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Abstract—Hamilton-connected is essential property of data
center network. In this paper, we propose X(n, k) and research
under what conditions X(n, k) is Hamiltonian-connected, which
is small specific structures to extend large data center network
architectures. Secondly, We study the Hamilton connectivity of
BCube(n, k) in all cases and some other DCN (Data Center
Network) structures by using X(n, k) theorem and inference.
Finally, we propose O(logk ∗ nk) time complexity algorithm to
find the Hamiltonian path between any two distinct servers in
BCube(n, k) (n ≥ 3 and k ≥ 0).

Index Terms—Data center network, BCube(n, k),
Hamiltonian-connected, Meta-structure network

I. INTRODUCTION

CLOUD computing has seen extensive adoption across
both industrial and academic sectors due to its

innovative model for organizing computing resources, which
offers significant advantages[1]. As the cornerstone of cloud
computing, data centers, play a key role in determining
the performance of cloud computing and furthering the
economical ecosystem. Therefore, it has become a hot topics
in this focused areas[2]. Driven by rapid technological
progress, major online service providers—including Google,
Amazon, and Microsoft—have constructed massive data
centers comprising tens of thousands of servers to serve
as their core infrastructure. Within these facilities, the
performance of the data center network is particularly vital.
These large-scale systems enable the dynamic allocation of
vast hardware, software, and database resources to millions
of simultaneous Internet users. As the amount of data grows,
we need more storage capacity to store the data[3].

The Hamiltonian is one of the most basic requirements
when designing the data center (DCN) network. For
decades, the Hamiltonian proof of network structure has
been widely studied. The network with the Hamiltonian
path or the Hamiltonian circle can efficiently carry out
linear communication[4]. However, there is no necessary
and sufficient condition to judge whether a graph is a
Hamiltonian. In fact, the problem of finding Hamiltonian
paths or cycles is NP-complete[5]. Therefore, many problems
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in this field still need mathematical proof by professional
researchers.

In recent years, there have been many Hamiltonian
analyses of specific networks. Fan et al. studied the
Hamiltonian-connected of HSDC and proposed that when
n ≥ 3, Hn is Hamiltonian-connected[6]. When n ≥ 3,
Möbius cubes is Hamiltonian-connected[7]. On the other
hand, network failure needs also to be considered, because
it is unavoidable. As to k-ary n-cube. Fan et al. studied
Hamiltonian cycles and path embedding in k-ary n-cubes
fault structures (H = k1, k1,1, k1,2, k1,3)[8]. If the number of
fault elements does not exceed n−2, and each fault element
is isomorphic to any connected subgraph of K1,3, then there
is a fault free Hamiltonian path connecting the two nodes[9].

In fact, Hamiltonian path or Hamiltonian cycle
has important applications in network information
communication, which is used in two-path and multi-
path multicast algorithms to reduce or avoid congestion
and deadlock. For example, the multicast routing algorithm
based on Hamiltonian model without deadlock and other
additional resource requirements is more efficient than the
traditional multicast routing algorithm based on multicast
tree[10]. In addition, Hamiltonian properties can also be
applied to reduce the number of fault diagnosis and improve
the efficiency of fault diagnosis. Fujita and Araki et al.
completed fault diagnosis of the network in up to three
rounds of tests by using Hamitonian cycles and paths
in binary n-cubes [11]. Ye and Liang et al. proposed a
five-round adaptive diagnosis scheme for hamitonian cycle
networks[12]. Fan et al. propose a network structure BC,
and analyze its Hamiltonian and diagnosability[13].

Hamiltonian cycles are also used in practical problems,
such as the online optimization of complex flexible
manufacturing systems[14] and wormhole routing[15].
These applications have also stimulated scholars’ interest
in studying Hamiltonian, and some results have been
obtained. For example, Wang et al. studied the Hamiltonian
connectivity of DCell[16]. Liu et al. found HCN-Cubes
are Hamiltonian-connected[17]. Yang et al. proved the
balanced hypercubes BHn is (2n − 2)-fault-prescribed
hamiltonian laceable[18]. Abdallah and Cheng look at the
case when the 3-cycles form a “tree-like structure”, and
analyze the fault-Hamiltonian connectivity of such graphs.
They prove that these graphs are (2n − 7)-fault-tolerant
Hamiltonian-connected[19]. Dong et al. research the fault-
tolerant hamiltonian connectivity of RHLNs under the
conditional fault model[20].

In this paper, we use the idea of mathematical recursion to
make the Hamilton connectivity of a specific DCN, propose
and prove the meta-structure network X(n, k) and its
Hamilton connectivity, which is a switch structure connecting
multiple servers.
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The contributions of this paper are as follows:
1) We propose and prove that the network is Hamiltonian-

connected if the network structure based on meta-
structure network X(n, k) type conforms to a few of
practical restrictions (Section 3 will describe in detail).

