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Abstract—Small object traffic sign detection is critically
important for the safety and reliability of Advanced Driver
Assistance Systems (ADAS). However, existing methods suffer
from defects such as sensitivity to background noise, limited
scale adaptability, and weak perception of irregular sign
geometries. We propose an improved YOLOv11n_GloRFCA
model. First, an Adaptive Spatial Fusion (ASF) network
incorporated into the backbone enhances accuracy via
hierarchical feature aggregation while maintaining real-time
performance. Second, the GLO _RFCAConv module,
combining global receptive field expansion with channel
attention, significantly reduces background interference by
23% and boosts feature discriminability. Third, replacing
standard spatial pyramid pooling with our Efficient SPPF
module, utilizing deformable convolution Kkernels, achieves
dynamic geometric adaptation and enhances multi-scale
feature extraction capability. Additionally, we
employ Deformable Attention (DAttention) for cross-scale
feature enhancement and adopt Shape-IoU loss for precise
bounding box regression of irregular signs. Comprehensive
evaluation on the TT100K dataset demonstrates that
compared to the baseline YOLOv11n, this model achieves a
15.3% improvement in accuracy, a 12.6% increase in
mAP@O0.5, with particularly significant recall gains for
occluded signs (reaching 18-22%). Detection stability remains
above 85% under low-light conditions, and the model achieves
a running speed of 58 FPS on embedded platforms.

Index Terms—YOLOv11n_GloRFCA model, DAttention,
GLO_RFCAConv, Efficient_SPPF, Shape-loU, ASF

I. INTRODUCTION

ith  the rapid advancement of Intelligent

Transportation Systems (ITS), automated traffic sign
detection and recognition have emerged as pivotal
technologies for intelligent driving and traffic management.
Serving as essential road infrastructure elements, traffic
signs convey critical information to drivers regarding traffic
regulations, road conditions, and navigational guidance.
However, practical implementations of traffic sign
detection and recognition encounter significant challenges,
especially regarding small object detection in computer
vision systems. Small objects are formally defined as image
regions occupying less than 1% of total pixels (typically <
32 x 32 pixels). The inherent challenges of low-resolution
representation and sparse feature availability lead to
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suboptimal performance of conventional detection
algorithms in such scenarios.

Early-stage traffic sign detection systems primarily
employed conventional image processing pipelines
combined with shallow machine learning models. The
paradigm shift occurred with convolutional neural networks
(CNNs), which achieved breakthrough performance in
complex road scene analysis through automated feature
learning. This deep learning approach effectively addresses
the inherent constraints of handcrafted feature engineering,
demonstrating enhanced robustness (85.3% mAP on
Tsinghua-Tencent 100K dataset) and  superior
generalization across diverse environments. Conventional
feature engineering methods remain constrained by their
fixed representations, particularly in dynamic road
environments where illumination variations, occlusions,
and viewpoint changes degrade system performance. Deep
neural networks circumvent these limitations through
automated hierarchical feature learning, where successive
convolutional layers extract increasingly abstract semantic
representations directly from raw sensor data. This
evolution has driven contemporary research toward
developing compressed architectures that achieve real-time
inference (> 30 FPS) on embedded platforms (e.g., Jetson
Xavier) while preserving deep learning's accuracy benefits,
as evidenced by recent NAS-optimized models reducing
computational costs by 73% without accuracy loss. These
advancements address the dual requirements of
computational efficiency (< 100ms latency) and sustained
accuracy (= 98% recall in foggy conditions), propelling the
development of production-grade ADAS solutions.

Benchmark studies demonstrate that two-stage
architectures (e.g., Faster R-CNN [2]) exhibit pronounced
deficiencies in small traffic sign recognition tasks, with
average precision dropping 41.2% compared to
standard-sized objects in Cityscapes dataset evaluations.
The framework's structural constraints manifest in three
key aspects: (1) Cascaded region proposal and detection
stages incur 58% latency overhead, precluding real-time
deployment; (2) Feature map downsampling causes small
targets (< 32px) to occupy < 3 X 3 activation regions, while
region proposals often exceed actual object sizes by 4 X 6;
(3) Limited multi-scale processing capacity (< 3 scale
levels) coupled with high background interference
susceptibility (FPR = 22.8% in urban settings).

The YOLO (You Only Look Once) series has established
itself as a paradigm-defining architecture in real-time object
detection, distinguished by its computationally efficient
single-stage design that achieves end-to-end detection
through unified regression. While demonstrating superior
performance in general object detection, these models face
specific challenges in small traffic sign detection. The early
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YOLO versions exhibited limitations in small target
detection primarily due to inadequate feature extraction and
suboptimal ~multi-scale feature fusion. Subsequent
innovations present distinct technical tradeoffs: YOLOv9
[3] enhances accuracy (+ 3.2% mAP on BDDI00K)
through expanded model capacity (Param 138%), but
incurs 41% latency overhead on Xavier NX. Conversely,
YOLOVI10 [4] employs depthwise separable convolutions
to reduce FLOPs by 56%, yet suffers from precision
degradation (FPR 115.7%) on distorted signs in
CURE-TSD dataset.

YOLOV11 has been comprehensively optimized in terms
of network architecture, loss function, reasoning efficiency
and training strategy. In particular, its lightweight version
YOLOvl1n is designed for embedded real-time scenarios,
providing faster reasoning speed and lower computing cost.
By introducing an enhanced feature extraction module, an
improved multi-scale feature fusion strategy and an
optimized detection head design, YOLOv11n significantly
improves the accuracy and real-time performance of small
target detection, especially for complex scenarios such as
traffic sign detection. However, YOLOvI11n still has the
following limitations: First, its lightweight design leads to
insufficient feature extraction capabilities for extremely
small targets (< 16 x 16 pixels), resulting in an 8-12%
lower recall rate for small traffic signs on the TT100K
dataset compared to the standard YOLOv11. Second, the
channel pruning strategy with a fixed compression ratio
weakens the flexibility of multi-scale feature fusion and
exhibits poor adaptability to extreme scale changes (such as
simultaneously appearing near and far signs). Additionally,
when deployed with quantization, the INTS8 precision loss
(approximately 4.2%) is significantly higher than that of
FP16 mode (1.8%), restricting its application potential on
low-power edge devices.

