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Abstract—The application of advanced computational tech-
niques in fashion retail has become essential for enhancing
customer shopping experiences. This paper presents an AI-
driven approach for virtual try-on technology and fashion
recommendation systems. We propose an integrated method
for clothing detection, segmentation, classification, and virtual
try-on applications. Our approach leverages YOLOv9, trained
on the Dress Code dataset, for precise clothing detection and
segmentation from images. EfficientNetB0 is employed for
garment classification and recommendation of similar items.
A Virtual Try-On Network (VITON) generates realistic vi-
sual representations of recommended clothing on users. The
system achieves state-of-the-art performance in detection and
classification tasks with superior visual realism across multiple
benchmarks. Results validate the effectiveness of our approach
in improving user experience for online fashion retail and
intelligent clothing systems.

Index Terms—YOLOv9, EfficientNetB0, Virtual Try-On Net-
work, Fashion recommendation systems, Dress Code dataset

I. INTRODUCTION

ARTIFICIAL intelligence has emerged as a primary
driver of disruptive technologies across numerous do-

mains, with fashion technology representing one of the most
rapidly evolving and commercially significant application
areas [1]. AI-driven solutions have demonstrated significant
potential to enhance the functionality and user experience
of fashion recommendation systems, virtual styling appli-
cations, and e-commerce platforms [2]. These technologies
enable automated processes for clothing detection, segmenta-
tion, classification, and style recommendation, allowing users
to efficiently discover and explore fashion choices through
intelligent systems that understand both visual aesthetics
and personal preferences. The evolution of deep learning
architectures has particularly revolutionized fashion AI appli-
cations. Convolutional Neural Networks (CNNs) have been
extensively applied to fashion image analysis, with early
works focusing on basic classification tasks using datasets
like Fashion-MNIST [3] and DeepFashion [4]. More recent
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advances have leveraged sophisticated architectures including
ResNet [5] and EfficientNet [6] to achieve superior per-
formance in complex fashion understanding tasks. Object
detection models, particularly the YOLO (You Only Look
Once) family, have shown exceptional promise for real-
time clothing detection and localization in natural images,
enabling practical applications in mobile and web-based
fashion platforms. However, developing robust end-to-end
AI systems for clothing detection and style recommendation
presents several significant technical challenges that remain
largely unresolved in current literature. One major obstacle
is the inherent complexity and variability of fashion datasets,
which often suffer from inconsistent annotations, diverse
lighting conditions, occlusions, and pose variations. Fashion
items exhibit high intra-class variation due to different cuts,
patterns, colors, and styling approaches, while maintaining
subtle inter-class distinctions that are crucial for accurate
classification. For instance, fashion datasets like Dress Code
[7] and DeepFashion2 [8] necessitate thorough cleaning,
re-annotation, and format conversion to YOLO-compatible
structures—a critical preprocessing step that significantly
impacts the accuracy of clothing detection and segmen-
tation tasks. Another significant challenge lies in seam-
lessly integrating multiple deep learning architectures into
a unified, high-performance pipeline while maintaining real-
time inference capabilities. The outputs from detection and
segmentation models must be efficiently processed as inputs
for downstream classification and recommendation networks,
requiring sophisticated system architecture to maintain both
accuracy and computational efficiency throughout the en-
tire pipeline. Additionally, fashion recommendation sys-
tems must balance visual similarity with style compatibility,
seasonal appropriateness, and personal preference model-
ing—a multi-objective optimization problem that traditional
approaches struggle to address effectively. The integration
of deep background matting significantly enhances fash-
ion recommendation systems, especially in e-commerce. El
Abdellaoui and Kachbal [9], [10], [11] demonstrated that
deep residual networks enable accurate garment segmenta-
tion from complex scenes, outperforming traditional meth-
ods. This approach facilitates cleaner product visuals and
more realistic virtual try-on experiences, improving garment
classification, style analysis, and overall user interaction.
Current state-of-the-art approaches in fashion AI often focus
on individual components rather than comprehensive end-to-
end solutions. While YOLOv9 [12] has demonstrated supe-
rior performance in general object detection tasks, applying
this model to fashion-specific challenges requires careful
architectural modifications and training strategies. Similarly,
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Fig. 1: Stepwise Pipeline of Related Work in Clothing Detection and Fashion Recommendation

existing fashion recommendation systems typically rely on
simple feature matching or collaborative filtering approaches,
lacking the sophisticated visual understanding necessary for
nuanced style recommendations. To address these challenges,
we introduce YOLO-GARNet, a novel high-quality deep
learning network specifically designed for clothing detec-
tion and style recommendation applications. Our approach
leverages YOLOv9 as the backbone architecture for precise
clothing detection and segmentation, enhanced with fashion-
specific data augmentation techniques, optimized anchor con-
figurations, and advanced preprocessing strategies tailored
to fashion image characteristics. YOLO-GARNet integrates
seamlessly with EfficientNetB0-based classification networks
to provide comprehensive style recommendations, creating
an end-to-end solution that achieves state-of-the-art perfor-
mance on standard fashion AI benchmarks [2]. By combining
advanced object detection capabilities with intelligent style
analysis and preference learning, our system enables users
to receive accurate clothing recognition and personalized
fashion recommendations in real-time applications. The key
contributions of this work include: (1) YOLO-GARNet, a
novel YOLOv9-based architecture optimized for fashion ap-
plications with specialized preprocessing and training strate-
gies; (2) an integrated end-to-end pipeline that combines de-
tection, segmentation, classification, and recommendation in
a unified framework; (3) comprehensive experimental evalu-
ation demonstrating state-of-the-art performance on multiple
fashion datasets; and (4) detailed analysis of computational
efficiency and practical deployment considerations for real-
world applications. Our approach addresses critical limita-
tions in existing fashion recommendation systems by pro-
viding superior garment detail preservation and morphology-
aware virtual try-on capabilities. The proposed framework
establishes a new benchmark for AI-powered fashion tech-
nology with significant implications for e-commerce and
personalized styling applications.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work in AI-based fashion technology.
Section III presents our YOLO-GARNet architecture and
describes the integrated pipeline design, including detailed
technical specifications and training methodologies. Section
IV provides comprehensive experimental evaluation and per-
formance comparisons with existing state-of-the-art methods

across multiple benchmark datasets. Section V analyzes the
implications of our findings, addresses limitations, and ex-
plores practical deployment considerations. Finally, Section
VI concludes with a summary of our contributions and
discusses future directions for intelligent fashion technology
research.