2) We analyze X(n, k) Hamiltonian-connected in
condition (1), and propose the theorems to judge
X(n, k) that it is no Hamiltonian-connected graph:
if X(n, k) degree is 2, and X(n, k) contains
m X(n, k − 1) (m>3), then X(n, k) does not
Hamiltonian graph. In addition, if the minimum edge
of the edge cut set in X(n, k) is less than 3, then
X(n, k) also does not Hamiltonian-connected graph.

3) We use the above properties of X(n, k) to study the
Hamiltonian connectivity of a particular network. In
this paper, we study the Hamiltonian connectivity in
any case in FiConn(4, 1), EH(1, 2) and BCube(n, k),
where n and k in BCube(n, k) can take any value.

4) We design three specific Hamiltonian algorithm for
finding any two different nodes Hamiltonian path in
BCube(n, k) (n ≥ 3, k ≥ 0).

The rest of this paper is organized as follows. Section
2 introduces the preliminaries. And then Section 3 proves
Theorems and Inferences. In Section 4, according to the
theorem and inference of X(n, k), we prove the Hamiltonian
connectivity of BCube(n, k) under different conditions, and
propose a Hamiltonian path algorithm to find any two nodes.
Finally, we make a conclusion in Section 5.

II. PRELIMINARIES

The topology of a data center network (DCN) is naturally
represented by a graph, where vertices denote servers and
edges represent communication links between them. In
this way, the study of data center network topology can
be regarded as the problem of graph structure. Graph is
a mathematical model of data center network topology
structure, therefore the properties and parameters of graph
can be used to measure the performances of data center
network topology structure. In different literatures, there are
differences between the description of graph’s concepts and
the representation of symbols. To distinguish, there are some
basic concepts and symbolic representations of graph theory
related to data center networks.

The data center network can be represented as a simple
graph G = (V (G), E(G)). We use V (G) and E(G) to
represent vertex sets and edge sets in graph G. Vertices and
edges to represent servers and links in data center networks
respectively, while switches are considered transparent
network devices.

Graph G is composed a nonempty finite set V of vertices
and the combination of binary subset E is defined by V ,
where V is called vertex set, each element in E is called
edge of G, V and E are called vertex set and edge set of
graph G respectively, if V (G) × V (G) is a set of ordered
vertex pairs, graph G is called a digraph, else V (G)×V (G)
is a set of disordered vertex pairs, the graph G is called an
undirected graph, and the graphs are undirected graphs in
this paper.

The following are the basic concepts of graph theory used
in this paper:

Hamiltonian path: A path that passes through each vertex
only once is called a Hamiltonian path.

Hamiltonian cycle: A closed Hamiltonian path is called
a Hamiltonian circuit.

Hamiltonian graph: A Hamiltonian Graph is a connected
graph that contains a Hamiltonian cycle.

Hamiltonian-connected graph: The graph G is
Hamiltonian-connected if there is a Hamiltonian path
between any two distinct vertices in the graph G.

Node degree: The number of edges associated with this
node.

Cut vertex: Let G be a connected graph. A vertex V ⊆ G
is called a cut vertex of G, if G−V (Delete V from G) results
in a disconnected graph. Removing a cut vertex from a graph
breaks it in to two or more graphs.

Cut edge: Let G be a connected graph. An edge E ⊆ G
is called a cut edge if G−E results in a disconnected graph.

Complete graph: For undirected graph in which each pair
of distinct vertices is connected by exactly one edge. X(n, k)
is also complete graph, which is a basic unit of study in this
article. X(n, k) has one switch connects to n servers.

In this paper, we first proposed a meta-structured network
called X(n, k), where n represents the number of servers
and k represents the number of X(n, k) recursive layers. We
find that a data center network has Hamiltonian-connected
if: 1) its architecture conforms to a combination of X(n, k)
and its recursive units. 2) Its sub-structure Xi(n, k − 1) is
connected with at least one edge of Xj(n, k − 1) (i ̸= j)
and the minimum cut set of X(n, k) is greater than or equal
to 4.

The method is to think recursively in mathematics. The
properties of Hamilton connectivity when k = 0, X(n, 0) are
analyzed first, then the properties of Hamilton connectivity
when k = 1, X(n, 1) are analyzed. Finally, the cases of
k>1, n>2 are expanded. Each progressive proof process is
analyzed with reference to the previous conclusions. This
part is in Theorem 1 of Chapter 3 and its derivation.

Then we proved, If X(n, k) contains a node with degree
2 and the amount of nodes in X(n, k) is more than 3, then
X(n, k) does not Hamiltonian strcture network. And lemma
1 is derived: If min

F∈F
|F | ≤ 2, there is no Hamiltonian

connectivity in structure X(n, k) (Fi is a cut of graph
E and F is the set of all cuts. |F | is the number of
element in the cut). We also use these methods on specific
networks. FiConn(4, 1), EH(1, 2) and ExCCC(1, 2) use the
above methods to prove that they do not Hamilton-connected.