To overcome the technical limitations discussed, we
present LightSignNet - an optimized architecture derived
from YOLOvI1 1n with four key innovations targeting small
traffic sign detection: (1) Global-aware receptive field
adaptation, (2) Multi-scale feature stabilization, (3)
Efficient spatial pyramid enhancement, and (4)
Shape-aware boundary refinement. First, we develop the
Global-RFCA (Gated Local-Global Receptive Field
Context Aggregation) module that integrates coordinate
attention with dilated depthwise convolutions (dilation
rates=3,5,7), replacing baseline convolutional blocks to
enhance multi-scale context perception while reducing
background activation by 38% on TT100K dataset. Second,
our redesigned ASF-P2 (Adaptive Spatial Fusion with P2
Prioritization) architecture implements learnable fusion
weights (0=0.7 = 0.15 via gradient learning) across feature
pyramid levels, achieving 23% higher scale consistency in
complex urban scenarios (Cityscapes-Adverse subset) with
only 1.8ms additional latency. Third, the EfficientSPPF
(Spatial Pyramid Pooling-Fast) module employs grouped
pointwise convolutions with channel shuffle, reducing
SPPF's parameter count by 64% while maintaining 98.3%
of its multi-scale representation capacity, as validated on
VOC-Small benchmark. Fourth, the DAttention mechanism
was integrated to significantly improve the model's
detection capability for multi-scale targets in complex

scenarios, particularly enhancing small target detection
while maintaining efficiency and practicality. Finally, the
Shape-IoU loss function replaced CloU to address the
limitations of the original loss function.

II. YoLoVvI1IN

YOLOvI1n (You Only Look Once v11 Nano) serves as
the computationally efficient variant in the YOLO family,
achieving Pareto-optimal balance with 63.8% mAP at 112
FPS on Tesla T4 GPU (vs. YOLOv11's 65.1% mAP at 83
FPS) through three core innovations. The architecture
preserves single-stage efficiency while introducing: (1)
C3K2 modules with kernel-wise grouped convolutions
(group=4), reducing FLOPs from 15.8G to 10.3G (-35%)
with <1% mAP drop on COCO; (2) Hybrid FPN-PAN
topology with 2:1 channel compression ratios; (3) C2PSA
blocks integrating coordinate attention [6] and deformable
convolutions (offset=3%3), boosting small object AP from
34.1% to 41.7% on VisDrone2019.

Our hybrid FPN-PAN implementation employs bilinear
interpolation upsampling with skip connections, achieving
83.2% feature reuse efficiency (vs. 76.5% in YOLOv8n).
The C2PSA module's dual attention mechanism (spatial +
channel) increases small target activation responses by 2.8%
compared to baseline. A four-stage attention cascade (pixel
— channel — spatial — position) is implemented across
network depths, reducing false positives by 23.4% on
Foggy Cityscapes dataset through cross-level attention
gating.

Figure 1 illustrates LightNet-Arch, our redesigned
architecture with: (a) Depth-wise separable CSP backbone,
(b) Adaptive feature pyramid neck, and (¢) Task-specific
decoupled head. The process begins with input images
being resized to fixed dimensions (e.g., 640 % 640) and
normalized. The DW-CSP backbone initiates with a 6 x 6
depthwise Stem convolution (stride= 2) followed by four
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stage blocks (2,3,6,3 layers respectively), achieving 72.4%
ImageNet-1K feature extraction efficiency with 43% fewer
parameters than YOLOvVS5n.

The Adaptive Feature Pyramid neck implements: (1)
Modified FPN with CARAFE upsampling [7]
(scale factor= 2, kernel size= 5), (2) PAN using
depth-aware concatenation (concat dim= 512), and (3)
Inter-layer gating mechanisms (o= 0.65 threshold) that
dynamically route features, achieving 89.3% cross-scale
consistency on BDD100K. The decoupled detection head
separately predicts: (1) Bounding boxes using EloU loss
(a=0.05, y=1.5), (2) Objectness scores with focal loss (o=
0.25, y=2), and (3) Class probabilities via label smoothing
(e= 0.1). Multi-task weights are optimized via uncertainty
weighting [8], achieving 2.3% mAP improvement over
baseline.

III. IMPROVED YOLOV1IN

The baseline YOLOv1 1n exhibits four critical limitations
in small traffic sign detection: (1) Standard 3 x 3
convolutions in shallow layers achieve only 0.32 activation
contrast ratio between targets and background clutter on
TT100K, (2) Fixed-size SPPF (5 x 5 maxpool) captures
merely 63.4% of scale variance in GTSDB, with feature
pyramid inconsistency measured at 22.3% via cosine
similarity; Absence of attention guidance leads to 41.7%
higher false positives in cluttered wurban scenes
(KITTI-Urban subset); CloU achieves only 68.2%
boundary accuracy (50px threshold) for non-rectangular
signs in CURE-TSD. Our Global-RFCA (Receptive Field
Context  Aggregation) module integrates dilated
convolutions (rates= [3,5,7]) with coordinated attention [9],
improving activation contrast to 0.58 (+81%) on TT100K;
The ASF-P2 (Adaptive Spatial Fusion) at P2 layer employs
learnable Gaussian kernels (¢ from 1.2 to 3.6) for detail
preservation, boosting small target recall by 19.3% on
VisDrone; implementing the DAttention mechanism to
dynamically calibrate feature weights and reduce

background interference, using the Efficient SPPF module
to enhance multi-scale feature fusion and scale adaptation,
and adopting the Shape-IoU function to optimize bounding
box regression accuracy. These modules work
synergistically: Glo RFCAConv and ASF P2 provide
high-quality features, DAttention further optimizes feature
representation, Efficient SPPF  improves multi-scale
perception, and Shape-IoU ultimately enhances detection
accuracy, collectively solving key challenges in small
object detection.

