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Abstract—When dealing with high-dimensional datasets,
traditional feature selection (FS) methods often have
limitations such as being prone to falling into local optima and
having low computational efficiency. Swarm intelligence
optimization algorithms, with their group collaboration and
global search capabilities, provide new solutions to the FS
problem. This paper proposes a tuna optimization algorithm
with sinusoidal selection factors to efficiently screen the
optimal feature subset. Aiming at the problem that the tuna
algorithm cannot continuously explore and converge to a
better solution. By introducing the sinusoidal oscillation
mechanism, the selection of the two foraging behaviors can be
dynamically adjusted, thereby enhancing the local
exploitation and global exploration effects of the algorithm.
Make the algorithm exploitation and exploration behaviors
have dynamic adaptability and improve the convergence
accuracy. In the IEEE CEC-2022 section: Firstly, verify the
effectiveness of the sinusoidal selection factor. Select the
parameter settings of the better sine selection factor. Then, the
optimal algorithm SSFTSO was compared with other
algorithms, and it was found that the SSFTSO performed
better in terms of the average fitness value and convergence
speed. In the feature selection section: To verify the ability of
the algorithm, 10 public high-dimensional datasets were
selected for experiments. The SSFTSO was compared with
PDO, WOA, HHO, AOA, O0A and AO. The results showed
that the SSFTSO had great advantages in terms of average
fitness, average accuracy rate and average running time, and
achieved efficient search for the optimal feature subset. It
ranked first in terms of the average number of selected
features after the Friedman test. This research provides an
effective solution for feature selection of high-dimensional
data.

Index Terms—feature selection, sinusoidal selection factor,
tuna swarm optimization algorithm, high- dimensional data
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I. INTRODUCTION

ith the trend of the big data era, high-dimensional
data has become increasingly common in fields such
as machine learning, data mining and pattern recognition
[1]. However, not all features can provide valid information.
In high-dimensional data, there are often a large number of
redundant and irrelevant features, which not only increase
the computational cost, but also may lead to the decline of
over-fitting [2]. Feature selection (FS) can be used as an
effective dimensional reduction technique. By picking out
more representative feature subsets from the original data
set, the purpose of dimensional reduction can be achieved
[3]. Up to now, significant progress has been made in the
research of the FS method. FS can mainly be divided into
Filter, Wrapper and Embedded types [4]. Filter method
assesses the importance of features through statistical
metrics, 1s computationally efficient but ignores model
feedback. Wrapper method relies on the performance of a
specific model for feature screening, which has a good
effect but a high computational cost. Embedded method
automatically selects features through the model traimng
process, taking into account both efficiency and
performance.

Most scholars have conducted research on the Filter
method. For example, Ref. [5] takes the DE algorithm as
the carrier, selects the features with higher rankings among
the two filtering {ormulas, and proposes a new filtering
formula standard. In the single-objective and
multi-objective frameworks, the superiority of the proposed
method has been demonstrated by comparison with ML
Ref. [6] proposed a new MRelief method based on Relief.
The effectiveness of the proposed method was proved
through experiments conducted on the UCI data set and the
gene expression benchmark data set. Ref. [7] considered
two classifiers, KNN and SVM, and explored the
advantages and disadvantages of 16 filter-based FS
methods. It was found that there is no single method that
can ensure the performance is always optimal, but some
filtering methods have better coordination with classifiers.
For the Wrapper method, Ref. [8] introduced Q-learning
and comprehensive learning strategies and designed an
enhanced algorithm  (QCLFRIME). Through the
comparison on high-dimensional datasets, it i1s found that
QCLFRIME 1s an effective tool. Ref. [9] adopted the
adaptive sequential forward selection method in SFSBW to
generate the candidate optimal feature subset. This method
was used as one of its components to study the problem of
pedestrian trajectory prediction. It was found that the
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proposed method could provide better prediction effects.
For the problem of plant leaf classification, Ref [10]
designed a binary cuckoo algorithm. It was found that the
accuracy rates on the Swedish and Flavia datasets reached
95.67% and 996% respectively. For the Embedded
method, Ref. [11] uses scaling factors to impose penalty
measures on the data set and employs two support vector
machine techniques to propose an embedded FS method for
SVM  classification. It was found that the average
prediction performance of the proposed method was the
best. For the traffic prediction problem, Ref [12] designed
an embedded FS method for improving the Grey Woll
Optimizer based on SVM. Compared with other models,
the proposed method can obtain better prediction results.

Although the existing methods have their own good
performances in different scenarios, they still face many
challenges. For example, for the FS problem, data in
different fields have unique distributions and characteristic
correlations, and targeted algorithms need to be designed.
For high-dimensional data, the feature space is more
complex, and the applicability of traditional methods may
be limited. Furthermore, on the premise of ensuring the
accuracy of the model, how to achieve the efficiency and
interpret-ability of FS is also an urgent problem to be
solved. Therefore, proposing a new feature selection
algorithm has important theoretical and application value.

