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Abstract—In agricultural production, accurate and auto-
mated assessment of disease severity is crucial for disease
management and yield loss prediction. To meet the precise
pesticide application requirements for diseased tomato leaves,
this study, in response to the complex background images in
the environment, proposed a tomato leaf lesion segmentation
model MS-UNet based on the improved UNet architecture. The
model incorporates three key innovations: First, the MultiRe-
ceptive Field Dilated Convolution Module dynamically adjusts
dilation rates to expand receptive fields while maintaining
lesion continuity, effectively addressing irregular lesion shapes,
and improving segmentation accuracy. Second, the Dynamic
Hybrid Attention Module models spatial and channel-wise
correlations to suppress background interference and enhance
focus on lesion regions. Third, the Weighted Cross-Entropy Loss
function implements class-specific weighting to resolve pixel-
level class imbalance and optimize model performance. For
disease severity assessment, quantitative evaluation is achieved
by calculating the ratio of lesion pixels to total leaf pixels.
Experimental results demonstrate MS-UNet’s superior perfor-
mance on tomato disease datasets, achieving 92.12% mean pixel
accuracy, 88.30% mean intersection over union, and 93.7% F1-
score - representing improvements of 3.70%, 3.15%, and 4.46%
respectively over the baseline model, with a disease severity
classification accuracy of 92.08%. This method enables efficient
and accurate lesion segmentation with precise severity grading,
providing robust technical support for targeted disease control
in tomato cultivation with broad applicability in practical
agricultural production.

Index Terms—Tomato diseases, Graded detection, Expanded
convolution, Attention mechanism, Semantic segmentation

I. INTRODUCTION

TOMATO is a globally cultivated economic crop of sig-
nificant importance, with its yield and quality directly

impacting agricultural production efficiency [1]. Disease in-
fections, however, can result in yield losses of up to 25%
to 35% annually. Of these, foliar diseases have emerged as
a major obstacle to sustainable tomato production because
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of their quick spread and subtle early indications [2]. Ac-
curate lesion segmentation and quantitative disease severity
assessment are of great significance for developing precise
pesticide application strategies and reducing chemical misuse
[3]. Traditional disease evaluation methods primarily rely
on visual inspection or threshold-based image segmentation
techniques, yet these approaches suffer from strong subjec-
tivity and poor environmental adaptability. While traditional
image processing techniques are vulnerable to interference
from leaf textures and backgrounds under complicated il-
lumination conditions, resulting in significant segmentation
accuracy loss, manual tests may show error rates of up to
20% [4].

Recent advancements in deep learning have provided new
solutions for intelligent plant disease diagnosis. CNN-based
classification models achieve over 90% recognition accu-
racy for tomato diseases under controlled environments [5].
However, classification models do not satisfy the practical
criteria for accurate pesticide administration since they can
only provide disease category judgments without knowledge
of the spatial distribution of lesions. Pixel-level prediction is
how semantic segmentation methods get over this restriction.
For crop disease segmentation, Yue et al. [6] proposed an
improved SegNet network incorporating Conditional Ran-
dom Fields for crop disease segmentation, achieving 81.26%
precision and 70.91% recall in complex backgrounds. Afzaal
et al. [7] created an instance segmentation approach for
strawberry illnesses based on Mask RCNN, achieving an
average precision of 82.43%. The model demonstrated an
8.31% false identification rate for fruits afflicted with pow-
dery mildew, despite reaching 94.94% accuracy for gray
mold using ResNet101. Other shortcomings include a large
parameter size and poor test set accuracy. The MC-UNet
model, developed by Deng et al. [8], combined a SE module
with a Multi-scale Convolution Module and achieved 91.32%
accuracy on a bespoke dataset. Despite using SoftPool and
SeLU to improve performance, under difficult situations,
its segmentation accuracy for dense small lesions dropped
noticeably. Furthermore, there was insufficient confirmation
of the studies’ potential to generalize in field settings because
they were mostly dependent on the Plant Village public
dataset. By combining a patch-based Transformer encoder
with a complementary attention mechanism, Li et al. [9] de-
veloped the RSegformer model, which outperformed popular
segmentation algorithms and achieved 85.38% mIoU with
14.36M parameters. However, its partial image-based lesion
area computation was insufficient for a precise evaluation
of the severity of whole-leaf illness. Using the CBAM-FF
feature fusion module and the SANet attention mechanism,
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Wu et al. [10] presented an enhanced DeepLabV3+-based
approach for maple leaf lesion segmentation that achieved
90.23% mIoU and 94.75% MPA on a custom SLSD dataset,
which represents 4.55% and 3.4% improvements over the
original DeepLabV3+, respectively. The model kept 25.7M
parameters without verifying its generalization performance
on additional plant disease datasets, even though it used Mo-
bileNetV2 for its lightweight design. For tomato leaf disease
picture segmentation, Patil et al. [11] developed an Enhanced
Radial Basis Function Neural Network model based on
Modified Sunflower Optimization Algorithm for tomato leaf
disease image segmentation. Utilizing Gaussian filtering and
Contrast Limited Adaptive Histogram Equalization for image
preprocessing, the method achieved 98.92% segmentation
accuracy, though lacking disease severity grading evaluation.
Wang et al. [12] proposed a two-stage model combining
DeepLabV3+ with U-Net, where the first stage performed
leaf segmentation in complex backgrounds and the second
stage accomplished lesion segmentation, ultimately grading
severity based on lesion area proportion. However, this
approach suffered from error accumulation due to serial two-
stage processing [13].