II. RELATED WORK

Fashion recommendation systems [13], [14] have emerged
as a critical component of modern e-commerce platforms,
addressing the complex challenge of matching user pref-
erences with appropriate fashion items. The sophistication
of these systems has evolved considerably, incorporating
advanced machine learning techniques to handle the multi-
faceted nature of fashion preferences and item characteristics.
This section provides a comprehensive review of existing
literature (Figure 1) by organizing the discussion around six
fundamental components.

A. User Profiling

The effectiveness of fashion recommendation systems re-
lies heavily on accurate user profiling that captures prefer-
ences and behaviors. Modern approaches integrate multiple
data sources, including explicit feedback, implicit signals,
and demographics. He et al. [15] introduced neural collab-
orative filtering, enhancing traditional matrix factorization
by modeling complex user-item interactions with neural
networks, which is especially useful for the subjective nature
of fashion preferences. Aakash et al. [1] surveyed deep
learning recommender systems, highlighting the shift from
classical collaborative filtering to models that better capture
implicit feedback common in fashion contexts. Recent work
by Purificato et al. [16] reviews user modeling paradigms and
AI integration for personalized experiences, emphasizing the
need for advanced profiling methods. Meanwhile, Suvarna
et al. [17] proposed a deep learning-based content recom-
mendation system using backpropagation neural networks,
showing improved fashion recommendation accuracy.

B. Item Analysis

Fashion item analysis relies on advanced feature extraction
methods to capture detailed visual and semantic attributes.
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Fig. 2: Several preprocessing steps were applied to the Dress Code dataset prior to training with YOLOv9

While early works like Liu et al. [4] used CNNs with
the DeepFashion dataset, object detection frameworks have
become crucial for real-time analysis. The YOLO (You
Only Look Once) framework introduced by Redmon et al.
[18] revolutionized object detection with a fast, single-stage
architecture, enabling efficient detection and localization of
fashion items in complex scenes. Successive YOLO versions;
YOLOv3, YOLOv4, and the latest YOLOv5 and YOLOv8
[19] have progressively improved detection accuracy, speed,
and multi-scale capabilities [20]. These advanced variants
allow simultaneous detection of multiple clothing categories
with high precision, making them ideal for detailed outfit
analysis and personalized fashion recommendations.

C. Similarity Computing

Visual similarity computation is crucial for fashion rec-
ommendation systems, enabling identification of items sim-
ilar in style, color, pattern, and design. A key challenge
is developing similarity measures that align with human
perceptions of fashion compatibility. Yang et al. [21] intro-
duced attention-based modeling to focus on relevant visual
regions, improving compatibility assessments. EfficientNet
architectures have been adopted for their balance of accuracy
and efficiency in large-scale similarity tasks [22], [23]. Ad-
ditionally, YOLO-based detection pipelines localize fashion
items before similarity analysis, enhancing compatibility
predictions [18], [20].

D. Personalized Recommendation

Personalized fashion recommendations require advanced
algorithms that balance user preferences, item features, and
context. Graph neural networks effectively model com-
plex user-item-attribute relationships, as demonstrated by
Wang et al. [24] with neural graph collaborative filtering.
Transformer-based models like BERT4Rec [25] capture tem-
poral patterns crucial for seasonal and shifting fashion trends.
Deep learning approaches continue to surpass traditional
collaborative filtering limitations [15], [26].

E. Delivery Recommendation

The delivery of fashion recommendations requires careful
consideration of user interface design and presentation strate-
gies. Recent studies have explored visual search interfaces,
interactive recommendation systems, and mobile-optimized
formats to enhance user experience and engagement [27],

[28]. Efficient [22] architectures are critical for real-time
recommendation delivery, especially on resource-constrained
mobile devices.

F. High-Quality Visual Analysis

Quality enhancement in fashion recommendation systems
focuses on advanced evaluation metrics beyond traditional
precision and recall. Sharma et al. [23] proposed a content-
based system using deep ensemble classifiers and Efficient-
Net variants to boost classification accuracy and recommen-
dation quality. EfficientNet-based models excel in assessing
fashion item aesthetics such as resolution, lighting, and
presentation while remaining computationally efficient [22].
Additionally, YOLO architectures aid quality control by
detecting poorly presented or low-quality images that can
degrade user experience [20].

III. OUR APPROACH

Our solution provides an integrated intelligent wardrobe
system that addresses the problems identified in current work.
We have developed a unified architecture (Figure 2 and
Figure 3) that combines three complementary technologies:
clothing detection and segmentation with YOLOv9, garment
classification and recommendation with EfficientNetB0 [22],
and realistic virtual try-on with the VITON network. This
combined system avoids the shortcomings of previous solu-
tions by generating a homogeneous pipeline where the output
of one model is directly connected to the following one, free
from coordination issues between various components. Our
strategy begins with preprocessing and normalizing the Dress
Code dataset [7], an essential step to ensure apparel detection
accuracy, and then continues with applying optimized pro-
cedures to each step of the process. This section describes
our methodology, the technical innovations developed, and
how our integrated system enhances the user experience in
the digital fashion arena.