Inspired by the predatory behavior of the Marine creature
Tuna, the Tuna Swarm Optimization Algorithm was
proposed [13]. With the advantages of having few
parameters and a balance between development and
exploration, TSO has been successfully applied in a variety
of real-world problems. Aiming at the problem of
autonomous path planning for underwater vehicles, Yan et
al. designed the QLTSO algorithm based on reinforcement
learning. It was found that path planning achieved a 100%
success rate in various two-dimensional and three-
dimensional complex environments [14]. Wang et al
introduced the chaotic strategy and the Levy flight strategy
and designed the enhanced CL.TSO. The BP neural network
was optimized by the proposed method, and it was found
that the accuracy rate was higher [15]. Sun et al. proposed
the chaotic strategy and the offset distribution estimation
strategy, and designed a new MSTSO algorithm. After
verification through the UCI data set, it was found that the
proposed method has achieved a significant improvement
in accuracy [16]. For the job-shop scheduling, Fan et al.
introduced the genetic chaos strategy and the Levi operator
strategy, and designed the GCLNTSO algorithm. It was
found that the proposed method had better performance
[17]. For the parameter estimation problem of different
photovoltaic models, Hassan et al. combined EO with TSO
and designed the hybrid algorithm EOTSO. Through five
cases, it was found that the proposed method was due to
other techniques [13].

Taking TSO as the carrier, this paper conducts research
on the problem of high-dimensional feature selection and
proposes a tuna swarm optimization algorithm with sine
selection factor (SSFTSO). And its validity is verified
through theoretical analysis and experiments. The main
contributions are as follows:

(1) The sinusoidal selection factor was proposed. By
introducing the sinusoidal oscillation mechanism, the
selection of the two foraging behaviors was dynamically
adjusted, thereby enhancing the local exploitation and
global search effects of the algorithm and improving the
CONVergence accuracy.

(2) At IEEE CEC-2022, the effectiveness of the
sinusoidal selection factor strategy was proved. By
comparing SSFTSO with other algorithms, it was found
that the SSFTSO had better performance.

(3) On 10 public high-dimensional datasets, the
performance of SSFTSO was verified by comparison with
other algorithms. The SSFTSO performs strongly in terms
of average fitness value, average accuracy rate and average
running time.

The overall structure of this article 1s arranged as
follows. Section I introduces the implementation of the
tuna optimization algorithm with sinusoidal selection
factor. Section III is the experiments and analyses at IEEE
CEC-2022. Section IV adopts the tuna optimization
algorithm based on sinusoidal selection factors to solve the
high-dimensional FS. Section V presents the conclusion.

II. TUNA SWARM OPTIMIZATION ALGORITHM WITH
SINE SELECTION FACTOR (SSFTSO)

The detailed content of this section is as follows.
Sub-section 4 introduces the basic tuna swarm optimization
algorithm. Sub-section B designs the sine selection factor

strategy and proposes an enhanced tuna swarm
optimization algorithm  with sine selection factor
{SSEFTR0).

A. Basic TSO

TSO conducts group hunting behaviors through two
methods, namely spiral foraging and parabolic foraging,
respectively, and then searches for the optimal solution.
Furthermore, the TSO algorithm has a mutation probability
value z, and a new position can be regenerated through the
judgment of z z=0.05, The detailed modeling is as
follows:

(a) Spiral Foraging Behavior. When tuna groups are
engaged in predatory behavior, they sometimes encounter
targets that are difficult to lock onto. A small portion of
tuna will move in a certain direction, and the other tuna
around will adjust their direction and swim along with that
small portion of tuna. Eventually, they start hunting in a
spiral shape. In addition, there will be information
exchange between each tuna and the optimal individual
Information sharing among adjacent individuals is achieved
through the form of following. This behavior prompts the
algorithm to be biased towards local exploitation. However,
constantly exchanging information with the optimal
individual sometimes leads to blind search and the inability
to find food. Random positions were introduced in the
spiral foraging behavior stage through the relationship
between the current and the maximum iterations. The aim
is to expand the search space, increase randomness,
improve the ability of the algorithm, and avoid getting
trapped in local optimal solutions. The detailed formula of
spiral foraging behavior is as follows:
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where, X!, represents the position of the random
individual, @y and a, devote the weight coefficients of
each corresponding part, ay+a; =1, [ 1is the spiral

parameter, X}, devotes the position of the best individual.

When the random number is less than t/T, it is dominated
by random individuals. Conversely, it is dominated by the
optimal individual.

(b) Parabolic Foraging Behavior. In addition to spiral
foraging behavior, tuna can also use food as a reference
point to form a parabolic foraging pattern. By alternately
using spiral foraging and parabolic foraging, TSO is
prompted to conduct iterative optimization. The
probabilities of choosing both are equal, both being 50%.
The detailed formula of parabolic foraging behavior is as
follows:

X+l =
i
XZest + rand - (XZest - Xf) + FE pZ ! (XZest - Xf)
if rand < 0.5
2.yt ©)
TF-p°-X;
if rand = 0.5
t t
p o= Amg e ¢

where, TF 1s arandom value of 1 or -1.

B. Sine Selection Factor Strategy (SSF)

In traditional optimization algorithms, the design of the
position update strategy has an important impact on the
performance of the algorithm. Location update strategies
usually rely on the comparison between random numbers
and fixed thresholds (such as 0.5) to determine which
update method to implement. Although this method is
simple, it lacks consideration of the dynamic adaptability in
the algorithm search process. When TSO was choosing
between the two foraging behaviors, a random number was
compared with the fixed value of 0.5. This approach may
lead to low search efficiency of the algorithm or fall into
local optima. Therefore, this paper designs the sine
selection factor strategy and proposes a tuna optimization
algorithm based on the sine selection factor (SSFTSO). The
sinusoidal selection factor strategy, by introducing the
sinusoidal oscillation mechanism, can dynamically adjust
the selection of the two foraging behaviors, find the more
suitable ranges for each of the two foraging behaviors, and
thereby enhance the local development and global search
effects of the algorithm. The advantages of the SSF strategy
are as follows. (1) Unlike the conventional method, which
employs a fixed threshold for judgment, SSF demonstrates

dynamic adaptability and can adaptive select the position
update strategy based on the iterative process. (2) Improve
the convergence accuracy to enable the algorithm to
approach the global optimal solution more precisely.