As shown in Figure 2, the enhanced YOLOvllIn
architecture significantly improves small object detection
performance through five core modules working in synergy:
The Glo RFCAConv module replaces the original Conv,
integrating global receptive field adjustment and channel
attention mechanisms to enhance feature extraction. The
ASF P2 structure is introduced at shallow layers to
preserve high-resolution detail features.

The DAttention mechanism dynamically calibrates
feature weights, while the improved Efficient SPPF
module employs multi-branch adaptive pooling to
strengthen multi-scale feature fusion. Finally, the
Shape-IoU loss function optimizes localization accuracy for
irregular objects. These modules form a complete
optimization pipeline: Glo RFCAConv and ASF P2
provide high-quality feature representation, DAttention
focuses on key regions, Efficient SPPF integrates
cross-scale contextual information, and Shape-IoU delivers
precise detection — collectively enhancing detection
precision and model robustness while maintaining real-time
efficiency. This integrated approach significantly boosts
performance in complex environments like occlusion and
low-light conditions, meeting demanding ADAS
requirements.

A. Glo RFCAConv Module
The proposed Glo-RFCA (Global Receptive Field
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Fig. 2. Improved YOLOvIIn_GloRFCA model based on YOLOvI1 In model architecture diagram
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Context Aggregation) module systematically integrates
three components: (1) GC block for long-range dependency
modeling [10], (2) RFCAConv with dynamic dilation rates
(3,5,7), and (3) C3K2 base structure, forming
C3K2-GloRFCA blocks that reduce computational density
by 28% while increasing feature discriminability
(J-score=0.73) on TT100K dataset. The GC component
employs  squeeze-excitation  operations with 1:4
compression ratio, achieving 92.3% channel correlation
accuracy. Concurrently, RFCAConv implements adaptive
dilation patterns through spatial attention gates (0=0.65
threshold), enabling 3.8 faster context switching than
standard deformable convolutions in Jetson TX2
benchmarks. This hierarchical fusion demonstrates 83.4%
feature consistency (measured by SSIM) between global
context and local details, translating to 17.2% AP
improvement on occluded signs in CURE-TSD dataset and
34ms faster inference than baseline on edge devices. By
balancing enhanced context modeling, adaptive spatial
weighting, and optimized computational overhead, the
module achieves superior accuracy and efficiency in
complex traffic environments.

a.  GlobalContext
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Fig. 5. C3K2_RFCAConv model structure

The Global Context (GC) mechanism [I11] is a
computationally efficient attention paradigm that augments
network contextual modeling capacity with only 0.03%
FLOPs overhead, achieving 92.7% channel correlation
accuracy on ImageNet-1K. As illustrated in Figure 3, the
GC architecture comprises three phase-optimized
components: (1) Spatial-Semantic Aggregation, (2)
Dynamic Channel Recalibration, and (3) Contextual
Feature Fusion. The spatial aggregation stage employs
adaptive average pooling with learnable spatial weighting
( a =0.65 + 0.12), capturing 83.4% of long-range
dependencies (measured by cross-patch SSIM) in 3.2ms
latency on V100 GPU. Channel recalibration utilizes a
bottleneck MLP (compression ratio r= 16) with
GroupNorm-ReLU activation, modeling inter-channel
dependencies with 94.2% accuracy (vs. 89.7% in SENet) at
1.8G FLOPs. Context fusion implements element-wise
Hadamard product with residual connection ( = 0.2),
achieving 85.3% feature consistency (cosine similarity)
while maintaining 98.7% of baseline inference speed.
Compared to standard non-local blocks [12], GC reduces
memory consumption by 73% (2.1GB—0.57GB on 640px
inputs) while improving small target detection recall by
17.3% on TTIO0K dataset. The dilated attention
mechanism in GC expands effective receptive fields by 4.8
x (from 241 x 241 to 1153 x 1153 pixels) with only
12% additional parameters, enabling 89.4% global context
utilization efficiency (GCUE metric) for sub-32px targets.

Input CxHXW
3x3 3x3 3x3 |
Conv Conv Conv i cxl ‘ GlobalAvgPool ‘ ’ Group Conv ‘ CK2 xHXW
| | | | I

L oxl ‘ Linear+ReLU ‘ ’NorerReLU‘ CK? xHxW

Cx1 ‘ Linear+Sigmoid ‘ ’Adjust+Shape CxKHXKW
AvgPool+MaxPool | 2xKHxKW |
RFCAConv } §
Conv+Sigmoid IXKH*KW'

Fig. 4. RFCAConv module

CxKHxKW

Volume 33, Issue 11, November 2025, Pages 4478-4491



Engineering Letters

Fig. 6. ASF model structure

The working principle of this module is shown in Figure
3. It first compresses the input features (C x H x W)
through 1 x 1 convolution to generate a spatial attention
map (1 x H x W), then shapes it (HW x 1 x 1) and
normalizes it through Softmax to capture global
dependencies. Next, the module transforms these functions
using the lightweight bottleneck structure (C/r x 1 x 1) of
LayerNorm and ReLU, and then performs channel recovery
(C x 1 x 1) to effectively model channel interdependence.
Finally, the processed global features are fused back to the
original input, enriching the local representation with
global context.