Currently, most disease segmentation methods trained on
laboratory single-background datasets exhibit limited gener-
alization capability in actual field environments, with uni-
versally declining segmentation accuracy severely restricting
practical applications [14]. This study proposes MS-UNet,
an enhanced UNet architecture specifically designed for
tomato disease images in complex field conditions. The
model first incorporates a Multi-Receptive Field Dilated
Convolution Module that fuses local details with global
contextual information through multi-scale dilated convolu-
tion, strengthening feature extraction capability for irregu-
lar lesions. Secondly, to effectively overcome background
interference, a Dynamic Hybrid Attention Module is in-
troduced, modeling correlations across spatial and channel
dimensions to capture intra-class pixel responses and channel
dependencies, thereby reducing adverse effects from complex
backgrounds and enhancing focus on lesion regions. Thirdly,
WCE-Loss is employed to assign category-specific weights,
making the model pay more attention to small targets and
class imbalance during training for further performance im-
provement. Comprehensive comparisons with FCN, SegNet,
UNet, FPN, PSPNet, and DeepLabV3+ validate MS-UNet’s
segmentation performance. Finally, based on segmentation
results, lesion proportion is calculated and disease severity
is graded according to American Phytopathological Society
APS standards.

II. RELATED WORK

A. MS - UNet

The UNet semantic segmentation model excels at agri-
cultural crop image segmentation tasks. The Ronneberger
team proposed a new design in 2015 that improves small
sample learning and precision [15]. The network has a
unique symmetric U-shaped structure with three important
components: an encoder, a decoder, and skip links that
form a deep collaboration mechanism. The encoder path
uses cascaded 3x3 convolutional layers and 2x2 max-pooling
layers to extract multi-scale features. Each downsampling

stage reduces spatial resolution and doubles channel depth,
resulting in a high-dimensional feature space with a strong
semantic representation. Each downsampling stage halves the
spatial resolution of feature maps while doubling the channel
depth, progressively constructing a high-dimensional feature
space with robust semantic representation. The decoder path
gradually restores spatial dimensions through upsampling
operations, employing transposed convolutions or interpo-
lation methods for feature map reconstruction. Simultane-
ously, high-resolution features from corresponding encoder
layers are concatenated along the channel dimension via
skip connections, effectively fusing local details with global
semantic information and mitigating spatial information loss
caused by pooling operations. The core innovation lies in
the skip connections’ cross-layer feature fusion mechanism,
which enables complementary enhancement of multi-level
features through channel-wise concatenation. The concise
and efficient design of UNet provides a crucial paradigm
for deep learning applications in pixel-level prediction tasks,
making it the foundational framework for this study[16].
To improve segmentation accuracy for tomato leaf diseases,
this paper proposes the MS-UNet model based on UNet.
First, the Multi-Receptive Field Dilated Convolution Module
with varying dilation rates is introduced between the encoder
and decoder to reduce detail loss caused by downsampling.
To address interference from complex backgrounds, the
Dynamic Hybrid Attention Module is incorporated into skip
connections, modeling correlations across spatial and channel
dimensions to capture intra-class pixel responses and chan-
nel dependencies, thereby minimizing adverse effects from
complex backgrounds and enhancing focus on lesion regions.
Additionally, to counteract pixel class imbalance due to the
small proportion of leaves and lesions in images, the WCE-
Loss function is adopted to assign category-specific weights
during training, prioritizing small targets and imbalanced
classes for improved performance. Finally, disease severity
is quantitatively assessed by calculating the ratio of lesion
pixels to leaf pixels in the segmentation results. The network
architecture is illustrated in Figure 1.