In order to further optimize the performance of the
algorithm, a total of six different sine selection factors are
designed and discussed in this paper, and each selection
factor is achieved by adjusting the parameters. The
calculation method of SSF strategy is shown as Eq. (9). The
parameter selection comparison table of the sine selection
factor is shown in Table I. Fig. 1 is the flowchart of
SSFTSO algorithm after adding the sine selection factor

strategy.  The variation trends of various SSFS are shown
in Fig. 2.

Oscillation = 0.05 X sin(2m - t/20) ®

SSF=a+ (0.7 —a) ><%+ Oscillation ©)

a+b=1 (10)

where, Oscillation  represents the oscillation term

controlled by the sin function, and SSF represents the
sine selection factor.

III. IEEE CEC-2022 EXPERIMENT AND ANALYSIS

The detailed content of this section is as follows.
Sub-section A4 verifies the effectiveness of the sinusoidal
selection factor strategy. Sub-section B compares SSFTSO
with other algorithms. Experiments were conducted on the
IEEE CEC-2022 test function, including test problems of
different degrees, which can comprehensively test the
effectiveness of the strategy and the ability of the proposed
algorithm.

All experiments were run in the same environment to
ensure fairness. Set the dim = 10, pop=30, and 7=500.
To ensure stability and reduce randomness, the average
fitness value, average standard deviation and optimal value
of each variant after 30 independent runs were recorded.

Initialize population

‘ Set parameters a, a6 and z ‘

!

‘ Calculates fitness value }‘

Update al, a2, p

rand<z

Yes Yes
— = Update position | | Reinitialize the
[Update posmonJ [Update position by Eq (6) position

by E|<1(1) by Elq(l) I |

Yes

Fig. 1 Flowchart of SSFTSO algorithm.
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TABLE [. PARAMETER SELECTION COMPARISON TABLE OF SINE SELECTION FACTORS

No. Abbreviation Parameter settings of a Parameter Settings of b
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Fig. 2 The changing trend of various sine selection factors.
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A. Verify the Effectiveness of the Sine Selection Factor
Strategy

In terms of the performance comparison of each variant:
Table II shows the results of TSO and its variants at IEEE
CEC-2022. By comparing the experimental results on the
IEEE CEC-2022, the advantages and disadvantages of
different variants on different types of test functions can be
discovered. On the unimodal function, compared with the
original algorithm and other variants, SSF6-TSO is the best
in terms of the average fitness value, the average standard
deviation and the optimal value. On the basic function,
SSF6-TSO obtained the minimum average fitness values at
F3, F4 and F5. On F2, the average fitness value of
SSF4-TSO is optimal. On the hybrid function, SSF5-TSO
has the optimal average fitness at F6, SSF6-TSO achieves
the minimum average fitness at F7, and SSF4-TSO obtains
the optimal average fitness at F8 On the composition
function, SSF5-TSO is optimal at F9 and F10, and the
average fitness of SSF3-TSO and SSF6-TSO is superior to
other variants at F11 and F12 respectively. It can be found
from the above results that the sinusoidal selection factor
strategy is effective, which improves the performance of
the original TSO and can obtain a better fitness value. In
addition, after conducting the Friedman test on the average
fitness values of all algorithms, it was found that SSFo-
TSO algorithm ranked first and had strong comprehensive
strength.

In terms of the comparison of convergence speeds of
various variants, Fig. 3 shows the convergence curves of
various sine selection factors of TSO and its variants. From
the changing trend of the curves, the convergence
characteristics of the algorithm can be intuitively observed.
Except for F8, F10, F11 and F12, SSF6-TSO has greatly
improved the convergence strength on other test functions
and made tremendous efforts in terms of performance
improvement. This indicates that the sinusoidal selection
factor strategy can adaptive adjust the selection of the two
foraging behaviors excellently, thereby enhancing the local
exploitation and global search effects.

B. Comparison of SSFTSO with Other Algorithms

In the previous section, SSF6-TSO has the best
performance and ranks first in the average fitness value. In
order to reduce redundancy and facilitate comparison,
SSF6-TSO is named SSFTSO. The experiment selected six

z C(mvergence curve

¢ ; ; . x : A . ——
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(1)F1

population intelligence optimization algorithms to compare
with the proposed algorithm to further explore the
performance effect of the proposed algorithm, including
PDO [19], WOA [20], HHO [21], AOA [22], OOA [23]
and AO [24]. Table III is the parameter comparison table of
each algorithm.