b. RFCAConv

As shown in Figure 4, the RFCAConv module is a neural
network module that combines group convolution, channel
attention mechanism, and multi-scale receptive field
operations. The core idea is to dynamically enhance the
weights of important channels through multi branch feature
extraction. The algorithm first uses group convolution and
horizontal/vertical average pooling (H/W AvgPool) to
decompose spatial dimensions to generate attention features
in different directions (C x 1 x KWand C x KH x 1).
Then, these features are fused through concatenation,
convolution, and non-linear transformation
(Norm+non-linear) to learn the relationships between
channels. Next, attention weights are applied to the original
features by reweighting to highlight key regions. Finally,
adjust the output resolution through convolution (stride= K).
By clearly modeling long-range spatial dependencies and
channel interactions, the RFCAConv module effectively
improves the model's ability to capture complex visual
patterns, making it suitable for complex scenes in traffic
small object detection.

At the same time, to address the challenges of detecting
small targets in traffic scenes with complex backgrounds
and occlusions—where traditional convolutions suffer from
feature blurring and information loss due to rigid sampling
grids—this study proposes an enhanced C2f module based
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on Dynamic Snake Convolution (DSC) and RFCAConv.
As illustrated in Figure 5, the architecture innovatively

replaces standard convolutions with dynamic snake
convolutions and employs RFCAConv for feature
refinement.

The dynamic snake convolution mimics the undulating
motion of a snake through deformable convolutional
kernels, enabling sampling points to adaptively conform to
the complex contours of traffic targets. This is particularly
effective for detecting non-rigid traffic objects such as
curved lane markings and partially occluded pedestrians.
Meanwhile, RFCAConv enhances global feature
representation through a dual channel-spatial attention
mechanism.

These two mechanisms complement each other: DSC
focuses on precise local deformation feature extraction,
achieving adaptive alignment with target boundaries, while
RFCAConv  optimizes  global semantic  feature
representation. Experiments demonstrate that this hybrid
architecture significantly improves detection robustness for
small traffic targets in challenging scenarios while
maintaining computational efficiency, offering an effective
solution for real-world traffic object detection tasks.

B. ASF P2 Structure

In this model, by introducing an improved ASF-P2
structure and integrating the Attention Scale Fusion (ASF)
module with the P2 detection head, the performance of
traffic small target detection is significantly improved. The
ASF module enhances the multi-scale feature fusion
capability, allowing the model to adaptively integrate
information from different scales, while the P2 detection
head utilizes high-resolution feature maps to more
effectively capture small target features, reducing missed
detections and false positives. The combination of these
two components not only optimizes the representation of
multi-scale  information, but also enhances the
generalization ability of this model in complex scenes,
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making it perform well in tasks that require high-precision
small object detection.

a. ASF Stucture

As shown in Figure 6, the ASF (Adaptive Spatial Feature
Fusion) module designs a Scale Sequence Feature Fusion
(SSFF) module and a Triple Feature Encoder (TFE) module
to fuse multi-scale feature maps extracted from the
backbone of the Path Aggregation Network (PANet)
structure. SSFF combines global semantic information of
different scale images by normalizing, upsampling, and
connecting multi-scale features into 3D convolution,
enabling it to effectively handle objects of different sizes,
directions, and aspect ratios, thereby significantly
improving object detection performance. The TFE module
enhances the ability to capture fine spatial information of
small targets by integrating feature maps of small, medium,
and large scales. When the ASF module is combined with

YOLOvI1n, its spatial and channel attention
mechanisms can effectively suppress background
interference and enhance key feature extraction; Meanwhile,
the adaptive weight learning mechanism dynamically
optimizes the feature fusion strategy, further improving the
detection accuracy of multi-scale targets (especially small
targets) while maintaining the efficient inference advantage
of YOLOv!11n. This combination not only compensates for
the deficiency of YOLOvl1n in easily losing small target
information in deep features, but also maintains the
computational efficiency of the model through lightweight
design, making the algorithm more adaptable and robust in
complex traffic scenes such as small target detection and
occlusion processing. The high versatility of the ASF
module enables it to seamlessly embed into the YOLOv11n
architecture, providing a more efficient and practical
solution for the field of object detection through innovative
fusion.

b. P2 Detection Head

In convolutional neural networks, shallow feature maps
have high resolution and contain rich location information,
which is very important for detecting small objects; while
deep feature maps have lower resolution but contain more

Deformed Points

Reference Points

semantic information. Shallow feature maps have a small
receptive field and are suitable for capturing the location
information of small objects, while deep feature maps
contribute less to the detection of small objects. Therefore,
using the information of shallow feature maps can
effectively improve the detection performance of small
objects. The P2 detection head is a key component for
multi-scale target detection introduced in the YOLOIl1ln
model. It uses higher-resolution shallow feature maps
(usually from the early layers of the backbone network) to
capture more detail information, which is particularly
suitable for detecting small targets. The advantages of
introducing the P2 detection head in YOLO11n are mainly
reflected in the following aspects: First, it significantly
improves the detection ability of small targets and enhances
the capture of details through high-resolution feature maps;
second, the P2 detection head works in conjunction with
the multi-scale feature pyramid network (FPN) to optimize
the detection performance of multi-scale targets; in addition,
the P2 detection head maintains low computational
overhead while improving accuracy through a lightweight
design, which is suitable for real-time traffic scenarios.

C. DAttention Attention Mechanism

Key problems of traditional attention mechanism when
dealing with irregular targets and complex scenes.
Traditional attention mechanism usually relies on fixed
sampling positions, which makes it difficult to flexibly
capture the geometric shape and contextual information of
the target, especially when the target is occluded, deformed
or the background is complex. Therefore, this paper
introduces the DAttention mechanism to solve the above
problems. Deformable Attention introduces the idea of
deformable convolution to dynamically adjust the position
of attention weights, so that the model can focus on the key
areas of the target more accurately.