B. MRF-DCM
In semantic segmentation tasks, deep convolutional neural

networks demonstrate powerful image feature extraction ca-
pabilities. However, traditional convolutional networks suffer
from detail loss due to pooling layers, while dilated convo-
lutions offer a potential solution[17]. Dilated convolutions
expand the receptive field without sacrificing spatial resolu-
tion by introducing dilation rates [18]. However, they insert
zeros between kernel pixels, creating checkerboard-patterned
receptive fields that lose adjacent information and cause
gridding artifacts. To address this limitation, this study pro-
poses the Multi-Receptive Field Dilated Convolution Module
MRF-DCM, with its architecture illustrated in Figure 2. This
module aims to prevent gridding effects while efficiently
capturing high-resolution feature maps with preserved spa-
tial information. The MRF-DCM consists of three parallel
branches employing dilated convolutions with progressively
increasing rates of 1, 2, and 5 following a sawtooth-wave
increment strategy. Each branch contains four convolutional
layers, each followed by batch normalization and Mish acti-
vation functions, enhancing nonlinear representation through
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Fig. 1. MS-UNet structure

deep stacking. The design’s core advantage lies in multi-
scale receptive field synergy: small-dilation convolutions r=1
focus on local details to retain fine-grained features like
lesion boundaries; medium-dilation operations r=2 capture
regional context by establishing semantic pixel relationships;
large-dilation kernels r=5 cover extensive pathological struc-
tures to identify widespread diseased areas. Finally, through
channel concatenation and 1×1 convolutional fusion, MRF-
DCM adaptively integrates multi-scale feature responses.
This approach simultaneously avoids gridding artifacts while
improving the representation of irregularly shaped, multi-
size lesions, delivering a more effective solution for semantic
segmentation tasks.

C. DHAM

To address the limitations of traditional sequential at-
tention mechanisms in feature interaction and information
propagation, this study innovatively proposes a Dynamic
Hybrid Attention Module DHAM. Compared to conven-
tional sequential structures like CBAM [19] and ResCBAM
which employ channel-spatial dimension cascade processing,
DHAM achieves more efficient feature selection capability
through multi-scale feature fusion and dynamic gating mech-
anisms. While traditional methods enhance feature represen-
tation through stepwise optimization of different dimensions,
their static stacking of attention weights tends to cause
over-smoothing of feature responses, particularly leading to
significant information attenuation when processing high-
frequency details such as lesion boundaries. The proposed
DHAM effectively resolves the feature interaction limitations
of traditional attention mechanisms via its novel parallel ar-
chitecture design. As illustrated in Figure 3, DHAM adopts a
channel-spatial attention co-optimization mechanism, mainly

expressed as follows: First, a dual-path feature aggregation
strategy simultaneously utilizes Global Average Pooling and
Global Max Pooling to capture global contextual information
along the channel dimension [20], where the input feature
F ∈ RC×H×W , W0 ∈ RC/r×C and W1 ∈ RC×C/rform
a bottleneck-structured MLP with compression ratio r=16,
and σ denotes the Sigmoid activation function. As shown in
Equation 1:

Mc(F ) = σ
(
W1

(
W0

(
F c
avg

))
+W1 (W0 (F

c
max))

)
(1)

Next, a multi-branch parallel structure is constructed after
the channel attention module, comprising three branches: 3×3
dilated convolution, 5×5 dilated convolution with dilation
rate=2, and 7×7 dilated convolution with dilation rate=3,
which respectively capture local detail features and long-
range contextual information under different receptive fields.
Learnable dynamic weight parameters α, β, and γ are
introduced, with Softmax normalization enforcing α + β + γ
=1 to achieve adaptive fusion of multi-scale features, where
Fc = McF ⊗ F represents channel attention-weighted fea-
tures, and DilConv denotes dilated convolution with dilation
rates set to 1, 2, and 3 respectively. As shown in Equation
2:

Fms = (α·DilConv3×3+β·DilConv5×5+γ·DilConv7×7)(Fc)
(2)

Subsequently, a hybrid pooling strategy enhances spatial
feature representation, establishing long-range dependencies
between spatial positions through 7×7 convolution kernels.
As shown in Equation 3:

Ms(Fms) = σ(Conv7[AP(Fms);MP(Fms)]) (3)

Finally, a residual connection structure preserves original
feature information to prevent gradient vanishing in deep
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networks. As shown in Equation 4:

Fout = F +Ms (Fms)⊗ Fms (4)

This design not only strengthens the model’s multi-scale
feature extraction capability but also realizes channel-spatial
attention co-optimization through dynamic weighting, sig-
nificantly improving feature discrimination for subtle lesion
regions in tomato images under complex scenarios.