In terms of the performance comparison of various
algorithms, Table IV shows the results of SSFTSO and
other algorithms at IEEE CEC-2022. By comparing the
experimental results on the IEEE CEC-2022, the
advantages and disadvantages of each algorithm on
different types of test functions can be discovered. On
unimodal functions, basic functions, hybrid functions and
composition functions, compared with other algorithms,
SSFTSO has achieved the lowest average fitness value,
showing good local search ability and being able to
effectively escape the local optimum and find the global
optimal solution. In terms of the optimal values, SSFTSO
has obtained the optimal values on all functions. In addition,
SSFTSO achieved the minimum standard deviation of
average fitness on the F6, F8, F9, F10 and F12 functions.
This indicates that the stability has a relatively good
performance. After conducting the Friedman test on the
average fitness data of all algorithms, it was found that
SSFTSO algorithm ranked first, proving that the SSFTSO
has advantages and can be considered for use and
expansion.

In terms of the comparison of convergence speeds of
various algorithms, Fig. 4 shows the convergence curves of
SSFTSO and other comparison algorithms. From the
changing trends of the curves, the convergence
characteristics of each algorithm can be intuitively
observed. On the F1 and F4 functions, although the
convergence speed of SSFTSO is not as fast as that of other
algorithms, with the increase of the number of iterations, it
shows a strong iterative optimization and search ability by
itself, and can continuously explore and converge to a
better solution. On the F8 function, the distance between
SSFTSO and other algorithms is very close, but the optimal
solution can still be obtained. On other functions, SSFTSO
demonstrates its unique advantages and is strong both in
terms of convergence speed and degree. The above results
and analysis fully demonstrate the significant ability of
SSFTSO after adding the sinusoidal selection factor
Strategy.
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Fig. 3 Convergence curves of various sine selection factors on IEEE CEC-2022.
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Ave 6.1741E+02 6.1922E+02 6.1534E+02 6.1994E+02 6.1356E+02 6.1400E+02 6.1189E+02

F, Std 1.2465E+01 1.0480E+01 9.4377E+00 1.3814E+01 1.0799E+01 7.5077E+00 6.6963E+00
Best 6.0356E+02 6.0406E+02 6.0108E+02 6.0298E+02 6.0159E+02 6.0336E+02 6.0089E+02

Ave 8.2943E+02 8.3264E+02 8.3414E+02 8.2546E+02 8.2779E+02 8.2544E+02 8.1821E+02

F, Std 2.0217E+01 1.7644E+01 1.8965E+01 1.2516E+01 1.3738E+01 9.8956E+00 7.9548E+00
Best 8.0497E+02 8.0398E+02 8.0696E+02 8.0497E+02 8.1194E+02 8.0995E+02 8.0597E+02

Ave 1.1481E+03 1.0731E+03 1.0214E+03 1.0688E+03 1.0576E+03 1.0595E+03 1.0080E+03

Fs Std 2.8733E+02 2.0363E+02 1.0951E+02 2.1854E+02 1.1518E+02 1.2190E+02 9.1123E+01
Best 9.0252E+02 9.0443E+02 9.2070E+02 9.0319E+02 9.0261E+02 9.1506E+02 9.0454E+02

Ave 1.9527E+05 2.1264E+04 1.0347E+04 1.2260E+04 3.9858E+03 2.8360E+03 3.2608E+03

F¢ Std 5.7078E+05 3.0884E+04 1.7725E+04 3.0655E+04 2.7617E+03 1.4307E+03 1.3783E+03
Best 1.8632E+03 1.9873E+03 1.8576E+03 1.8581E+03 1.8573E+03 1.8382E+03 1.8398E+03

Ave 2.0487E+03 2.0548E+03 2.0473E+03 2.0539E+03 2.0376E+03 2.0482E+03 2.0372E+03

Fs Std 2.7824E+01 3.5902E+01 2.4368E+01 2.3055E+01 1.5180E+01 2.0975E+01 1.8096E+01
Best 2.0086E+03 2.0180E+03 2.0037E+03 2.0179E+03 2.0111E+03 2.0224E+03 2.0207E+03

Ave 2.2274E+03 2.2292E+03 2.2275E+03 2.2256E+03 2.2223E+03 2.2251E+03 2.2249E+03

Fg Std 9.5966E+00 1.0303E+01 6.4289E+00 5.8248E+00 8.4678E+00 6.2802E+00 4.6602E+00
Best 2.2081E+03 2.2099E+03 2.2133E+03 2.2102E+03 2.2009E+03 2.2034E+03 2.2104E+03

Ave 2.5812E+03 2.5833E+03 2.5665E+03 2.5452E+03 2.5497E+03 2.5411E+03 2.5487E+03

Fy Std 5.9350E+01 6.4186E+01 5.6303E+01 2.8038E+01 4.0925E+01 3.7207E+01 4.6787E+01
Best 2.5293E+03 2.5293E+03 2.5293E+03 2.5293E+03 2.5293E+03 2.5293E+03 2.5293E+03

Ave 2.5250E+03 2.5499E+03 2.5334E+03 2.5344E+03 2.5343E+03 2.5178E+03 2.5209E+03

Fyg Std 5.3696E+01 7.0680E+01 6.0028E+01 5.6677E+01 5.6714E+01 4.3849E+01 4.5522E+01
Best 2.5005E+03 2.5004E+03 2.5005E+03 2.5004E+03 2.5005E+03 2.5006E+03 2.5004E+03