A. Dataset Preparation: Dress Code

Existing virtual try-on datasets exhibit significant limita-
tions, including insufficient diversity, constrained size param-
eters, inadequate image resolution, privacy-related concerns,
and restricted accessibility due to licensing constraints. We
have identified four critical requirements for an optimal
virtual try-on dataset: unrestricted public accessibility to
facilitate research endeavors, paired imagery encompassing
both individual garment items and corresponding on-model
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Fig. 3: Our GARNet Model: End-to-End System Architecture for AI-Powered Fashion Recommendation and Virtual Try-On

representations, high-resolution image quality, and compre-
hensive diversity across garment categories including upper-
body, lower-body, and full-body apparel. The Dress Code
dataset serves as a benchmark for virtual try-on research
and represents a significant advancement in the field. As the
first publicly available dataset to feature multiple clothing
categories with high-resolution paired images, the dataset has
substantially strengthened the field’s data foundation (Table
I). The dataset operates at an unprecedented scale, containing
over 100,000 images equally distributed between individual
garments and human reference models.

TABLE I: Number of train and test pairs for each category
of the Dress Code dataset.

Images Training Pairs Test Pairs
Upper-body Clothes 30,726 13,563 1,800
Lower-body Clothes 17,902 7,151 1,800
Dresses 58,956 27,678 1,800
All 107,584 48,392 5,400

This comprehensive collection supports both training
and testing phases of virtual try-on system development,
enabling large-scale model training and evaluation across
diverse fashion categories while addressing a critical
research need. In our methodology (Figure 2), we utilize the
Dress Code dataset for both virtual try-on applications and
as the foundational training data for our clothing detection
and segmentation models. The dataset’s rich annotation
framework, including keypoints, label maps, skeletal
structures, and DensePose data, allows us to leverage its
comprehensive labeling to enhance accuracy throughout our
entire processing pipeline.

1) Conversion of Color-Coded Masks to Polygonal An-
notations:

• Color-to-Binary Filtering
The original segmentation masks assign specific RGB values
to garment classes. To isolate a target class, consider a pixel
at position (i, j) with RGB value v = (vR, vG, vB). Define
the target color using lower bounds L = (LR, LG, LB) and
upper bounds U = (UR, UG, UB). We define the binary
mask function:

F(v) =


255, if LR ≤ vR ≤ UR,

LG ≤ vG ≤ UG,

LB ≤ vB ≤ UB

0, otherwise.

(1)

where v = (vR, vG, vB) is the RGB value of a pixel, and
L = (LR, LG, LB), U = (UR, UG, UB) denote the lower
and upper RGB thresholds corresponding to the target color
class.

Fig. 4: Color-to-binary conversion results: (a) Original mask
before thresholding, (b) Binary mask for upper-body gar-
ment, (c) Binary mask for lower-body garment.

Figure 4 illustrates the color-to-binary conversion process
employed in clothing segmentation for virtual try-on systems.
In panel (a), the original segmentation mask assigns distinct
RGB values to garment region specifically, a blue hue for the
upper garment and teal for the lower garment. Panels (b) and
(c) show the results of threshold-based binary extraction, iso-
lating the upper-body and lower-body garments respectively
as white foregrounds on black backgrounds. This conversion
facilitates garment-level manipulation, enabling tasks such
as garment replacement, individual fitting, and style-based
filtering, all while preserving the spatial accuracy required
for realistic virtual try-on experiences.

• Noise Reduction
To improve the quality of binary garment masks, two main
post-processing techniques are applied: morphological ero-
sion and median filtering. These operations help eliminate
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small artifacts and smooth contours while preserving garment
boundaries.
Morphological erosion. is applied to remove small noise
from the binary mask. Given a binary image I and a
structuring element B, the erosion operation is defined as:

(I ⊖B)(x, y) = min
(s,t)∈B

I(x+ s, y + t) (2)

where (x, y) denotes a pixel location in the output image,
(s, t) ∈ B represents coordinates within the structuring ele-
ment, and I(x+s, y+t) is the value of the input image at the
corresponding translated position. This operation preserves
the main garment regions while eliminating small, isolated
pixels.

• Median filtering
Median filtering is used to smooth the binary mask while
preserving edges. For each pixel, the median value in its
neighborhood replaces the original value, improving contour
quality.

I ′(x, y) = median{I(u, v) | (u, v) ∈ N(x, y)} (3)

where I ′(x, y) is the filtered image, I(u, v) are the pixel
values within the neighborhood N(x, y) centered at pixel
(x, y), and the median function selects the middle value from
the sorted neighborhood intensities.

2) Contour Extraction and Approximation: This section
presents the detailed contour extraction methodology applied
to binary garment masks. Our approach employs a com-
prehensive chain approximation method that preserves all
boundary points during the contour detection process, ensur-
ing maximum geometric fidelity. The contour retrieval oper-
ates in hierarchical tree mode, which captures the complete
structural hierarchy of detected boundaries while maintaining
topological relationships between outer contours and inner
cavities.

Fig. 5: Contour retrieval methods applied to garment segmen-
tation masks: (a) Original multi-colored segmentation mask,
(b) External contours showing outermost boundaries only,
(c) Hierarchical tree contours revealing both external and
internal boundary structures.

Figure 5 (a) shows the original garment image with a
person wearing a blue sweater, teal pants, and colorful shoes
against a black background. The complete contour extraction
result in (b) displays the outer boundary of the entire garment
silhouette as a continuous green outline, capturing the overall
shape including the torso, arms, and legs. The hierarchi-
cal contour detection result in (c) demonstrates both the
outer garment boundary and inner contours, with additional

green outlines visible within the silhouette that correspond
to internal features or cavities detected by the hierarchical
tree mode algorithm. The hierarchical organization ensures
accurate distinction between primary garment boundaries and
internal features such as holes or design elements. This
distinction is critical for complex garment shape analysis,
particularly when dealing with intricate clothing designs that
contain multiple boundary levels. Our contour extraction
framework provides a robust foundation for subsequent shape
processing and feature extraction operations within the im-
age analysis pipeline. The preserved geometric information
enables sophisticated higher-level processing of the extracted
contour data. While alternative approximation methods that
prioritize computational efficiency through boundary sim-
plification exist, our detailed approach maintains complete
geometric information. This comprehensive data preservation
facilitates:

• Precise geometric analysis and measurements.
• Advanced shape characterization and feature extraction.
• Robust object recognition and classification algorithms/

To refine the extracted contours and facilitate shape analysis,
several geometric descriptors and simplification techniques
are applied:

• Filtering by Area
he contour area is computed using Green’s theorem:

A =
1

2

∣∣∣∣∣
N∑
i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣ (4)

where (xi, yi) are the coordinates of the contour points.
To reduce noise and eliminate insignificant shapes often re-
sulting from small irregularities in the binary mask contours
with an area:

area > 400 (5)

are excluded from further processing. This threshold is
empirically chosen based on the resolution and scale of
the images. It ensures that only contours corresponding to
meaningful garment parts are retained, while small frag-
ments, speckles, or background artifacts are discarded. This
preprocessing step significantly improves the robustness of
downstream shape analysis and polygonal approximation by
focusing only on contours that contribute structurally relevant
information.

• Arc Length Calculation
The arc length L of a smooth curve C(t) = (x(t), y(t)) is
given by:

L =

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt (6)

For discrete points (xi, yi), this is approximated as:

L ≈
n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (7)

This approximation enables efficient computation of contour
lengths in digital image processing, where object boundaries
are represented as sequences of discrete points.

The arc length is particularly important in tasks such as
polygonal approximation (e.g., using the Douglas-Peucker al-
gorithm), where it helps determine the simplification thresh-
old based on the overall boundary length.
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• Polygonal Approximation
The Ramer–Douglas–Peucker algorithm simplifies a con-

tour by reducing the number of points while preserving the
essential shape characteristics. The level of simplification is
controlled by a tolerance parameter ε, which defines the
maximum allowed deviation between the original contour
and the simplified one. The effective tolerance is computed
as:

εeffective = ε× arcLength (8)

where:
• ε is a user-defined fraction (e.g., 0.0005),
• arcLength is the total length of the contour, computed

as described earlier.
A smaller ε leads to a more accurate approximation (more
points), while a larger value results in a coarser shape with
fewer points.

• Douglas–Peucker Algorithm
Given a curve represented by an ordered set of points P =
{p1, p2, . . . , pn}, the algorithm proceeds as follows:

1) Draw a line segment L between the first point p1 and
the last point pn.

2) For each intermediate point pi, compute the perpen-
dicular distance to the line L using:

d(pi, L) =
|(yn − y1)xi − (xn − x1)yi + xny1 − ynx1|√

(yn − y1)2 + (xn − x1)2

(9)
where (x1, y1) and (xn, yn) are the coordinates of
the endpoints of L, and (xi, yi) is the point being
evaluated.

3) Identify the point pmax with the maximum distance
from the line segment. If d(pmax, L) > εeffective, retain
pmax and recursively apply the algorithm to the sub-
curves {p1, . . . , pmax} and {pmax, . . . , pn}.

4) If no point exceeds the tolerance, replace the entire
segment with the straight line L.

This recursive process results in a simplified polygonal
curve that closely approximates the original contour while
significantly reducing the number of points.

3) Coordinate Normalization: We use coordinate normal-
ization as a crucial preprocessing step to transform pixel
coordinates from their original image space to a standardized
unit coordinate system. For image dimensions (W,H), where
W represents the image width and H represents the image
height in pixels, we perform the normalization transformation
as:

xnorm =
x

W
, ynorm =

y

H
(10)

where (x, y) are the original pixel coordinates and
(xnorm, ynorm) are the corresponding normalized coordinates.
We use this normalization process to map all coordinate
values to the range [0, 1], making the representation invariant
to image resolution and dimensions. We employ normalized
coordinates for several advantages in garment analysis:

• Scale Invariance: Contour shapes become independent
of the original image resolution, enabling consistent
processing across different image sizes.

• Model Generalization: Machine learning models
trained on normalized coordinates can handle inputs of
varying dimensions without retraining.

• Computational Efficiency: Normalized coordinates re-
duce numerical precision requirements and improve
computational stability.

• Cross-Platform Compatibility: The standardized coor-
dinate system facilitates data exchange between differ-
ent processing pipelines and applications.

We implement the inverse transformation to recover original
pixel coordinates using a straightforward approach:

x = xnorm ×W, y = ynorm ×H (11)

This inverse transformation equation performs the reverse
operation of the normalization process by scaling the normal-
ized coordinates back to their original pixel space. The mul-
tiplication operations effectively undo the division performed
during normalization. For the x-coordinate, multiplying xnorm
by the image width W restores the horizontal position in
pixels, while multiplying ynorm by the image height H recov-
ers the vertical position in pixels. To illustrate this process,
consider a garment contour point located at pixel coordinates
(800, 600) in an image with dimensions 1600×1200 pixels.
The normalization process transforms this point to normal-
ized coordinates (0.5, 0.5) using the forward transformation.
Subsequently, the inverse transformation recovers the original
coordinates:

x = 0.5× 1600 = 800 and y = 0.5× 1200 = 600,

perfectly reconstructing the original pixel position.

Fig. 6: Contour simplification comparison: (a) RDP algo-
rithm applied showing smooth, simplified boundaries, (b)
Original high-resolution contours with all detected points and
noise artifacts.

This bidirectional transformation ensures that spatial rela-
tionships and geometric properties are preserved throughout
the processing pipeline while maintaining the flexibility
to work with images of arbitrary dimensions. The image
(Figure 6) illustrates the impact of the Ramer-Douglas-
Peucker (RDP) algorithm on contour simplification. Panel
(a) shows the original high-resolution contours with smooth,
continuous boundaries that accurately delineate the garment
edges. Panel (b) displays the simplified contours after RDP
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processing, where the algorithm has reduced the number
of vertices while preserving essential shape characteristics
and maintaining the overall garment silhouette. The RDP al-
gorithm effectively reduces computational complexity while
maintaining shape fidelity for virtual try-on processing. With
this comprehensive preprocessing pipeline completed (Figure
8), we train YOLOv9 to give DC-YOLOv9.