D. WCE-LOSS

In the field of agricultural image segmentation, precise
segmentation of tomato diseases faces significant challenges
of class imbalance [21]. In actual cultivation scenarios,
there exists a notable disparity in pixel distribution among

background, healthy leaves, and lesion areas. This extreme
class imbalance causes traditional segmentation models to
predominantly learn features from majority classes while ne-
glecting crucial minority-class lesion features during training.
To address this issue, this study innovatively introduces a
Weighted Cross-Entropy Loss (WCE-Loss) function, which
establishes a pixel-level weighted penalty mechanism based
on class importance through the incorporation of class weight
coefficients wq [22]. The formula is expressed as:

WCE − Loss = − 1

S

S∑
i=1

q∑
q=1

wqyiq lg piq (5)

The formula is defined as follows where S represents the
total number of pixels, q denotes the number of classes in-
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cluding background, leaf and lesion, yiq indicates the ground
truth label, piq signifies the model’s predicted probability
for each pixel belonging to the class q, and wq represents
the weight for class q. By setting progressive weight ratios
of 1:2:3 for ”Background”, ”Leaf”, and ”Lesion” respec-
tively based on their occurrence frequency and diagnostic
importance, this loss function achieves dual optimization
objectives: firstly adjusting weights inversely proportional to
class frequency by assigning the lowest weight to a high-
frequency background, while simultaneously assigning the
highest weight to diagnostically critical lesion regions. This
weighting strategy enhances the detection rate of small-scale
lesions while maintaining overall segmentation accuracy,
thereby providing an effective technical solution for precise
early disease diagnosis in smart agriculture systems.

III. RESULT AND DISCUSSION

A. Dataset

This study investigates disease segmentation in tomato leaf
disease photos. The dataset was collected at the Luoxiang
Tomato Production Base in Chaohu City, Hefei, Anhui
Province. During data collection, an Apple smartphone was
used for natural photography. To ensure image richness
and representativeness, photographs were shot from various
angles and distances. Each image had to include one entire
tomato leaf while maintaining background noise elements
like dirt or other leaves. To ensure completeness and diver-
sity, the dataset was collected under diverse weather circum-
stances, including bright, overcast, and post-rain periods, as
well as different times of day. The collection contains photos
of two diseases: leaf miner and leaf mold. For subsequent
processing and analysis, all images were uniformly resized
to 256×256 pixels. After rigorous screening to remove blurry
and duplicate images, 680 valid images were ultimately
obtained.

LabelImg was employed for pixel-level annotation of the
collected tomato disease images to generate corresponding
mask maps [23]. During annotation, since images might
contain multiple leaves with incomplete leaves in the back-
ground, only the central complete leaf was labeled for leaf,
and lesion categories. The background, leaves, and two types
of lesions, namely Leaf miner and Leaf mold, are respec-
tively labeled as 0, 1, 2, and 3. These manually annotated
images serve as the ground truth for measuring segmentation
accuracy, with sample annotations shown in Figure 4.

To enhance dataset diversity and improve model robust-
ness, tomato leaf samples were first classified, followed by
a series of data augmentation operations including rotation,
flipping, local magnification, brightness, and darkness adjust-
ment. Ultimately, the dataset was expanded to 2,150 images.
Through random sampling, the dataset was divided into a
training set (1,720 images), a validation set (215 images),
and a test set (215 images) at an 8:1:1 ratio. Detailed dataset
information is presented in Table I.

B. Experimental setup and evaluation metrics

The experimental environment employed the PyTorch
framework for model training and testing on a Windows 11
system, with the main platform parameters detailed in Table
II.

Leaf miner

Leaf mold

(a) Original image (b) label image

Background  Leaf
Lesion Lesion

Fig. 4. Image labelling

TABLE I
TOMATO LEAF DISEASE AND PEST DATA SET

Category Training Set Validation Set Test Set Total

Leaf miner 855 108 106 1,069
Leaf mold 865 107 109 1,081

Total 1,720 215 215 2,150

TABLE II
TRAINING ENVIRONMENT CONFIGURATION

Component Specification

CPU AMD Ryzen 9 7940H w/Radeon
780M Graphics

GPU NVIDIA GeForce RTX 4060
Laptop GPU

Memory 16GB
VRAM 8GB

OS Windows 11
DL Framework PyTorch 2.0.1

CUDA 11.7
Python Python 3.8

TABLE III
TRAINING PARAMETERS CONFIGURATION

Parameter Value Parameter Value

Epochs 100 Optimizer Adam
Learning rate 0.0001 Weight decay 0.0005

Batch size 8 Momentum 0.937

Image size 512 Workers 4

For model training in this study, all original training set
images had a resolution of 256×256 pixels, while the input
resolution during training was resized to 512×512 pixels. The
training parameter configurations are specified in Table III.

To comprehensively and objectively evaluate the model’s
segmentation performance, this experiment incorporated five
key metrics as primary evaluation criteria: Mean Accuracy,
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Mean Intersection over Union, Mean Average Precision, F1-
score [24], and Prediction Time, which collectively form the
standard for assessing algorithm performance.

1) Mean Accuracy: mAcc quantifies the model’s overall
classification precision across all categories.

mAcc =
1

n

n∑
i=1

TPi + TNi

TPi + TNi + FPi + FNi
: (6)

2) Mean Intersection over Union: mIoU represents the
average IoU across all classes, measuring the overlap be-
tween predicted and ground truth regions.

mIoU =
1

n

n∑
i=1

TPi

TPi + FPi + FNi
(7)

3) Mean Average Precision: mAP denotes the mean of AP
values for all categories, commonly used in object detection
and instance segmentation tasks.

mAP =
1

k

0.95∑
t=0.5

AP@t, t ∈ [0.5 : 0.05 : 0.95] (8)

4) F1-score: The F1-score serves as the harmonic mean
of Precision and Recall.