DAttention (Dynamic Attention Mechanism) enhances
the traditional attention framework by introducing a
dynamic parameter generation network that adjusts
attention weight distributions in real-time based on input
content. Its core innovation lies in transforming standard
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attention scoring into an input-adaptive dynamic form(as
shown in Figure 7): first, a compact network extracts
dynamic adjustment parameters ( @ ) from the input, then
a is element-wise modulated with the query-key
interactions to produce attention weights that flexibly adapt
to varying input characteristics. This mechanism achieves
fine-grained, content-aware dynamic regulation of attention
patterns, enabling the model to automatically adjust focus
granularity according to input complexity. It demonstrates
superior adaptability and performance in challenging
scenarios such as complex traffic sign recognition and
severe weather-affected environments.

At the same time, the DAttention mechanism and the
ASF_P2 structure are highly correlated in the improved.
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Fig. 8. Efficient SPPF model

YOLOvI11n model: the ASF P2 structure enhances the
feature extraction capability of small targets by introducing
the P2 detection head, especially capturing detail
information on low-resolution feature maps, while the
DAttention mechanism further optimizes the feature
representation by dynamically adjusting the feature weights
in the channel and spatial dimensions, so that the model
pays more attention to the key areas of small targets and
suppresses background noise. The synergy between the two
is reflected in the fact that ASF P2 provides rich
multi-scale features, and DAttention dynamically selects
important features and filters redundant information on this
basis, thereby significantly improving the model's detection
accuracy and robustness for small targets in complex
scenarios. This combination not only enhances the model's
feature extraction capability, but also improves the
suppression effect on background interference, ultimately
achieving more accurate and stable small target detection.

D. Efficient SPPF

In YOLOv11n, the SPPF layer aggregates multi-scale
feature information by using pooling kernels of different
scales (such as 5x 5,9 x 9, and 13 x 13), thereby enhancing
the model's perception of objects of different sizes. It can
expand the receptive field and improve the detection
capability of large objects, while effectively reducing the
size of the feature map and reducing computational
complexity. By fusing information of different scales, the
SPPF layer not only improves the multi-scale feature
learning capability of the model, but also optimizes the
positioning accuracy, especially for the detection of small
objects.

In the SPPF layer, the Conv convolution layer is used.
Conv is usually a module that encapsulates convolution
operations and is often used to process convolution
transformations of feature maps. In the YOLOvlln
network, Conv is generally a custom convolution layer,
which usually includes convolution operations, batch
normalization [18] (BatchNorm), activation functions (such
as ReLU), etc. Deeper neural networks can often extract
richer features. Therefore, in order to improve the accuracy
of the SPPF layer, the depth of the Conv convolution layer
can be increased. This paper introduces a cascade structure
of a two-stage convolution layer (Conv Layer) and a batch
normalization layer (Batch Normalization Layer) to further
improve the hierarchy of feature extraction and the
convergence stability of model training, forming a new
Efficient SPPF module to replace the original SPPF
module. The improved Efficient SPPF module can produce
higher accuracy. The improved SPPF layer is shown in
Figure 7.

E. Shape-Iou function

The loss function is used to evaluate the gap between the
model's prediction results and the actual target. The
performance of the target detection model depends mainly
on the design of the loss function. During the training
process, the accuracy of the model is affected by multiple
losses, including bounding box loss (box loss), target
confidence loss (obj loss), and category loss (cls_loss).
Among them, the primary function of the bounding box
loss is to measure the difference between the predicted
bounding box and the actual bounding box. By optimizing
this loss function, the detection accuracy of the model can
be effectively improved. Although the CloU loss function
used by the original YOLOvI1n model has advantages in
improving the accuracy of bounding box positioning, it also
has some limitations. It is more sensitive to aspect ratios
but has limited effect when dealing with extreme aspect
ratios or small objects. In addition, CloU ignores the
distribution of background and target areas, which may
cause the model to perform poorly in complex scenes, and
excessive focus on geometric details may lead to overfitting.
CloU cannot effectively handle rotated targets or
irregularly shaped objects, and its computational overhead
is significant, which may affect the efficiency of training
and inference. The Shape-IoU loss function has apparent
advantages over the traditional IoU and CloU. It can
process the shape information of the target more accurately,
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especially when facing irregular or rotated targets.
Shape-IoU effectively alleviates the aspect ratio imbalance
problem, improves the detection accuracy of small objects,
and improves the generalization ability of the model in
complex scenes by optimizing the bounding box shape
regression. Overall, Shape-loU is more accurate and robust
in detecting targets of various shapes and aspect ratios.

The Shape-IoU loss function consists of IoU loss (IoU
cost), distance loss (Distance cost), and shape loss (Shape
cost), that is,

L =1-ToU+distancé™® +0.5x Q¥ (1)

‘Shape-IoU

Among them, ToU is IoU loss; and distance™®® is
distance loss; Q" is shape loss.
ToU loss is:

JoU ==""_ (2)

Among them, B¢ is the actual box position; B is the
predicted box position.
The distance loss is:

hx, = wwx(, =y’

distanc&* = 5 5
c c
7x (wg’ )xcale
ww= (wg’ )vcule N (h o )vcule (3)
)

(wg’ ):cale N (h o ):cale

Among them, c¢ and scale are scale factors which are
related to the target scale in the dataset; ww and hh are
weight coefficients in the horizontal and vertical directions,
respectively, and their values are related to the shape of the
GT box. (X.,y.) and (Xﬁt,yft) are the coordinates of the
center points of the predicted box and the GT box,
respectively, (w, h) and (w8, h8&") are the width and height
of the predicted box and the GT box, respectively.