B. Clothing Detection and Segmentation with DC-YOLOv9

Fig. 7: Segmentation results showing CRF post-processing
applied to fashion items.

1) Data Organization and Preprocessing: The prepro-
cessing pipeline implements a systematic approach to ensure
data integrity and optimal model performance. Our method-
ology addresses common challenges in fashion dataset prepa-
ration through comprehensive validation and organization
protocols. Filename Validation and Integrity Checking: The
validation process employs regular expression matching to
verify correspondence between image files and their as-
sociated annotation masks. A custom validation script it-
erates through the dataset directory structure, identifying
orphaned files and inconsistent naming conventions. Files
failing validation criteria are flagged for manual review or
automatic correction based on predetermined rules. Directory
Restructuring and Dataset Partitioning: The reorganization
process follows the YOLO standard directory structure, cre-
ating separate hierarchies for training, validation, and testing
subsets. The partitioning strategy employs stratified sampling
to ensure balanced class representation across splits, with
a typical distribution of 70% training, 20% validation, and
10% testing data. Batch Processing and Mask Conversion:
Segmentation masks undergo batch processing to convert
from colored annotation format to YOLOv9 compatible
polygon annotations. The conversion pipeline implements the
following sequential operations:

• Color space normalization and class-specific pixel iso-
lation.

• Morphological operations for noise reduction (erosion
kernel: 7×7, iterations: 3).

• Contour extraction with area-based filtering (minimum
threshold: 400 pixels).

• Polygonal approximation using Douglas-Peucker algo-
rithm (ε = 0.0005).

• Coordinate normalization relative to image dimensions.

2) YOLOv9 Training Configuration and Optimization:
YOLOv9 was selected based on its superior performance
in instance segmentation tasks and computational efficiency
compared to previous YOLO iterations. The model
incorporates Programmable Gradient Information (PGI)
and Generalized Efficient Layer Aggregation Network
(GELAN) architectures, providing enhanced feature
extraction capabilities for complex fashion item recognition.
The training configuration was carefully selected to balance
performance and efficiency. An input resolution of 1024 ×
1024 was chosen to preserve image detail while maintaining
computational feasibility. A batch size of 16 ensures optimal
utilization of GPU memory. The AdamW optimizer was
employed for its superior convergence properties, with
standard momentum parameters β1 = 0.9 and β2 = 0.999.
The initial learning rate was set to 0.001, determined
empirically as a suitable starting point. A cosine annealing
schedule was used to allow smooth convergence and reduce
overfitting. A weight decay of 0.0005 was applied as a
regularization technique. The model was trained for 300
epochs, which was found sufficient to reach convergence
without leading to overtraining.
Data Augmentation Strategy: The augmentation pipeline
incorporates both geometric and photometric transformations
to enhance generalization and robustness. Mosaic
augmentation is used to generate 9-image composites,
which significantly improve the model’s ability to detect
small objects. Geometric transformations include random
rotations (±15°), scaling within a range of 0.8 to 1.2×,
and translations up to ±10% of the image dimensions.
Photometric augmentations involve perturbations in the
HSV color space along with adjustments to brightness and
contrast.

3) DC-YOLOv9 Segmentation and Post-Processing:
The segmentation and post-processing pipeline employs a
Conditional Random Field (CRF) framework to refine initial
segmentation predictions and ensure spatial coherence. The
energy function is formulated as:

E =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj), (12)

where ψu(xi) represents the unary potential encoding
pixel-wise classification probabilities from the network out-
put, and ψp(xi, xj) represents pairwise potentials that en-
force spatial smoothness between neighboring pixels.

The unary potentials are derived directly from the softmax
predictions of the segmentation network, computed as:

ψu(xi) = − logP (yi | I, θ), (13)

where P (yi | I, θ) is the probability of pixel i having label
yi. The pairwise potentials incorporate both spatial proximity
and color similarity through a compatibility function:
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Fig. 8: Dress Code dataset processing pipeline for garment mask extraction from Dress Code dataset: (1) Class Extraction,
(2) Thresholding, (3) Erosion, (4) Median Blur, (5) Contour Detection, and (6) corresponding original garment images. The
pipeline progresses left to right, demonstrating sequential processing steps applied to different dress styles from the dataset.

µ(xi, xj) = exp

(
−||pi − pj ||2

2σ2
α

)
· exp

(
−||Ii − Ij ||2

2σ2
β

)
,

(14)
where σα controls spatial smoothness and σβ governs

color-based regularization. The optimization process uses
mean-field approximation for efficient inference, typically
converging within 5–10 iterations. Post-processing includes
morphological operations to remove small disconnected com-
ponents and boundary refinement to preserve object edges.

This approach effectively addresses common segmentation
artifacts such as noisy predictions and irregular boundaries,
resulting in improved segmentation (Figure 7) quality with
minimal computational overhead. The pipeline parameters
are tuned based on the specific application requirements,
balancing segmentation accuracy with processing speed for
real-time applications.

C. Classification and Recommendation System

The recommender algorithm begins with the categorization
of the clothing items, where the detected clothing items are
categorized with diligence along with a chain of identifying
attributes. Each apparel is thoroughly analyzed and wrapped
in an encompassing JSON metadata profile with the follow-
ing:

• Categorization: Torso apparel (sweaters and tops), leg-
wear (shorts and pants), and full outfit (one-piece outfits
and rompers).

• Chromatic Analysis: True color gamut mapping with
equal color representation techniques.

• Fashion Taxonomy: Placing the styles in context from
street urban fashion to business wear, performance wear,
and seasonal design variations.

• Contextual Relevance: Environment-based matching
standards in the workplace setting, social setting, recre-
ational pursuits, and climatic factors.