F1 = 2× Precision × Recall
Precision + Recall

(9)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(10)

5) Prediction time/s: The prediction time reflects the real-
time processing capability of the model.

Tp =
1

N

N∑
i=1

Ti (11)

In these metrics, TP, TN, FP, and FN respectively represent
true positives, true negatives, false positives, and false nega-
tives; n indicates the number of classes; k denotes the count
of IoU thresholds; N represents the number of test samples;
and Ti signifies single-sample prediction time.

According to the disease severity classification standard
established by the American Phytopathological Society, the
severity of disease infection is categorized into five levels
based on the percentage of leaf area covered by lesions:
Level 0 represents healthy leaves without any lesions; Level
1 indicates sparse patches on the leaf back with coverage
area ≤ 5% while maintaining normal leaf morphology; Level
2 corresponds to lesion coverage between 6%-20% accom-
panied by slight leaf margin curling; Level 3 shows more
severe infection with 21%-50% lesion coverage, resulting in
leaf deformation and shrinkage; Level 4 represents the most
critical condition where lesions cover > 50% of the leaf area,
leading to tissue necrosis or defoliation. This classification
system quantitatively evaluates both lesion expansion and
tissue damage, providing standardized assessment criteria for
disease monitoring, chemical control, and disease-resistant
breeding. After annotation, the disease severity index S can
be calculated using Equation (12), where Plesion represents
the number of lesion pixels in the image; Pleaf indicates the
count of healthy leaf pixels in the segmentation map; and S
stands for the total number of lesion pixels in the image.

S =
Plesion

Plesion + Pleaf
× 100% (12)

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT ATTENTION MODULES

Model mIoU (%) mPA (%) F1-score (%)

UNet 85.15 88.42 89.24
UNet+SE 85.74 89.41 89.64

UNet+ECA 86.03 88.75 89.96
UNet+CBAM 86.14 89.12 90.35
UNet+DHAM 86.45 89.88 90.42

C. Ablation Experiments Result And Discussion

Segmenting disease spots on tomato leaves presents signif-
icant challenges due to the complex and variable morphology
of lesions, blurred boundaries between healthy and infected
tissues, and intricate background interference, which often
causes traditional UNet models to overlook subtle lesion
regions during feature extraction.

To enhance the model’s perception of lesion character-
istics, this study employed the UNet architecture as the
baseline and compared the improvement effects of various
attention mechanisms. Four attention modules were intro-
duced: SE, ECA [25], CBAM, and DHAM, all of which
enhanced model performance. As shown in Table IV, the
UNet+SE model adopted a channel weighting mechanism
to strengthen lesion-related channel features, achieving 0.59
and 0.79 percentage point improvements in mIoU and mPA,
respectively, over the baseline. UNet+ECA implemented a
cross-channel interaction strategy, showing superior perfor-
mance to SE with 0.88 and 0.72 percentage point gains in
mIoU and F1-score, though its limited spatial detail cap-
ture constrained mPA improvement. UNet+CBAM combined
dual-path channel and spatial attention, using spatial masks
to enhance boundary responses, ultimately reaching 86.14%
mIoU and 90.35% F1-score. The proposed UNet+DHAM
incorporated a multi-scale dynamic residual attention module
that employed parallel multi-scale dilated convolutions to
extract both local and global lesion features, dynamically
fused spatial responses from different receptive fields and
utilized channel attention to filter key feature channels while
suppressing background interference. Residual connections
maintained deep feature discriminability, enabling precise lo-
calization of ambiguous lesions. Experimental results demon-
strated mIoU, mPA, and F1-score values of 86.45%, 89.68%,
and 90.42%, respectively, representing improvements of
1.30, 1.46, and 1.18 percentage points over the baseline, with
optimal comprehensive performance. The DHAM module ef-
fectively balanced channel dependency modeling and spatial
detail enhancement, offering novel insights for agricultural
small-target segmentation. Figure 5 presents the mPA plots
of different attention mechanisms.

To validate whether the optimized loss function can en-
hance model segmentation accuracy, this paper combines
UNet with Cross-Entropy Loss (CE-Loss), Focal Loss (F-
Loss), Cross Entropy-Dice Mixed Loss (CEM-Loss), and
the proposed Weighted Cross-Entropy Loss (WCE-Loss) for
performance comparison.