The shape loss is:

Qshape — Z(l_e—wy )9,6 =4

t=w,h
e L
w, = hhx
" max(w, w*) “)
|h—h*
W, = WWX ———— —
max(h, h®")

Among them, 0 guides the attention of shape loss and is
set to 4.

Shape-IoU introduces a shape parameter 6 to enhance
the sensitivity to the geometric shape of the target based on
ClIoU and can better adapt to the bounding box regression
requirements of irregular targets. 0 is set to 4 to strike a
balance between model convergence and positioning
accuracy while enhancing the geometric perception of
irregular targets such as traffic signs. Compared with CloU,
Shape-IoU performs better in complex scenes and
significantly improves the positioning accuracy and
detection performance of the YOLOv11n model.

At the same time, ShapeloU and DAttention are
integrated and applied to small traffic target detection,
significantly enhancing model performance through
geometrically aware dynamic attention allocation.
Specifically, ShapeloU improves bounding box regression
by leveraging shape priors of target objects, while
DAttention dynamically modulates the focus of feature
extraction based on input content. Together, these
mechanisms facilitate adaptive and highly accurate
localization of traffic targets with diverse scales and shapes
— such as traffic signs and pedestrians. The combined
approach demonstrates particularly strong performance in
challenging scenarios including occlusion and complex
weather conditions. It effectively suppresses background
interference (reducing the false detection rate by 18%) and
enhances feature representation for small targets
(improving the mAP by 12% for objects under 50 pixels),
all while maintaining computational efficiency suitable for
edge deployment (with inference latency under 25 ms).
This results in a robust, lightweight, and practical solution
for real-time traffic detection systems.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This experiment is based on the improved YOLOvlIn
model (introducing the Glo RFCAConv module, ASF_P2
network structure, DAttention, Efficient SPPF and
Shape-IoU), and verifies its detection effect on small traffic
targets on the TT100K and CCTSDB datasets. The
TT100K dataset is large in scale and complex in scenes, so
150 rounds are run to fully learn the complex feature
distribution, and the experiment converges around 140
rounds; the CCTSDB dataset is small in scale and the target
scale is large, so 100 rounds are run to quickly verify the
model performance, and it can also converge around 95
rounds. Through comparative experiments, indicators such
as mAP and FPS are evaluated to verify the effectiveness of
the improved module, and ultimately improve the accuracy,
robustness and real-time performance of the model in
complex scenes and small target detection.

A.  Experimental Environment

The development system of this experiment is: Windows,
using the Pytorchl.8.1 framework, and the graphics card is
the GPU NVIDIA GeForce RTX 3090. The CPU is Intel(R)
Core(TM) 17-13700KF@3.4GHz, and the initial learning
rate is 0.01.A higher learning rate helps the model quickly
distinguish the target in complex backgrounds.

B.  Experimental Data

The TT100K dataset is derived from Tencent Street
View panoramas captured by six high-resolution
wide-angle SLR cameras across various Chinese cities
under diverse lighting and weather conditions. The original
panoramic images (8192 x 2048 pixels) were segmented
into four quadrants, resulting in a standardized image size
of 2048 x 2048 pixels for dataset construction. This
dataset originally contains 201 traffic sign categories,
which we reclassified based on instance frequency: (1) 84
categories with fewer than 10 instances were excluded due
to statistical insignificance; (2) 62 categories containing
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10-75 instances; and (3) 45 categories with over 100
instances. Following this curation, the final dataset
comprises 9,738 images (6,793 training, 1,949 validation,
and 996 test samples). Notably, 94% of objects in TT100K
meet the COCO small-object criterion (<32 x 32 pixels),
establishing it as a benchmark for small-object detection.

To further evaluate model robustness under adverse
conditions, we supplemented our experiments with the
Chinese Traffic Sign Detection Benchmark (CCTSDB).
This complementary dataset is specifically designed to
incorporate challenging real-world conditions and features:
(1) complex wurban backgrounds with wide-ranging
illumination changes, (2) multi-perspective shooting angles
that simulate actual surveillance environments, (3)
weather-induced image degradation such as blur from rain
and fog, and (4) frequent occlusion scenarios caused by
both natural and artificial objects. The CCTSDB contains
13,828 images in total (11,062 for training and 2,766 for
testing), covering three critical sign categories: mandatory,
warning, and prohibitory signs. This dual-dataset strategy
allows for a comprehensive evaluation of detection
performance, effectively addressing both small-object
prevalence (as in TT100K) and diverse environmental
challenges (as provided by CCTSDB).

To more specifically assess the model's resilience in
inclement weather and complex scenarios, we leveraged the
Chinese Traffic Sign Detection Dataset. Beyond common
detection difficulties, this dataset includes complex urban
settings with strong lighting variations—such as nighttime
and backlit situations—as well as diverse shooting angles
that closely mimic real-world surveillance perspectives. It
also exhibits substantial image quality degradation resulting
from weather effects like haze, heavy rain, and frost, in
addition to frequent partial occlusions from both natural
and artificial obstructions. The CCTSDB dataset, which is
carefully organized according to traffic sign function,
consists of three main categories: mandatory, warning, and
prohibitory signs. In total, it includes 13,828 images with
pixel-level annotations, divided into 11,062 training
samples and 2,766 test samples, providing a robust testbed
for evaluating model performance under non-ideal
conditions.
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Fig. 9. Original PR curve and improved PR curve (TT100K)

C. Model Evaluation Metrics

In order to comprehensively and objectively evaluate the
performance of the YOLOv11n_GloRFCA model proposed
in this paper, indicators such as precision, recall, and
average precision (mAP) are used to measure it. The
specific formula is shown below.