1) Event-Driven Outfit Design: After the clothes are
categorized, the system creates complete outfits depending
on the chosen event or occasion. These are:

• Wardrobe Filtering: The system selects appropriate
clothing that suits the selected occasion. For instance,
upon choosing ”formal event,” the system discards
casual clothing and prefers blazers, dress shirts, and
formal shoes.

• Compatibility Pairing: Products are paired according
to color harmony principles and stylistic similarity.
Color theory concepts are used by the system to keep
monochromatic, complementary, or analogous color
combinations.

• Ideal Outfit Design: EfficientNetB0 ranking of
prospective outfits and sequencing according to com-
patibility measures yields an optimized and coherent
appearance.

2) EfficientNet-Based Outfit Optimization: Our outfit
proposal pipeline operates on the user wardrobe in three
broad steps. First, we begin with the complete segmented
wardrobe inventory with each article referencing its cor-
responding JSON descriptor that contains properties like
colour, style, and occasion suitability. When the user picks an
event, the system filters out items on a match of correspond-
ing JSON attribute to get an event-proper subset. This fil-
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Fig. 9: Outfit ensemble predictions for various occasions generated using EfficientNetB0. The model suggests clothing
combinations suited for casual wear, formal events, sports, street style, evening wear, and gym/fitness contexts, for both
men and women.

tered subset is processed through compatibility pairing with
clothes paired on colour cohesiveness and style consistency
and those that do not match filtered out. This filtered subset
is what is inputted to EfficientNetB0 to generate and output
the optimal outfit (Figure 9) composition for that event.
The EfficientNet architecture uses the compound scaling
method, where the compound coefficient ϕ uniformly scales
the network dimensions:

d = αϕ (Depth - number of layers)

w = βϕ (Width - number of channels)

r = γϕ (Resolution - image size)

where the constants α = 1.2, β = 1.1, and γ = 1.15 are
determined through grid search optimization, subject to the
constraint:

α · β2 · γ2 ≈ 2

to ensure efficient scaling across all dimensions.

Outfit Compatibility Scoring

For outfit compatibility scoring, we define:

C(O) =
n−1∑
i=1

n∑
j=i+1

wij · s(gi, gj)

where:
• O is a candidate outfit.
• gi and gj are individual garments.
• s(gi, gj) represents the compatibility score between

items.
• wij are learned weights for each garment pairing.

This mathematical framework, combined with ImageNet
pre-training, allows the model to evaluate each outfit by
analyzing both individual garment features and inter-item

compatibility, leading to optimal outfit recommendations for
specific events.

D. Virtual Try-On and Morphology Analysis

1) Morphology Recognition Component: The morphol-
ogy recognition module takes a multi-dimensional method-
ology for the effective categorization of users’ body types
and proportions. Our system combines major measurements
taken from user images via pose estimation and contour
analysis. The body shape classification relies on the Mor-
phological Ratio Index (MRI), calculated as:

MRI =
Ws ·Wh

H ·Ww

where: Ws represents shoulder width, Wh is hip width,
H is total height, Ww is waist width. This index classifies
people into pre-determined body shapes like rectangle, hour-
glass, triangle, and inverted triangle.

2) Garment-to-Body Compatibility Function: For more
specific fitting suggestions, we model the garment-to-body
compatibility function as:

C(g, b) =
m∑
i=1

αi · |Mg
i −M b

i · fi|

where:g represents a garment, b represents the user’s
body, Mg

i and M b
i are the respective garment and body

measurements, αi are learned importance weights, fi
are scaling factors specific to each garment type. This
body model allows our system to recommend clothes that
maximize body shape both in terms of style selection and
best fit, greatly improving recommendation relevance.
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(a) Pipeline results demonstrating the complete workflow from wardrobe input to virtual try-on result. The system processes input
wardrobes and user images through the outfit composition model to generate three outfit recommendations (1, 2, and 3), allowing the
user to select their preferred option for final result generation.

(b) Outfit recommendation results across different style categories. For each input image, the system follows the same pipeline shown in
Figure (a) to generate virtual try-on results. The recommended outfits are selected from the wardrobe database and visualized through
the virtual try-on model, demonstrating the system’s capability to handle diverse style preferences across Sport, Casual, and Formal
categories.

Fig. 10: High-quality outfit generation results using the proposed YOLO-GARNET pipeline, showcasing visually coherent
fashion combinations tailored to different occasions.
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Fig. 11: Performance evaluation of the GARNet model showing (a) training and validation scores across key performance
metrics and (b) user satisfaction percentage versus number of outfit combinations with optimal range highlighted.

3) Virtual Try-On Network: VTON module facilitates
photorealistic rendering of clothes on the user’s body
via a transformation function that projects clothing items
onto the user’s body shape without altering garment features.

• Garment-to-Body Mapping Function
The mapping process can be modeled as:

T (Ic, Ip) = G(Ec, Ep, Pp)

where:Ic is the garment image, Ip is the person’s image, Ec

extracts garment features(texture, patterns, drape properties),
Ep extracts person features (pose,body shape), Pp represents
the person’s posekeypoints, G is the generator function
thatsynthesizes the final try- on image.

• Warping Transformation
The critical part of VTON is the spatialtransformation that
warps the garment to fit thetarget body:

W (Ic, θ) = I ′c

where W is the warping function, θ represents the transfor-
mation parameters, I ′c is the warped garment. The transfor-
mation parameters θ arecomputed as:

θ = f(Pp,Mb, Dc)

where: Pp represents the person’s pose keypoints, Mb

contains the morphological measurements, Dc represents
the physical deformation properties of the garment.

• Physics-Based Cloth Simulation
For realistic draping effects, a simplified physics model

can be incorporated:

S(I ′c, F,Mb) = I ′′c

where:S is the simulation function, F represents fabric
properties(elasticity, weight, thickness), I ′′c is the realistically
drapedgarment.

• Final Rendering Equation

The complete VTON rendering can be expressed as:

VTON(Ip, Ic) = R(Ip, S(W (Ic, θ)),M)

where:
• R is the rendering function thatcomposites the warped

garment onto the person.
• M is a mask that defines theregions where the original

person image should be replaced.
This mathematical model enables the system to realisti-

cally depict clothing on various body types considering both
the morphological analysisthe garment to body compatibility.