UNet’s mPA, mIoU, and F1-score are all lower when using
Focal Loss than when using Cross-Entropy Loss, as Table V
illustrates. This suggests that although Focal Loss reduces
the problems associated with class imbalance, its total seg-
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TABLE V
PERFORMANCE COMPARISON OF DIFFERENT LOSS FUNCTIONS

Model mIoU (%) mPA (%) F1-score (%)

UNet 85.15 88.42 89.24
UNet+CE-

Loss
85.74 88.71 89.39

UNet+F-Loss 85.32 88.68 89.23
UNet+CEM-

Loss
86.01 88.76 90.10

UNet+WCE-
Loss

86.05 88.99 90.17

mentation performance falls short of the ideal. Compared to
utilizing CE-Loss or F-Loss alone, the model shows slight
improvements in mPA, mIoU, and F1-score when CEM-
Loss is used. The modest increases, however, imply that
this hybrid approach has a limited synergistic effect when
it comes to simultaneously enhancing region overlap metrics
and pixel-wise categorization. Interestingly, using the WCE-
Loss allows the model to reach ideal segmentation accuracy.
In particular, WCE-Loss improves mPA by 0.28, 0.31, and
0.23 percentage points, respectively, mIoU by 0.31, 0.73, and
0.04 percentage points, and F1-score by 0.78, 0.94, and 0.07
percentage points, respectively, in comparison to CE-Loss,
F-Loss, and CEM-Loss. These findings show that WCE-
Loss greatly improves the segmentation accuracy of the UNet
model for leaf lesions by allowing the model to segment leaf
and lesion regions more successfully.

To thoroughly investigate the specific impact of improve-
ment measures on UNet’s performance, this study conducted
ablation experiments with the following procedure: As shown
in Table VI, first, using UNet as the baseline model achieved
mIoU, mPA and F1-score of 85.15%, 88.42% and 89.24%
respectively; second, when individually incorporating the
MRF-DCM into the baseline model, these three metrics
improved by 1.57, 0.92 and 1.27 percentage points to reach
86.72%, 89.34% and 90.51% respectively; third, after sepa-
rately adding the DHAM, all metrics increased by 1.30, 1.46
and 1.18 percentage points compared to the baseline, reach-
ing 86.45%, 89.38% and 90.42%; fourth, when optimizing
the loss function with WCE-Loss, the metrics improved by

0.90, 0.57, and 0.93 percentage points to 86.05%, 90.99%,
and 90.17%. When implementing module combinations, the
joint application of MRF-DCM and DHAM significantly
enhanced mIoU, mPA, and F1-score by 2.47, 2.27, and
2.92 percentage points over the baseline, achieving 87.62%,
90.69%, and 92.16%; while the combination of MRF-DCM
and WCE-Loss improved these metrics to 87.31%, 90.43%
and 91.82%. Ultimately, the complete model (MRDCM +
DHAM + WCE-Loss) achieved optimal performance with
the three metrics reaching 88.30%, 92.12%, and 93.70%,
representing overall improvements of 3.15, 3.70, and 4.46
percentage points over the baseline. Experimental results
demonstrate that MRF-DCM effectively captures continu-
ous features of irregular lesions through multi-scale re-
ceptive field fusion; DHAM utilizes spatial-channel dual-
dimensional attention mechanisms to suppress background
interference; while WCE-Loss alleviates class imbalance
through dynamic weight allocation. Their synergistic ef-
fect significantly enhances lesion segmentation accuracy and
model robustness in complex scenarios.

Figure 6 displays performance comparison curves between
UNet and MS-UNet during training, showing variations in
mIoU and mAP metrics along with training loss reduction.
As seen by the data, MS-UNet outperforms baseline UNet
on all metrics. In the first training phase, MS-UNet’s mAP
metric showed a significant improvement in model accuracy.
The mAP reached 80% when the training rounds reached 20,
and the ultimate stable value was 92.12%, which was 3.7
percentage points greater than the traditional UNet model’s
figure. In the mIoU statistic, MS-UNet again performed
exceptionally well, achieving 88.3%, which was 3.15 per-
centage points higher than UNet’s 85.15%. According to
training dynamics, UNet needed more training cycles to
reach equivalent results, but MS-UNet’s loss function con-
verged to roughly 0.15 by epoch 15. Training dynamics
reveal MS-UNet’s loss function converged to approximately
0.15 by epoch 15, whereas UNet required longer training
cycles to achieve comparable convergence. Notably, MS-
UNet demonstrated superior stability in later training stages,
with significantly smaller metric fluctuations than UNet.