Ave 2.6851E+03 2.7351E+03 2.7171E+03 2.6792E+03 2.7233E+03 2.7244E+03 2.6904E+03

Fyy Std 1.0225E+02 1.3819E+02 1.1599E+02 1.1315E+02 1.3568E+02 1.2364E+02 1.4399E+02
Best 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03 2.6000E+03

Ave 2.8773E+03 2.8860E+03 2.8843E+03 2.8756E+03 2.8801E+03 2.8759E+03 2.8744E+03

Fyy Std 2.8677E+01 2.5759E+01 3.8489E+01 1.8321E+01 2.7T13E+01 2.8702E+01 1.5612E+01
Best 2.8639E+03 2.8639E+03 2.8639E+03 2.8626E+03 2.8626E+03 2.8626E+03 2.8640E+03

Friedman 5.0833 6.5833 4.5833 3.8333 3.2500 29167 1.7500
Rank 6 7 5 4 3 2 1
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TABLE IIl. PARAMETER COMPARISON TABLE OF EACH ALGORITHM

Full title Abbreviation Parameters setting
Tuna Swarm Optimization Algorithm with Sine Selection Factor SSFTSO a=107z=005a6=106L
Prairie Dog Optimization Algorithm PDO p=101:=10.005
Whale Optimization Algorithm WOA b=1
Harris Hawks Optimization HHO B=15
Arithmetic Optimization Algorithm AQA ¢, =2c=6u=091=01¢c=1¢c,=2
Osprey Optimization Algorithm O0A I=1or2,cf =063
Aquila Optimizer AQD a=016=01u=00265

TABLE IV. EXPERIMENTAL RESULTS OF SSFTS (O AND OTHER ALGORITHMS AT IEEE CEC-2022

F SSFTSO PDO WOA HHO AQA 00A AQO
Ave 9.5228E+02 1.4756E+04 2.9542E+04 1.0309E+03 1.2934E+04 8.7372E+03 3.9559E+03
Fy Std 1.6498E+03 6.2544E+03 1.2530E+04 4.8013E+02 5.1367E+03 1.8869E+03 1.2922E+03
Best 3.0000E+02 7.0426E+03 9.5144E+03 3.9202E+02 5.5718E+03 5.3715E+03 1.7192E+03
Ave 4.15538E+02 1.1781E+03 4.9134E+02 4.4591E+02 1.9510E+03 1.5773E+03 4.4535E+02
F, Std 24091E+01 3 A4504E+02 1.12534E+02 3.9849E+01 1.2234E+03 7.0856E+02 2.7153E+01
Best 4.0001E+02 54636E+02 4.0636E+02 4.0022E+02 7.2033E+02 6.1031E+02 4.1085E+02
Ave 6.1326E+02 6.5201E+02 6.4096E+02 6.4130E+02 6.4005E+02 6 A46TE+02 6.2218E+02
Fy Std 7.1628E+00 8.4102E+00 1.5885E+01 1.0741E+01 8.5411E+00 1.0979E+01 6.7597E+00
Best 6.0373E+02 6.4042E+02 6.1684E+02 6.2200E+02 6.2320E+02 6.2268E+02 6.0608E+02
Ave 8.2128E+02 8.5399E+02 8.4350E+02 8.2659E+02 8.3913E+02 8.5148E+02 8.2302E+02
Fy Std 9.6714E+00 1.4467E+01 1.6318E+01 8.9022E+00 1.0231E+01 9.6907E+00 6.4846E+00
Best 8.0796E+02 8.2485E+02 8.1517E+02 8.1132E+02 8.1954E+02 8.2926E+02 8.1124E+02
Ave 1.0254E+03 1.5241E+03 1.5720E+03 1.4079E+03 1.3977E+03 1.4007E+03 1.0494E+03
F: Std 1.2124E+02 2.2247E+02 3.6765E+02 1.7053E+02 1.7991E+02 2.1227E+02 1.1360E+02
Best 9.0770E+02 1.0370E+03 1.0442E+03 1.0713E+03 1.1443E+03 1.0745E+03 9.2519E+02
Ave 2.9564E+03 2.3944E+08 4.8633E+03 7.9099E+03 5.3155E+07 3.1965E+06 2.8803E+04
Fe Std 1.3019E+03 3 4093E+08 2.6766E+03 4.9481E+03 1.4280E+08 5.8942E+06 2.3628E+04
Best 1.8521E+03 8.3039E+05 1.9424E+03 2.1136E+03 1.9921E+03 1.9014E+03 2.7877E+03
Ave 2.0346E+03 2.1170E+03 2.0800E+03 2.0889E+03 2.1048E+03 2.0878E+03 2.0482E+03
F, Std 1.6379E+01 3.2334E+01 3.6894E+01 4.3886E+01 4.0011E+01 2.1308E+01 1.1988E+01
Best 2.0090E+03 2.0642E+03 2.0278E+03 2.0309E+03 2.0314E+03 2.0588E+03 2.0274E+03
Ave 2.2226E+03 2.2685E+03 2.2361E+03 2.2354E+03 2.2797E+03 2.2325E+03 2.2299E+03
Fy Std 4.0221E+00 3 .5547E+01 9.3957E+00 1.4331E+01 7.2099E+01 8.0689E+00 4.0831E+00
Best 2.2077E+03 2.2338E+03 2.2238E+03 2.2241E+03 2.2264E+03 2.2180E+03 2.2199E+03
Ave 2.5375SE+03 2.7535E+03 2.6064E+03 2.6213E+03 2.7678E+03 2.7436E+03 2.6117E+03
Fy Std 2.3561E+01 5.9089E+01 5.5471E+01 4.0421E+01 7.0509E+01 4.3326E+01 3.7851E+01
Best 2.5293E+03 2.6327E+03 2.5327E+03 2.5567E+03 2.6731E+03 2.6652E+03 2.5543E+03
Ave 2.5252E+03 2.6722E+03 2.6830E+03 2.6063E+03 2.7451E+03 2.7426E+03 2.5695E+03
Fiy Std 4.9796E+01 3 3614E+02 2.6810E+02 1.4267E+02 2A4518E+02 26177TE+02 6.0659E+01
Best 2.5004E+03 2.5138E+03 2.5008E+03 2.5008E+03 2.5116E+03 2.5222E+03 2.5009E+03
Ave 2.6988E+03 3.1028E+03 2.9003E+03 2.8349E+03 3.5391E+03 3.6527E+03 2.7322E+03
Fiy Std 1.6827E+02 3.4365E+02 1.7644E+02 1.8346E+02 4.5861E+02 4.1796E+02 7.3364E+01
Best 2.6000E+03 2.7364E+03 2.7338E+03 2.6086E+03 2.8130E+03 2.8641E+03 2.6091E+03
Ave 2.8700E+03 2.8902E+03 2.8964E+03 2.9188E+03 3.0215E+03 3.0681E+03 2.8714E+03
Fis Std 8.7562E+00 9.9527E+00 2.9785E+01 5.6873E+01 6.1949E+01 8.8954E+01 9.5839E+00
Best 2.8626E+03 2. 8714E+03 2.8628E+03 2.8655E+03 2.9282E+03 2.9202E+03 2.8633E+03
Friedman 1.0000 5.7500 43333 3.7500 5.5833 5.2500 23333
Rank 1 7 4 3 6 5 2
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Fig. 4 Convergence curves of SSFTSO and other algorithms on IEEE CEC-2022.