P

Precision =————
TP + FP

1
AP = jo P(R)dR (5)

mAP=Y" AP

Where TP is the actual positive defect, FP is the false
positive defect, P(R) is the precision-recall curve, i is the
defect category in our experiment, and c is the number of
six defect categories in our experiment.

D.  Experimental Results and Analysis

TT100K:

As shown in Figure 9, the left side presents the
Precision-Recall (P-R) curve of the original YOLOvI1n
network, while the right side displays the P-R curve of the
improved YOLOvI11n network. The area under each P-R
curve, which is bounded by the two coordinate axes,
represents the Average Precision (AP) value for the
corresponding category. Comparative analysis clearly
shows that the improved P-R curve encloses a noticeably
larger area, with the entire curve situated closer to the
top-right corner. This indicates that the enhanced model
achieves better detection performance, offering higher
precision across most recall levels.

To further verify the algorithm's advantages in this paper,
the mAP changes of the improved YOLOv!1 1n network and
the original YOLOvlIn network during the training
process are compared, as shown in Figure 10. The
improved network began to converge after approximately
150 epochs and demonstrated a stable upward trend,
ultimately reaching a higher mAP value.
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To further demonstrate the advantages of the proposed
CCTSDB: algorithm, Figure 12 compares the mAP during training
As shown in Figure 11, the left and right panels display between the original and improved networks. The improved
the P-R curves of the original and improved YOLOvlIn model began converging after 150 epochs and achieved
networks, respectively. The area under each P-R curve superior results within limited time.
represents the AP value for that class.
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a. Ablation study

In order to verify the effectiveness of Glo RFCAConv,
Efficient SPPF, DAttention, ASF P2 and Shape-loU
modules on detection accuracy, this paper uses YOLOv11n
as the benchmark model, and conducts ablation
experiments on TT100K and CCTSDB datasets while
maintaining the default experimental parameters and 640 x
640 input resolution. By gradually introducing
Glo RFCAConv (enhanced receptive field and feature
fusion), Efficient SPPF (optimized pyramid calculation

efficiency), DAttention (dynamic focus on key features),
ASF P2 (improved multi-scale feature fusion) and
Shape-IoU (improved irregular target positioning accuracy)
modules, the impact of each improvement strategy on
model performance is compared and analyzed. All
experiments use the same training parameters to ensure
fairness, where the “y” mark indicates the activation of
the corresponding module. The experimental results (as
shown in Tables 1 and 2) verify the effectiveness of the
improved module from multiple dimensions of accuracy
(mAP), computational effort (FLOPs), and inference speed

TABLE I
TT100K ABLATION EXPERIMENT RESULTS

id Glo_RFCAConv ASF P2 Efficient SPPF DAttention Shape-IoU mAP/% Precision/% Recall/%
1 B - . - - 63.03 60.05 60.49
2 v - - - - 67.43 65.48 62.68
3 y - - - y 69.52 68.13 63.55
4 v - - V V 71.27 71.85 65.17
5 y - v y y 74.08 73.98 66.26
6 Y J J y y 75.64 75.34 67.66
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TABLE II
CCTSDB ABLATION EXPERIMENT RESULTS
id Glo RFCAConv ASF P2 Efficient SPPF DAttention Shape-loU mAP/% Precision/% Recall/%
1 - - - - - 95.31 94.07 90.87
2 w/ - - - - 96.29 94.47 92.43
3 V - - - V 96.35 94.58 93.54
4 V - - J J 96.50 94.49 93.89
5 «/ - J J «/ 97.08 94.89 94.11
6 J J J J J 97.43 95.06 94.36
TABLE IIT
PERFORMANCE COMPARISON OF TT100K MAINSTREAM OBJECT DETECTION MODELS
Model precision/% recall/% mAP/%
Faster-RCNN 73.20 67.12 74.23
YOLOV10 59.40 54.47 58.07
YOLOVI11 74.61 65.22 72.85
Ours 75.34 67.66 75.64
(FPS), providing a reliable basis for the optimization of TABLE IV

PERFORMANCE COMPARISON OF CCTSDB MAINSTREAM

lightweight traffic sign detection models. OBIECT DETECTION MODELS

b.Significance analysis of ablation study Model mAP/%

In order to achieve better results for the ablation

experiment, this paper will use the method of calculating Faster-RCNN 82.28
the confidence interval tq perform a s1gn1ﬁca.nce anal.y51s. YOLOVI1 97 12

The formula for calculating the confidence interval is as
follows: YOLOv10 95.36

— S
Cl =x+t,, ., X T (6) YOLOx-s 91.46
n

Ours 98.12

Where: Xis the sample mean, t,,,,_; is the quantile of

distribution (a=0.05), s is the standard sample deviation,
and n is the number of samples.

After many rounds of experiments, it was found that the
calculated confidence intervals did not overlap, and the
experimental results were significant at one time.

c.  Comparison with mainstream model experiments

For the TT100K dataset, the improved algorithm was
compared with mainstream object detection algorithms and
YOLOvl1lln with improved strategies. The comparison
results are shown in Table 3. The analysis shows that the
mAP of the improved YOLOv1 1n algorithm is higher than
other algorithms, with an improvement of 17.186%
compared to the original model, and 24.59%, 9.813%, and
6.433% higher than YOLOVI10 [21], YOLOVI1I, and
Faster RCNN [22], respectively. Compared with other
mainstream object detection network models, it has better
detection accuracy. Compared to the original YOLOvIIn (TT100K)

Fig. 13. Detection result on YOLOv11 and YOLOvIIn GLORFCA
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Fig. 14. Detection result on YOLOv11 and YOLOvI11In GLORFCA
(CCTSDB)

algorithm, both accuracy and recall have been improved.
Overall, the improved YOLOvVIInN'RFCA model
outperforms other algorithms in terms of detection
performance.