IV. RESULTS

Outfit generation results (Figure 10) demonstrate the effec-
tiveness of the proposed YOLO-Garnet model across diverse
fashion scenarios and styling contexts. The system follows
a comprehensive two-stage pipeline (Figure 10 (a)) where
users provide input in the form of their available wardrobe
items and a reference style image representing their desired
aesthetic or occasion. This combined input is processed by
the outfit composition model, which analyzes the wardrobe
contents and style preferences to generate multiple contextu-
ally appropriate outfit recommendations. The system exhibits
exceptional capability in generating fashion combinations, as
evidenced by the sport outfit ensemble featuring coordinated
shorts and a t-shirt, the formal attire combinations displaying
sophisticated business-appropriate clothing selections, and
the casual combinations showcasing harmonious integration
of pants, shirts, and loafers. Once users select their preferred
combination from the generated options, the chosen outfit
recommendation is fed into the EBO-VITON (EfficientBO
VITON) model, which produces realistic visualizations of
how the selected outfit would appear when worn. The
second part (Figure 10 (b)) presents outfit recommendation
results across different style categories, where for each
input image, the system follows the same pipeline shown
in figure (a) to generate virtual try-on results. For demon-
stration purposes, the first recommended outfit choice was
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TABLE II: Processing time comparison across different fashion recommendation approaches.

Method Detection (s) Classification (s) Ranking (s) Virtual Try-on (s) Total (s)

Faster R-CNN + ResNet [29] 8.7 4.2 12.3 8.9 34.1
YOLOv8 + EfficientNet [30] 2.1 3.1 8.4 6.2 19.8
RetinaNet + VGG [31] 5.4 6.8 15.7 11.2 39.1
DeepFashion2-RCNN [8] 11.2 5.9 9.8 7.4 34.3
Context-Aware Fashion [32] 6.8 4.7 18.9 12.6 43.0
YOLO-GARNet + EfficientNetB0 (Ours) 3.2 2.8 4.5 4.5 15.0

automatically selected from each generated set of recom-
mendations, and these outfits are then selected from the
wardrobe database and visualized through the virtual try-
on model, demonstrating the system’s capability to handle
diverse style preferences across sport, casual, and formal
categories. These comprehensive results underscore YOLO-
Garnet’s advanced understanding of fashion compatibility
principles and demonstrate that our model achieves state-of-
the-art performance in producing coherent, occasion-specific
outfit recommendations that maintain both aesthetic appeal
and practical wearability across various lifestyle contexts.

A. Quantitative Results

TABLE III: Performance metrics on the training and valida-
tion sets with standard deviation.

Metric Training Validation Standard Deviation

Precision 0.984 0.979 ±0.008
Recall 0.941 0.936 ±0.012
mAP@0.5 0.972 0.968 ±0.006
mAP@0.5:0.95 0.923 0.912 ±0.015
F1-Score 0.962 0.957 ±0.009
Mask mAP@0.5 0.958 0.951 ±0.011
Mask mAP@0.5:0.95 0.891 0.884 ±0.018

The performance evaluation (Figure 11 (a)) demonstrates
robust model generalization with minimal overfitting across
all evaluated metrics. The model achieved exceptional preci-
sion scores of 0.98 on both training and validation datasets,
indicating highly accurate positive classifications with mini-
mal false positive rates. Recall performance was consistently
maintained at 0.94 across both datasets, demonstrating the
model’s ability to effectively identify 94% of true positive
instances. Mean Average Precision at IoU threshold 0.5
(mAP@0.5) reached 0.97 for both training and validation
sets, confirming strong detection capabilities. The more strin-
gent mAP@0.5:0.95 metric, which averages performance
across multiple IoU thresholds, yielded 0.92 and 0.91 for
training and validation, respectively. The negligible perfor-
mance gap between training and validation datasets (0.01
across all metrics) indicates successful model regularization
and reliable generalization to unseen data, validating the ro-
bustness of the proposed approach for practical deployment.
Our system achieves strong performance (Table III) across
all evaluation metrics. Training precision reached 0.984 with
validation precision of 0.979 (±0.008), while recall values
were 0.941 and 0.936 (±0.012) for training and validation,
respectively.

The Mean Average Precision at IoU threshold 0.5
(mAP@0.5) demonstrated excellent performance with 0.972
training and 0.968 validation scores (±0.006). However,

mAP@0.5:0.95 showed a slight decrease to 0.923 training
and 0.912 validation (±0.015), indicating minor localiza-
tion challenges at stricter IoU thresholds. The F1-score
balanced precision and recall effectively at 0.962 training
and 0.957 validation (±0.009). Segmentation performance
through Mask mAP@0.5 achieved 0.958 training and 0.951
validation (±0.011), while Mask mAP@0.5:0.95 reached
0.891 training and 0.884 validation (±0.018).

B. Qualitative Results

User evaluation reveals high satisfaction with outfit rec-
ommendations, particularly when the system generates 5-
25 combination options. Visual try-on quality demonstrates
photorealistic rendering for most fabric types, though chal-
lenges remain with translucent materials like chiffon and
silk. The system effectively handles diverse body types and
maintains style consistency across recommended ensembles.
Processing time analysis shows the complete pipeline re-
quires approximately 15 seconds, with outfit ranking and
virtual try-on representing the most computationally inten-
sive components. Figure 12 demonstrates a comparative
evaluation of virtual try-on performance across four fash-
ion recommendation systems using three diverse clothing
scenarios with identical outfit recommendations. To ensure
fair comparison, all methods utilize the same recommended
outfits generated from the input wardrobe and style pref-
erences, allowing for direct assessment of each system’s
virtual try-on capabilities. The results show that while mlgfrs
[17], vit [33], and stableviton [34] each exhibit specific
strengths in garment fitting and texture preservation, our
proposed YOLO-Garnet consistently achieves superior per-
formance in maintaining accurate garment details, realistic
proportions, and natural body-clothing integration across all
test cases. This controlled comparison, based on identical
recommendation inputs, highlights the effectiveness of our
integrated garment analysis and recommendation framework
in producing high-quality virtual try-on results that surpass
existing state-of-the-art methods.