IV. TUNA SWARM OPTIMIZATION ALGORITHM WITH
SINE SELECTION FACTOR TO SOLVE HIGH-DIMENSIONAL
FEATURE SELECTION

To continue exploring the performance and effect of
SSFTSO, this section uses SSFTSO to solve high-
dimensional F'S problems. Section 4 introduces the selected
high-dimensional data set. Section B is about the specific
settings of parameters in the experiment. Section C presents
the experimental results and analysis.

A. Datasets Description

Ten public high-dimensional datasets were selected to
test the performance of the algorithm, which covered many
fields. The number of featuress, specific instance and the
categories of each data set are shown in Table V.
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B. Parameter Settings

To reduce the influence of randomness on the
experiment, fivefold cross-validation was used to test the
performance of the model. The method of taking the
average of 30 cycles was adopted to statistically analyze the
results such as the average fitness value, the number of
selected features, and the accuracy rate. In addition, in FS,
the selection of classifiers and the setting of fitness
functions are involved. This paper selects the parameters in
the references [25-26]. In this paper, the KNN classifier is
used, and the weight values in the fitness function are 0.99
and 0.01 respectively. The parameters of the comparison
algorithm have not changed and remain consistent with the
previous text. The detailed Settings and explanations of
other parameters are shown in Table VL

TABLE V. PARAMETER TABLE OF 10 PUBLIC HIGH-DIMENSIONAL DATASETS

No. Datasets Features Instances Classes
[ ALLAML 7129 72 2
2) warpPIE10P 2420 210 10
3) Brain Tumorl 5920 90 5
4 Brain Tumor2 10367 50 4
%) Yale 1024 165 15
©6) Cancer 12600 203 4
(@) DLBCL 5469 77 2
®) DrivFace 6400 606 3
©) GLI8S 22283 85 2
(10) Har 561 270 6
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TABLE VL. PARAMETER SETTINGS AND DESCRIPTION TABLE
Symbol description Abbreviation Parameter settings
Fitness function fit =099, =001
K-nearest neighbor classifier KNN KNN =5
Population size Pop Pop =10
Maximum number of iterations Max T Max T =100
Dimension Dim The dimension sizes corresponding to each data set

C. Results and Analysis

In terms of the performance comparison between
SSFTSO and other algorithms: Table VII presents the
average fitness values and standard deviation experimental
results of SSFTSO and other algorithms. It can be found
from the table that SSFTSO has achieved the best average
fitness on all datasets. Except for the four datasets (2,3,5.6),
SSFTSO has the lowest standard deviation of the average
fitness. The above results indicate that SSFTSO has
superior optimization and stability when dealing with FS
problems. Subsequently, PDO achieved better standard
deviations of the average fitness on two datasets (3 and 5).
Finally, the standard deviations of the average fitness
values of HHO and AO on datasets (2) and (6) are the best
respectively. In addition, the Friedman test for the average
fitness of all algorithms was conducted. After testing,
SSFTSO ranked first, once again proving the advantages of
the SSFTSO. Table VIII presents the experimental results
of the average accuracy rates of SSFTSO and other
algorithms. It can be found from this that SSFTSO has
achieved the highest average accuracy rate on all datasets.
Table IX shows the experimental results of the average
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number of selected features of SSFTSO and other
algorithms. It can be found from the table that SSFTSO has
achieved the minimum average number of selected features
on all three datasets (3,0,9). For other algorithms, AOA
obtained the optimal values on four datasets (2,5,7.8).
HHO, OOA and AO respectively selected the minimum
average number of features on data set (1), data set (4) and
data set (10). Overall, after the Friedman test of the average
number of selected features, SSFTSO ranked first,
indicating that the average strength of the proposed
algorithm is stronger. Table X shows the results of the
average running time of SSFTSO and other algorithms. It
can be found from this that SSFTSO spent the least time on
the seven datasets (1,2,3.4.5,7,10). WOA has the least
average running time on the remaining three datasets
(6,8.,9). After the Friedman test of the average running time,
SSFTSO ranked first, indicating that SSFTSO has an
advantage in the required time. In terms of the comparison
of convergence curves between SSFTSO and other
algorithms: Fig. 5 shows the average fitness value
convergence curves of SSFTSO and other algorithms on
different datasets.
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Fig. 5 Convergence curves of SSFTSO and other algorithms.
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TABLE VII. AVERAGE FITNESS AND STANDARD DEVIATION OF SSFTSO AND OTHER ALGORITHMS