D. Comparison with other algorithms

This study used several assessment measures, such
as mIoU%, mPA%, F1-score, Precision, and Prediction
time/s, to assess the segmentation performance of the MS-
UNet model for tomato leaf disease spots. The MS-UNet
model was compared against the FCN, SegNet, PSPNet,
DeepLabV3+, FPN, Swin Transformer, and UNet models
under the same conditions [26]. According to Table VII,
MS-UNet significantly outperformed conventional models,
achieving 88.30%, 92.12%, and 93.70% in the three key
measures of mIoU, mPA, and F1-score, respectively. Com-
pared with the FCN model, it showed enhancements of 14.03,
7.99, and 8.33 percentage points in mIoU, mPA, and F1-
score respectively; relative to SegNet, the improvements were
9.37, 9.36, and 10.41 percentage points; compared with PSP-
Net and DeepLabV3+, mIoU increased by 11.91 and 7.07
percentage points, while mPA improved by 10.27 and 6.21
percentage points respectively; even when compared with the
classical UNet model, it still achieved gains of 3.15, 3.70, and
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TABLE VI
ABLATION EXPERIMENTS RESULTS

UNet MRF-DCM DHAM WCE-Loss mIoU(%) mPA(%) F1-score(%)

✓ – – – 85.15 88.42 89.24

✓ ✓ – – 86.72 89.34 90.51

✓ – ✓ – 86.45 89.88 90.42

✓ – – ✓ 86.05 88.99 90.17

✓ ✓ ✓ – 87.62 90.69 92.16

✓ ✓ – ✓ 87.31 90.43 91.82

✓ ✓ ✓ ✓ 88.30 92.12 93.70
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Fig. 6. Changes in the three indicators of each model.

TABLE VII
COMPARATIVE TESTS OF DIFFERENT MODELS

Model mIoU%) mPA(%) F1-score Precision(%) Prediction(s)

FCN 74.27 84.13 85.37 86.26 7.89

SegNet 78.93 82.76 83.29 84.68 12.53

PSPNet 76.39 81.85 81.37 83.24 8.21

DeepLabV3+ 81.23 85.91 85.46 86.03 8.75

FPN 82.62 86.69 87.23 88.31 10.31

Swin
Transformer

86.87 89.83 90.65 92.23 20.13

UNet 85.15 88.42 89.24 89.75 9.01

MS-UNet 88.30 92.12 93.70 94.31 9.23

4.46 percentage points. In terms of segmentation efficiency,
MS-UNet’s prediction time was 9.23 seconds, showing a
slight increase compared to FCN and PSPNet models, but
this time cost is justified by the priority of accuracy over
real-time requirements in disease spot segmentation tasks.

Figure 7 presents the performance comparison of mIoU
versus epoch during training for FCN, SegNet, PSP-
Net, DeepLabV3+, UNet, and MS-UNet models. MS-UNet
demonstrated the most outstanding performance, exhibiting
both the fastest mIoU improvement rate and the highest
final accuracy, reaching 70 mIoU by epoch 15 and stabi-
lizing around epoch 55, significantly outperforming other
models. UNet and DeepLabV3+ showed relatively good but

secondary performance, while FCN and SegNet exhibited
comparatively slower convergence speeds and lower final
accuracy. Overall, MS-UNet demonstrates remarkable ad-
vantages in both convergence speed and segmentation accu-
racy, validating its superiority in handling agricultural image
segmentation tasks and providing a more reliable technical
solution for intelligent disease diagnosis in agriculture.

E. Visualization results and discussion

Semantic segmentation and feature visualization were car-
ried out on tomato leaves infested with leaf miners and leaf
mold to further assess the segmentation performance of FCN,
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SegNet, PSPNet, DeepLabV3+, UNet, and MS-UNet. The
outcomes are displayed in Figure 8. When the segmentation
findings for these two diseases were compared, it was found
that the standard FCN model performed poorly at leaf edges
and had serious flaws when processing complicated back-
drops. Despite outperforming FCN, SegNet, and PSPNet still
had some significant drawbacks: While PSPNet demonstrated
poor accuracy in lesion area segmentation and blatant over-
segmentation issues, SegNet was imprecise in border seg-
mentation under complicated backgrounds. Although UNet
and DeepLabV3+ enhanced leaf segmentation performance,
they were still limited in their ability to process tiny lesions.
The suggested MS-UNet model, on the other hand, showed
better segmentation performance, successfully lowering mis-
classification and under-segmentation errors while preserving
outstanding edge segmentation outcomes. By considerably
increasing segmentation accuracy for both leaves and lesions,
demonstrating greater robustness against background noise,
and noticeably lowering the incidence of over-segmentation,
this model effectively addressed the problem of inadequate
precision in previous models for tomato leaf disease segmen-
tation.

F. Cross-Dataset Algorithm Comparison

To validate the generalization capability of the MS-UNet
algorithm, this study conducted comparative experiments
against FCN, SegNet, PSPNet, DeepLabV3+, and UNet
disease types and their substantial scale, we extracted and
organized images of four tomato diseases—Early Blight,
Late Blight, Target Spot, and Yellow Leaf Curl Virus—
alongside healthy images. This curated subset was designated
as PlantVillage-4 and underwent comprehensive annotation.
As shown in Table VIII, MS-UNet achieved the highest IoU
across all four disease categories, attaining a mIoU of 85.8%,
significantly outperforming other methods (p < 0.01). These
results demonstrate MS-UNet’s superior performance on the
PlantVillage-4 dataset, confirming its broad applicability for
tomato disease detection.

