(G), and
two vertices in T (G) are adjacent if they are adjacent in G,
adjacent in L(G), or if a vertex and an edge are incident in
G.

Theorem 2.14: For any graph G, ncv(T (G)) ≤ ncv(G)+
ncv(L(G)).

Proof: Suppose a clique k is said to be ncv cover a
vertex v if v ⊆ ⟨N(k)⟩. Here, T (G) contains both G and
L(G) as subgraphs. Let SG be a cv-neighborhood set of G,
|SG| = ncv(G) and SL be a cv-neighborhood set of L(G),
|SL| = ncv(L(G)). T (G) consist of both the vertices of G
and the edges of G, we can combine the clique cover of
G and L(G) to form a valid covering for T (G). The union
S = SG ∪ SL form a valid cv-neighborhood set for T (G).

|S| ≤ |SG|+ |SL|.

which gives:

ncv(T (G)) ≤ ncv(G) + ncv(L(G)).

Corollary 2.14.1: The bound is sharp for C4 graph.
The corona product of two graphs G and H , denoted by

G◦H , is formed by taking one copy of G and |V (G)| copies
of H . For each vertex u in G, every vertex in the i-th copy
of H is connected by an edge to u. The total number of
vertices in (G ◦H) is:

|V (G ◦H)| = |V (G)|+ |V (G)| · |V (H)|. (II.7)

Theorem 2.15: If G and H be any graph, n is the number
of vertices in G and l is the number of vertices in the cliques
forming a minimum cv-neighborhood set in G, then ncv(G◦
H) ≤ ncv(G) + (n− l).

Proof: Let S be a minimum cv-neighborhood set of G,
with |S| = ncv(G). For each s ∈ S, let Cs be a maximal
clique in G containing s, and let L =

⋃
s∈S V (Cs) with

|L| = l. Consider S′ = S ∪ (V (G) \ L) in G ◦ H , with
|S′| = ncv(G) + (n− l). We show S′ is a cv-neighborhood
set for G ◦H . Let v ∈ V (G ◦H).

Case 1: If v ∈ V (G): Since S cv-covers G, v is in ncv(s)
for some s ∈ S ⊆ S′, both in G and in the G part of G◦H .

Case 2: If v ∈ V (Hi) (attached to gi ∈ V (G)):
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• If gi ∈ L, then gi is near a maximal clique related to
some s ∈ S, so v is covered by ncv(s) in G ◦H due to
the adjacency between gi and Hi.

• If gi /∈ L, then gi ∈ S′. The cv-neighborhood of gi
includes all of Hi, so v is covered.

Thus, S′ is a cv-neighborhood set for G◦H , and ncv(G◦
H) ≤ |S′| = ncv(G) + (n− l).

Theorem 2.16: If G is a tree on n vertices, H be any
graph and l is the number of vertices involved in the cliques
forming a minimum cv-neighborhood set of G, then ncv(G◦
H) = n− l.

Proof: Since G is a tree, its only maximal clique are
edges (K2). Suppose we select t cliques in G, since each
clique cover exactly 2 vertices, the total number of vertices
covered is:

l = 2t.

The number of remaining uncovered vertices in G is

n− l = n− 2t. (II.8)

Thus the remaining vertices will determine ncv(G◦H). Since
the added copies of H are only connected to their respective
vertex in G, we must include cliques covering these original
vertices to extend coverage to all new vertices in H .
From general inequality,

ncv(G ◦H) ≤ ncv(G) + (n− l).

Since,
ncv(G) = t, l = 2t

ncv(G ◦H) ≤ n− t

ncv(G ◦H) ≤ n− 2t = n− l

ncv(G ◦H) ≤ n− l. (II.9)

We have to show that, ncv(G ◦H) ≥ n− l.
Here the number of additional clique neighborhoods required
by the number of uncovered vertices in G after selecting the
minimal clique set. Since the uncovered vertices required
clique neighborhoods, we must add at least one clique per
uncovered vertex. This gives us an lower bound for n − k
additional clique.
Thus, we conclude,

ncv(G ◦H) ≥ n− k. (II.10)

Therefore, ncv(G ◦H) = n− k.