Datasets Measure SSFTSO PDO WOA HHO AOA O0A AO
Ave 3.5632E-03 2.1624E-02  2.8344E-02 7.0797E-03 3.1900E-02 2.4836E-02 5.3712E-02
M Std 1.5806E-02 3.3488E-02  3.5542E-02 2.1766E-02 4.2723E-02 3.4600E-02 3.8860E-02
Ave 6.2756E-02 9.2595E-02  9.2544E-02 9.9981E-02 1.0277E-01 8.8967E-02 8.7285E-02
S Std 1.9163E-02 24225E-02  2.1782E-02 1.6779E-02 1.9175E-02 1.8539E-02 1.7809E-02
Ave 4.4249E-02 6.1452E-02  7.2085E-02 5.8639E-02 8.0180E-02 7.2138E-02 6.1893E-02
& Std 2.2464E-02 1.6744E-02  2.5735E-02 2.8088E-02 2.7720E-02 2.5870E-02 2.4434E-02
Ave 1.0206E-02 2.0230E-02  5.4782E-02 6.9565E-02 8.9561E-02 4.4781E-02 6.5674E-02
W Std 3.0851E-02 4.0565E-02  6.0014E-02 6.4993E-02 5.4769E-02 5.0485E-02 5.8480E-02
Ave 2.5433E-01 2.7341E-01 2.8991E-01 2.8551E-01 2.9258E-01 2.7454E-01 2.7897E-01
®) Std 3.4759E-02 2.4092E-02  2.8121E-02 4.0117E-02 2.4221E-02 2.5042E-02 2.9580E-02
Ave 5.2512E-02 6.23069E-02  6.5216E-02 6.4092E-02 7.5020E-02 6.7684E-02 6.6140E-02
) Std 1.3618E-02 1.5030E-02 1.5026E-02 1.5339E-02 1.8282E-02 1.6150E-02 1.2596E-02
Ave 8.2099E-05 1.3825E-02 1.0151E-02 3.4460E-03 2.6437E-02 3.6942E-03 1.0659E-02
@ Std 9.8426E-05 2.6788E-02  2.4105E-02 1.4725E-02 3.3158E-02 1.4752E-02 2.4171E-02
Ave 2.4269E-02 2.8509E-02  2.6382E-02 2.5198E-02 2.5827E-02 2.5548E-02 3.0493E-02
W Std 1.8638E-03 4.6855E-03  4.3282E-03 5.8062E-03 6.1004E-03 2.4830E-03 4.4191E-03
© Ave 3.0481E-03 2.9426E-02  3.8471E-02 1.2082E-02 3.5175E-02 2.6017E-02 5.0981E-02
Std 1.2994E-02 2.9820E-02  2.80693E-02 24517E-02 3.4968E-02 2.9942E-02 2.1542E-02
(10) Ave 3.1787E-02 4.0377E-02  5.1692E-02 5.0176E-02 4.7623E-02 4.7697E-02 3.9207E-02
Std 1.2600E-02 1.4333E-02 1.6346E-02 1.7776E-02 1.6318E-02 1.6721E-02 1.3936E-02
Friedman 1.00 3.60 5.00 3.60 6.10 3.90 4.80
Rank 1 2 6 2 7 4 5
TABLE VIII. AVERAGE ACCURACY OF SSFTSO AND OTHER ALGORITHMS
Datasets SSFTSO PDO WOA HHO AOA 0O0A AO
1) 0.9964 0.9786 09714 0.9929 0.9679 0.9750 0.9464
2) 0.9369 0.9071 0.9071 0.9000 0.8964 0.9107 0.9131
3) 0.9556 0.9389 0.9278 0.9417 0.9194 0.9278 0.9389
) 0.9900 0.9800 0.9450 0.9300 0.9100 0.9550 0.9350
(%) 0.7455 0.7288 0.7106 0.7152 0.7061 0.7258 0.7212
©6) 0.9475 0.9388 0.9350 0.9363 0.9250 0.9325 0.9350
(7 1.0000 0.9867 0.9900 0.9967 0.9733 0.9967 0.9900
®) 0.9756 0.9723 0.9736 0.9748 0.9740 0.9744 0.9702
©) 0.9971 0.9706 0.9618 0.9882 0.9647 0.9735 0.9500
(10) 0.9713 0.9648 0.9519 0.9537 0.9546 0.9565 0.9630
Friedman 7.00 4.50 2.80 435 1.80 430 3.25
Rank 1 2 6 4 7 3 5
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TABLE IX. AVERAGE NUMBER OF SELECTED FEATURES OF SSE'TSCO AND OTHER ALGORITHMS