V. DISCUSSION

Improving the ranking algorithm would enhance both
system performance and user satisfaction, enabling more
real-time interaction without compromising the quality of
outfit recommendations.

The experiment shows a very high correlation between
system processing time and user satisfaction (Figure 13). The
cumulative processing time for each stage of the YOLO-
GARNet pipeline shows how computational time accumu-
lates as data flows through the system. The process begins
with Detection (3 seconds) for identifying garments in im-
ages, followed by Extraction (5 seconds total) for feature
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Fig. 12: Comparative analysis of state-of-the-art fashion recommendation systems including MLGFRS [17], ViT [33], and
StableVITON [34] against our proposed YOLO-GARNet model, showcasing the effectiveness of our integrated garment
analysis and recommendation model.
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Fig. 13: Cumulative Processing Time Across End-to-End Fashion Recommendation Pipeline

extraction and segmentation. The Filtering stage reaches 6
seconds cumulative time for processing and refining de-
tected garments. Outfit Ranking takes the processing time
to 8 seconds as the system evaluates and scores potential
clothing combinations. The Virtual Try-On phase signifi-
cantly increases processing time to 13 seconds, reflecting
the computational complexity of generating realistic virtual
fitting results. Finally, the Final Output stage completes at
15 seconds total processing time for delivering the complete
fashion recommendation. The entire pipeline takes approxi-
mately 15 seconds to process, and the most computationally
expensive operations are outfit ranking and virtual try-on.
User satisfaction (Figure 11 (b)) is highest between 5-25
outfit combinations, which represents the optimal balance
between offering variety and avoiding decision paralysis.
Comparative analysis (Table II) demonstrates the superior
computational efficiency of the proposed approach. YOLO-
GARNet achieves significantly faster detection times (3.2s)
compared to traditional two-stage detectors like Faster R-
CNN (8.7s) and DeepFashion2-RCNN (11.2s). The opti-
mized EfficientNetB0 classification component outperforms
heavier architectures, requiring only 2.8s versus VGG-based
approaches that demand 6.8s. Most notably, the ranking
algorithm demonstrates exceptional efficiency at 4.5s, rep-
resenting a 64% improvement over YOLOv8-based systems
(8.4s) and a 76% improvement over Context-Aware Fashion
methods (18.9s).

With good precision (0.98) and recall (0.94) values, the
system excels in garment detection and identification. Uni-
form outfit (Figure 11 (b)) suggestions are thus achieved,
although the slight drop in mAP@0.5:0.95 (0.91 validation)
indicates minor localization issues at stricter IoU thresholds.
While garment detection remains robust for most subjects,
better boundary detection would improve visual realism in
the virtual try-on, particularly for garments with strong
silhouettes.

A. System Limitations and Future Enhancements

Despite excellent performance, the system faces technical
limitations such as suboptimal rendering of materials like
chiffon or silk in the virtual try-on and difficulties with
layered clothing or accessories fitting. Data processing and
cleaning are also significant challenges, as garments need
to be accurately labeled and matched to facilitate effective
recommendations. Future work will focus on further devel-
oping the cloth simulation model for more realistic fabric
behavior and adding a more sophisticated layering system.
Additionally, incorporating accessories into the recommen-
dation system and reducing user latency will enhance the
user experience and improve recommendation compatibility
with individual preferences.

1) Challenge: Determining Appropriateness of Events for
Particular Clothes: Traditional models like YOLOv9 and
EfficientNetB0, designed for object detection and general
image classification, lack contextual understanding for event-
appropriate clothing selection. Solution: Implementation of
specialized Python libraries such as fashion-ai-analysis and
VisualFashionAttributePrediction enables extraction of rich
clothing features including color, pattern, and style attributes,
allowing the system to determine appropriate occasions for
each outfit and improve recommendation relevance.

2) Scalability and Latency in Recommendation Systems:
The recommendation system’s response time (Tresponse) scales
linearly with the number of garments (Ngarments) and required
compatibility checks (Coutfits), and is expressed as:

Tresponse =
Ngarments

Coutfits
(15)

Complex wardrobes with numerous potential combinations
can create computational bottlenecks and slower response
times.

Solution: Implementation of pre-filtering processes that
select promising garment combinations based on predefined
compatibility rules significantly reduces Coutfits. Additionally,
optimization algorithms such as Multi-Objective Differential
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Evolution (MODE) can accelerate EfficientNetB0 conver-
gence, resulting in faster and more accurate outfit sugges-
tions.

3) Improving Outfit Recommendation Visualization:
Challenge: Traditional list-based outfit presentations fail to
provide an intuitive understanding of the ensemble’s appear-
ance, which can reduce user engagement and confidence in
system recommendations.

Solution: Integration of Virtual Try-On (VTO) function-
ality allows users to visualize suggested clothing ensembles
on their own bodies by overlaying garments onto user pho-
tographs or digital avatars. This provides realistic previews
that significantly enhance the user experience and strengthen
the system’s value proposition.

VI. CONCLUSION

This system architecture demonstrates our innovative one-
stop solution that revolutionizes online fashion shopping by
seamlessly integrating advanced clothing detection, intelli-
gent recommendation algorithms, and photorealistic virtual
try-on capabilities. The end-to-end pipeline leverages cutting-
edge technologies including YOLOv9 for precise garment
segmentation and classification, EfficientNetB0 for person-
alized style recommendations, and Virtual Try-On Network
(VTON) for immersive fashion visualization, creating a
unified platform that transforms the traditional e-commerce
experience into an interactive, personalized, and visually
engaging shopping journey.
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