Theorem 2.17: For any graph G, ncv(G) ≤ ncv(G ◦G).
Proof: Let G be any graph, the total number of vertices

in G ◦G is n+ n2.
Let S be a clique vertex neighborhood cover for G,

|S| = ncv(G). This cover partially cover G ◦ G, but ad-
ditional clique is needed to cover a vertex. Since each of the
additional |V (G)| copies of G must be cv-covered, at least
some additional cliques must be added to S. Therefore the
clique vertex neighborhood number cannot decrease when
constructing G ◦G. Thus, we conclude:

ncv(G) ≤ ncv(G ◦G). (II.11)

Theorem 2.18: For a cycle and a complete graph with n
vertices, ncv(Cn ◦Kn) = ncv(Cn) + ncv(Kn).

Proof: The total number of vertices in Cn◦Kn is n+n2.
In Cn, number of cliques is equal to number of vertices,
k = n.

The minimum number of cliques needed to cover all the
vertices in a cycle Cn is

ncv(Cn) =
⌈n
3

⌉
=

⌈
k

3

⌉
, n ≥ 5.

Since Kn is a complete graph, a single clique covers all its
vertices so

ncv(Kn) = 1.

Thus to cover Cn ◦Kn

ncv(Cn) + ncv(Kn) =

⌈
k

3

⌉
+ 1.

Hence the result follows.
Theorem 2.19: For a cycle, ncv(Cm) ≤ ncv(Cm ◦ Cn).

Proof: The total number of vertices in Cm ◦Cn is m+
m · n.

The clique vertex neighborhood number for a cycle on m
vertices is ncv(Cm) =

⌈
m
3

⌉
for m ≥ 5, and ncv(C4) =⌊

m
3

⌋
= 1. Since Cm ◦ Cn contains Cm as a subgraph, at

least all the cliques required for Cm must also be present in
Cm ◦Cn. In ncv(Cm ◦Cn) the total clique count cannot be
smaller than that of ncv(Cm). Therefore

ncv(Cm) ≤ ncv(Cm ◦ Cn). (II.12)

The Cartesian product G□H combines two graphs G and H .
Its vertices are ordered pairs (u, v) where u is a vertex in
G and v is a vertices in H . Two vertices (u, v) and (u′, v′)
are adjacent if either u = u′ and v is adjacent to v′ in H , or
v = v′ and u is adjacent to u′ in G.

Theorem 2.20: For a path graph, ncv(Pm□Pn) ≥
ncv(Pm) + ncv(Pn), except for m = 2 and n = 2, 3, 5.

Proof: Let

ncv(Pn) =

⌈
n− 1

3

⌉
. (II.13)

The Pm□Pn forms a grid graph where each vertex (u, v)
connects to vertices along its row (u′, v) and column (u, v′).
To cv-cover all vertices, cliques must be selected to cover
both rows and columns independently.
For a path graph Pk, the cv-neighborhood number ncv(Pk)
equals

⌈
k−1
3

⌉
, the minimum cliques needed to cv-cover

all vertices. In Pm□Pn, every vertex in a row of Pm

and every vertex in a column of Pn must be cv-covered
independently. Therefore the total cv-neighborhood set size
cannot be smaller than the sizes of Pm and Pn. Hence,
ncv(Pm□Pn) ≥ ncv(Pm) + ncv(Pn).
The graph join operation combines two or more graphs into
a single graph. It involves taking the original vertices and
edges, plus adding new edges to connect every vertex in the
first graph to every vertex in the second graph.

Theorem 2.21: For any two non-empty graphs, G1 and
G2, the clique vertex neighborhood number of their join,
denoted as G1 ∨G2, is 1. That is, ncv(G1 ∨G2) = 1.
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Proof: Let G = G1 ∨ G2. By definition, the vertex set
of G is V (G) = V1 ∪ V2, and its edge set includes all edges
connecting every vertex in V1 to every vertex in V2.

To find ncv(G), we need to find the minimum number of
cliques whose closed neighborhoods cover all vertices in G.

Consider any single vertex v from the graph G. A single
vertex is a clique of size 1. Let’s examine the closed
neighborhood of this vertex.

• If v ∈ V1, its neighbors in G are all of its neighbors
in G1 plus all vertices in V2. Therefore, the closed
neighborhood of v in G is NG[v] = V1 ∪ V2 = V (G).

• If v ∈ V2, a similar argument shows that the closed
neighborhood of v in G is also NG[v] = V1 ∪ V2 =
V (G).