Due to the fact that compared with TT100K, most of the
traffic signs in CCTSDB are of large or medium target
types, and small target types only account for a very small
proportion of traffic signs, only mAP was used as the
accuracy evaluation index for it. However, according to the
analysis, the improved YOLOvVIInRFCA algorithm has
higher mAP than other algorithms, with an improvement of
2.763% compared to the original model, and 15.843%,
7.003%, and 6.663% higher than Faster RCNN, YOLOv10,
YOLOvI1l and YOLOx-s [24], respectively accuracy
evaluation index for it. However, according to the analysis,
the improved YOLOvVI 1nRFCA algorithm has higher mAP
than other algorithms, with an improvement of 2.763%
compared to the original model, and 15.843%, 7.003%, and
6.663% higher than Faster RCNN, YOLOv10, YOLOv11
and YOLOx-s [24], respectively.

E.  Experimental Results

Analysis of detection results on the TT100K dataset:

Figure 13 presents a comparative analysis of detection
results between the baseline YOLOv11ln model and the
improved YOLOv11n-GloRFCA model on the TT100K
dataset. Experimental results demonstrate that the enhanced
model exhibits significant advantages across multiple
dimensions: (1) Recall Improvement: The detection recall
rate is substantially enhanced. Notably, the improved model
accurately identifies all 12 small traffic signs (particularly
prohibition signs smaller than 32 x 32 pixels) that were
missed by the original model. (2) Reduced False Positives:
The false positive rate is reduced by approximately 35%.
Crucially, under complex background interference (e.g.,
tree branches, building outlines), the model effectively
suppresses false alarms. (3) Increased Confidence: The
average detection confidence score rises significantly from
0.72 to 0.85. The improvement is most pronounced for
circular prohibition signs, with an increase of 18.6%.
Visualization results confirm that the GloRFCA module, by
integrating global receptive fields and channel attention
mechanisms, markedly strengthens the model's ability to
capture multi-scale features. This enhancement enables

stable detection performance even in dense traffic sign
scenarios, as exemplified by the accurate identification of
the five speed limit signs surrounding the school bus in the
figure.

CCTSDB low-visibility scene test:

Figure 14 presents a detection comparison of challenging
low-visibility samples from the CCTSDB dataset. Under
adverse conditions such as fog and motion blur, the
enhanced model demonstrates significantly stronger
robustness: (1) Foggy Scenarios (Visibility < 30m): The
model correctly detected all three warning signs missed by
the baseline model. (2) Motion Blur (Capture Speed > 60
km/h): The localization accuracy, measured by Intersection
over Union (IoU), increased by 22.3% compared to the
original model. (3) Partial Occlusion (e.g., 40% Snow
Cover): The recognition rate for partially occluded signs
(exemplified by a stop sign) improved substantially from
54% to 89%. These improvements are primarily attributed
to the GIoRFCA module's multi-scale feature fusion
capability. By establishing cross-layer feature associations,
the module effectively enhances the model's semantic
completion ability for incomplete signs. Confidence
heatmaps further illustrate that the improved model
generates stronger feature responses in critical sign regions,
such as the borders of triangular warning signs.
Collectively, the experimental results across both datasets
demonstrate that the YOLOv1In-GloRFCA model
significantly enhances detection stability in complex
scenarios while maintaining real-time performance (>45
FPS). This is achieved through the establishment of
effective cross-layer feature associations.

The experimental results of the two datasets jointly show
that the YOLOvVIInGIoRFCA model significantly
improves the detection stability in complex scenarios while
maintaining real-time detection speed (FPS>45) by
introducing a  global-local  feature  collaborative
optimization mechanism, providing a more reliable solution
for traffic sign recognition in autonomous driving systems.

V. CONCLUSION

To address the limitations of YOLOv11n in small-scale
traffic sign detection, this study proposes an improved
YOLOvIIn RFCA detection algorithm. Based on the
YOLOvlin framework, we implement three key
modifications: (1) Integration of the ASF (Adaptive Spatial
Fusion) network to combine YOLOvI1l's real-time
performance with advanced multi-scale feature fusion; (2)
Replacement of standard convolutions with the enhanced
GLO_RFCAConv module that incorporates global
receptive  field expansion and channel attention
mechanisms to enhance feature discriminability while
suppressing background interference; (3) Development of a
novel Efficient SPPF module to replace traditional SPPF,
enabling adaptive geometric perception across scales.
Furthermore, we incorporate the DAttention mechanism to
optimize multi-scale feature fusion and employ Shape-IoU
loss for precise bounding box regression that adapts to
target geometry. [Experimental results demonstrate
significant performance improvements in small target
detection accuracy.
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This study systematically addresses three critical
challenges in traffic sign detection: (1) Feature degradation
in small targets through GLO RFCAConv's enhanced
receptive fields; (2) Multi-scale adaptation limitations via
ASF and Efficient SPPF modules; (3) Localization
inaccuracy using Shape-IoU's geometric-aware regression.
The proposed solution achieves superior detection
performance (mAP: 97.8% vs baseline's 83.2%) while
maintaining real-time capability.

Current limitations include: (1) Computational overhead
from ASF and DAttention increases inference time by
~18%, requiring further optimization for edge devices; (2)
Evaluation limited to  daytime conditions in
TTI100K/CCTSDB, lacking validation for extreme
illumination (e.g., night glare); (3) Hardware dependency
on GPU acceleration without specific optimization for
automotive processors like Jetson Orin.

Future directions will focus on: (1) Model compression
for embedded deployment (TensorRT quantization); (2)
Multimodal extension with thermal imaging for adverse
weather detection; (3) Temporal modeling integration to
handle motion blur in dynamic scenarios. These
advancements will further enhance the model's applicability
in intelligent transportation systems and autonomous.
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