Datasets SSFTSO PDO WOA HHO ACA COA AD
1) 19.60 291 .85 41.50 5.90 56.10 61.35 482.35
(2) 70.65 161.20 148.90 237.50 57.08 139.00 302.40
3) 147.30 563.85 34635 526.20 254.60 37775 $24.80
@ 317.55 44535 34445 274.65 478.05 239.60 1372.90
(5) 238.70 503.05 34910 359.30 161.40 311.05 304.60
6) 677.05 2181.60 1090.65 123430 970.50 1082.30 2255.35
(7) 44.90 341.65 13735 79.85 20.50 215.60 414.95
() 84.80 742.40 127.80 155.90 3508 11825 664.30
@) 303.70 687.45 1376.65 969.30 521.55 917.00 3299.80
{10) 189.05 311.00 22580 243.65 151.85 258.80 142.50

Friedman 1.90 5.80 410 430 2.20 3.80 5.90

Rank 1 § 4 5 2 3 7
TABIE X. AVERAGE COMPUTATION TIME OF SSFTSQ AND OTHER ALGORITHMS

Datasets SSFTSO PDO WOA HHO ACA COA AD
1) 44701 148.5359 4.7957 9.0483 8.7623 $.3335 12.2655
(2) 4.8893 22.2469 53728 9.9205 §.7521 10.0011 134727
(3) 5.0668 112.0001 5.3806 10.0717 §.8574 9.7266 12.9080
@ 4.9795 262.8809 53107 9.6390 8.9167 9.2710 133769
(5) 42250 78866 5.6449 97530 6.6386 97849 9.2901
(6) 11.1871 339.6779 97088 18.5324 26.2032 21.5097 34,8416
o) 5.0622 $8.3226 57162 10.2049 8.6398 10.1526 13.0427
() 18.7485 130.4110 9.7820 19.2521 50.2088 23.0154 72,3330
@) 8.0227 724.0825 7.7485 13.1827 18.1501 14.7506 252620
(10) 4.0735 5.8861 53467 $.8967 6.1414 94881 83102

Friedman 1.30 630 1.70 1.50 3.80 1.60 5.80

Rank 1 7 2 4 3 5 6

From the changing trend of the curves, the convergence
characteristics of the algorithms can be intuitively
observed. It can be found from the convergence curve
graph that, compared with other algorithms, SSFTSO can
converge to a better value on all datasets. Hspecially on the
datasets (2,3,6,8), there i1s a sigmficant difference from
other algorithms. The second one 1s HHO, which converges
better on five datasets (1,3,7,8,9). The above results
demonstrate the strength of SSFTSO in convergence and
can achieve a better average fitness. Fig. 6 shows the
ranking radar chart and heat chart of SSFTSO and other
algorithms. Among them, Fig. 6(a) 1s the average fitness
ranking radar chart, Fig. 6(b) is the average accuracy
ranking radar chart, and Fig. 6(c) 1s the average runnmng
time heat chart. It can be seen from Fig. 6(a) and Fig. 6(b)
that the area contained n SSFT SO 1s the smallest, which
indicates that the proposed algorithm can achieve a lower
average fitness and a higher average accuracy rate. As can
be seen from Fig. 6(c), compared with other algorithms,
SSFTSO has a great advantage in terms of time. Fig. 7 1s a
line chart of the selected feature ratios of SSFTSO and
other algorithms. It can be seen that SSFTSO selects a
smaller number of features on most datasets, which can
effectively reduce the feature dimension.

V. CONCLUSION

Since the TSO algorithm cannot continuously explore

and converge to a better solution, this paper proposes a tuna
optimization algorithm with sinusoidal selection factors to
solve the high-dimensional FS. Compared with traditional
methods, the sinusoidal selection factor strategy can
adaptive select the position update strategy according to the
iterative process and has dynamic adaptability. Meanwhile,
the sinusoidal selection factor can also improve the
convergence accuracy, enabling the algorithm to be further
iterative optimized. The effectiveness of SSFTSO has been
proven in [EEE CEC-2022. In addition, in order to further
explore the performance of the proposed algorithm,
SSFTSO 1s applied to the high-dimensional FS problem. In
the context of high-dimensional datasets, after comparison
with the other six algorithms, it can be found that SSFTSO
has a great advantage in obtaining the average fitness value.
It can not only ensure the classification accuracy rate but
also effectively reduce the feature dimension. The
experimental results prove that the proposed method can be
used to attempt to solve the high-dimensional FS problem.
This paper designs the enhanced version algorithm
SSFTSO of TSO. For future research directions, the
following forms can be considered.

1) In terms of application fields, it can be considered to
be applied to specific datasets in other backgrounds to
explore the performance of the proposed algorithm. For
example: text data, DDOS network attacks and medical
datasets, etc.
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2) In terms of algorithm improvement, one can attempt
to perturb the area near the optimal solution of the
algorithm to further search for the optimal value.

3) In terms of the structure of FS, a new multi-objective
algorithm can be attempted to be proposed to solve the F3
problem.
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