In both cases, the closed neighborhood of a single vertex
covers the entire vertex set of the graph, V (G). A single
vertex is a clique, so the subgraph induced by the closed
neighborhood of this clique covers all vertices. Since we only
need one clique to form a cv-neighborhood set, the minimum
cardinality of such a set is 1. Thus, ncv(G1 ∨G2) = 1.

Corollary 2.21.1: For any finite collection of non-empty
graphs, G1, G2, ..., Gn, ncv(G1 ∨G2 ∨ ... ∨Gn) = 1.

III. CLIQUE INDEPENDENCE NUMBER

A set of cliques are clique independent if no two cliques
have a vertex in common. A set L ⊆ K(G) is said to
be a clique independent set if no two cliques in L have
a vertex in common. The clique independence number
βcc = βcc(G) is the maximum number of cliques in a clique
independent set of G. A clique graph KG(G) is a graph with
vertex set K(G) and any two vertices in KG(G) are adjacent
if corresponding cliques in G have a vertex in common. A
graph G is called a clique path, if KG(G) is a path. A graph
G is called a clique cycle, if KG(G) is a cycle. A graph G is
called a clique complete, if KG(G) is a complete. A graph
G is called a clique star, if KG(G) is a clique complete
graph.

Now we give clique independence number of some stan-
dard graphs.

Proposition 3.1:

1) If G is a clique path, βcc(G) =

⌈
k

2

⌉
.

2) If G is a clique cycle, βcc(G) =

⌈
k

2

⌉
.

3) If G is a clique complete graph, βcc(G) = 1.
4) If G is a clique star with c cut-vertices, βcc(G) = c.
Proposition 3.2: For any connected graph G,

βcc ≤
⌈
k

2

⌉
.

Further, the bounds are sharp.
Proof: Let βcc = t. If G has k number of cliques, out

of which t cliques are independent and at least t− 1 cliques
are connecting k cliques. Therefore

k ≥ t+ (t− 1)

k ≥ 2t− 1

Thus, t ≤ k + 1

2

The bound is sharp for any block graph.

Let ϑ be the minimum clique number, then we have the
following proposition.

Proposition 3.3: For any graph G,

βcc ≤
p

ϑ
.

Further, the bound is sharp.
Proof: Let βcc = t. Let L = {k1, k2, . . . , kt} ⊆ K(G)

be the βcc-set of G. Let |ki| denote the number of vertices
in the clique ki. Then |ki| ≥ ϑ(G), 1 ≤ i ≤ t. Since each
ki, 1 ≤ i ≤ t is an independent clique, any two cliques are
mutually disjoint and |k1| ∪ |k2| ∪ · · · ∪ |kt| ⊆ V . Therefore,
tϑ(G) ≤ |k1|∪|k2|∪· · ·∪|kt| ≤ |V | = p proving the desired
inequality.

The bound is sharp for a complete graph and an even cycle
C2n.

Proposition 3.4: For any graph G,

βcc ≤ min{β0, β1}.

Proof: Let βcc = k and suppose L = {l1, l2, . . . , lk} be
the βcc-set of G. Since all the cliques in L are mutually
independent, we can choose an edge xi ∈ li for each
i = 1, 2, . . . , k. Then L1 = {x1, x2, . . . , xk} is an edge
independent set of cardinality k. Then k = βcc = |L| =
|L1| ≤ β1.

Let L = {l1, l2, . . . , lk} be the βcc-set of G. Clearly, we
can select a vertex vi from each clique li in L such that
{v1, v2, . . . , vk} is an independent set of vertices. Thus βcc ≤
β0.

Let δcc be the minimum clique clique degree of a graph
G.

Proposition 3.5: For any graph G,

βcc(G) ≤ k − δcc(G).

Further, the bound is sharp.
Proof: Let L be the set of all cliques with cc-degree

δcc. Then we can find a βcc set S such that L ∩ S ̸= ϕ.
Hence there exists a l ∈ L ∩ S with cc-degree δcc. Then
S ⊆ K(G) − Ncc(l). Therefore βcc(G) ≤ k − δcc(G). The
bound is attained for any clique complete graph.

IV. APPLICATION

Application of clique vertex neighborhood number (ncv)
to network analysis ncv(G), the minimum cliques needed to
cv-cover all vertices, offers a novel lens for network analysis,
particularly in assessing vulnerability and robustness.

A low ncv suggests efficient coverage through local clique
structures, potentially indicating better resilience to failures.
Conversely, a high ncv might imply fragmented coverage and
increased susceptibility.
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