G. Severity grading of diseases
Significant variations were observed among different deep

learning models when grading the severity of tomato leaf
mold and leaf miner infections. As shown in Table VII. For
healthy leaves (Level 0), PSPNet, DeepLabV3+, UNet, and
MS-UNet all achieved 100% accuracy, while SegNet attained
a high accuracy of 99.3%. In early-stage infections (Level
1), MS-UNet reached an accuracy of 96.3%, significantly
outperforming SegNet. As disease severity increased, per-
formance disparities became more pronounced, For Level 2
infections, MS-UNet achieved 89.7% accuracy, surpassing
FCN by 29.3 percentage points. For Level 3, MS-UNet
outperformed PSPNet by 13.7 percentage points. In Level
4, MS-UNet attained the highest accuracy. Comparative
analysis revealed that MS-UNet achieved an overall average
grading accuracy of 92.48% significantly exceeding that
of UNet, DeepLabV3+, PSPNet, SegNet, and FCN. These
experimental results demonstrate that MS-UNet delivers op-
timal performance across all severity levels, with particularly
superior capability in high-grade disease identification, val-
idating its effectiveness for precise disease severity classifi-
cation in tomato cultivation.

IV. CONCLUSION

This study proposes the MS-UNet model for tomato leaf
disease segmentation and severity grading, integrating a
Multi-Receptive Field Dilated Convolution Module, a Dy-
namic Hybrid Attention Module, and a Weighted Cross-
Entropy Loss to enhance segmentation accuracy and severity
assessment. The key findings are summarized as follows:

1) MRF-DCM effectively captures multi-scale contextual
features by combining local details and global informa-
tion through dilated convolution, addressing irregular lesion
shapes and scale variations. Experimental results demonstrate
that this module improves the model’s mIoU and F1-score
by 1.57% and 1.27%, respectively, confirming its superior
feature representation capability for complex disease spots.

2) DHAM enhances feature discriminability by dynami-
cally adjusting spatial and channel-wise weights, suppressing
background interference while highlighting lesion regions.
Compared to SE, ECA, and CBAM, DHAM increases the
model’s mPA by 1.46% and achieves an F1-score of 90.42%.
Additionally, WCE-Loss assigns class-specific weights to
address small targets and class imbalance, further improving
model performance.

3) Compared with models such as FCN and SegNet,
MS-UNet performed outstandingly in the task of tomato
disease segmentation. The mIoU, mPA, and F1-score reached
88.30%, 92.12%, and 93.70% respectively, which were sig-
nificantly improved compared with the benchmark UNet. For
severity grading, it attains an average accuracy of 92.48%,
with a maximum improvement of 64%, demonstrating its
effectiveness in precision agriculture applications.

In conclusion, MS-UNet enables high-precision lesion seg-
mentation and severity assessment in complex backgrounds,
supporting tomato disease diagnosis and targeted pesticide
application. Future work will focus on optimizing environ-
mental adaptability, expanding datasets, improving accuracy,
and exploring lightweight deployment.
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Fig. 8. Comparison of visual results of different models.

TABLE VIII
COMPARISON OF DIFFERENT ALGORITHMS IN PLANTVILLAGE-4 DATASET

Method FCN
mIoU/%

SegNet
mIoU/%

PSPNet
mIoU/%

DeepLabV3+
mIoU/%

UNet
mIoU/%

MS-UNet
mIoU/%

All 73.1 75.4 77.2 80.8 84.1 85.8

Early Blight 62.5 74.2 86.5 89.0 88.3 91.2

Late Blight 79.2 70.1 88.3 86.7 82.1 82.8

Target Spot 76.8 82.4 91.0 88.2 89.5 89.1

Yellow Leaf
Curl Virus

84.5 83.2 93.5 95.0 93.8 95.6

TABLE IX
COMPARISON OF CLASSIFICATION ACCURACY RATES OF DIFFERENT MODELS

Disease
Level

Images
number

FCN
Accuracy (%)

SegNet
Accuracy (%)

PSPNet
Accuracy (%)

DeepLabV3+
Accuracy (%)

UNet
Accuracy (%)

MS-UNet
Accuracy (%)

Level 0 10 98.1 99.3 100 100 100 100

Level 1 50 83.2 76.5 86.8 90.1 92.6 96.3

Level 2 78 60.4 63.2 73.5 76.4 82.1 89.7

Level 3 83 50.9 56.7 65.2 70.3 72.6 78.9

Level 4 80 80.6 83.7 87.9 89.6 91.7 97.5

Average – 74.84 76.02 82.68 85.28 87.8 92.48
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