We focus on studying the Hamilton connectivity of
the structure of BCube(n, k) network, and generalize the
theorem and inference obtained by X(n, k) to BCube(n, k),
so that we know that 1) For any integer n with n ≥ 2
and k = 0, BCube(n, 0) is Hamilton-connected. 2) For any
integer n and k with n<3 and k>0, BCube(n, k) is not
Hamilton-connected. 3) For any integer n and k with n ≥ 3
and k>0, BCube(n, k) is Hamiltonian-connected.

Finally, we designed an algorithm to find the Hamiltonian
path between any two points of BCube(n, k), using the idea
of recursion. This part is described in detail in section 4.3.

III. HAMILTONIAN-CONNECTED ANALYSIS

Theorem 1. The network structure which formed from
meta-structure network X(n, k) is Hamiltonian-connected,
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if it has the following three properties:
1) Recursively, meta-structure network X(n, k) is built

from m copies of X(n, k−1) (m > 2), and X(n, 0) is
mini Cube(n). Figure 1 shows the structure of X(4, 0).

2) ∀X(n, k), there is at least one edge between Xi(n, k−
1) and Xj(n, k− 1). Xi(n, k− 1), Xj(n, k− 1) have
disjoint edges.(Xi(n, k−1), Xj(n, k−1) ∈ X(n, k)).

3) F is the set of all X(n, k)’s cut, that is to say F =
{F1, F2, ..., Fλ}, | • | is the number of element in the
set and the following inequality is true.

min
Fi∈F

|Fi| ≥ 4 (1)

Proof. First we derive and prove the Hamiltonian-
connected with n = 1 or 2 and k = 0 or 1. Second we
prove an induction step which holds for X(n, k).

Let n = 1, then only one switch connects to one server.
Obviously X(1, k) is not Hamiltonian-connected and which
does not make sense in the data center network structure.

So the case of n > 1 is discussed below:
(1) For k = 0, X(n, 0) is the basic element for X(n, k),

suppose X(n, 0) nodes labeled (0, 0), (0, 1) . . . (0, n − 1),
according to the nature of the network, any two nodes are
connected by edges.

Si = (i, 0) and Sj = (j, 0) are two arbitrary nodes in
X(n, 0), where i ̸= j & i, j ∈ 0, 1, ..., n − 1. Path sequence
π = [π0, π1, ..., πn−3] is an random permutations of array
[0, . . . , i−1, i+1, . . . , j−1, j+1, . . . , n−1], πk ̸= i, πk ̸= j,
and πk ∈ π. πk represent the address of the node, that is,
the elements in π can represent the order of the nodes that
the network path passes through. For example, the π is any
arrangement of set {0, 1, 2, 3}, then π={1, 3, 2, 0} is one of
the permutations, that is, π0 = 1, π1 = 3, π2 = 2, π3 = 0.

Thus based on the analysis process described above, we
have the Hamiltonian path from Si to Sj is Si → Sπ0

→
Sπ1

→ . . . → Sπn−3
→ Sj .

So X(n, 0) is Hamiltonian-connected. Figure 1 is the
structure and corresponding graph of X(4, 0), Table 1 is the
Hamiltonian path for X(4, 0).

Fig. 1. Structure and corresponding graph of X(4, 0).

TABLE I
HAMILTONIAN PATH OF X(4, 0)

Node Path
(0,0) → (0,1) (0,0) → (0,3) →(0,2)→(0,1)
(0,0) → (0,2) (0,0) → (0,1) →(0,3)→(0,2)
(0,0) → (0,3) (0,0) → (0,1) →(0,2)→(0,3)
(0,1) → (0,2) (0,1) → (0,0) →(0,2)→(0,3)
(0,2) → (0,3) (0,2) → (0,1) →(0,0)→(0,3)

Our goal is to prove that there is a Hamiltonian path
between any pair of distinct vertices, u, v ∈ V , and we

consider two cases: either u and v are in the same copy of
X(n, k−1), or else they are in distinct copy of X(n, k−1). It
is obvious that X(n, k) uses a recursively defined structure
to interconnect servers according to Theorem 1, so high-
level X(n, k) recursively forms many low-level ones. Let
Xi(n, k−1) denote a level k−1 structure and i denotes the
ith copy.

(2) For k = 1, X(n, 1) is built from m copies of X(n, 0)
and it achieves three conditions in the Theorem 1. The second
condition of Theorem 1 tells us, there is at least one edge
between Xi(n, 0) and Xj(n, 0). If X(n, 0) is regarded as a
node, X(n, 1) will be equivalent to m interconnected nodes,
that is X(m, 0). So according to (1), the network structure
after the equivalence has Hamiltonian. Let u and v be any
two distinct nodes in X(n, 1), and prove the Hamiltonian of
X(n, 1) in two cases.

Case 1. u, v ∈ Xi0(n, 0), where i0 ∈ (0, 1, ...,m −
1), that is to say, u and v are in the same copy of
X(n, 0). For each pair X(n, 0), (Xi(n, 0), Xj(n, 0)),
they are connected to each other, so a new network
structure graph G1 is formed after Xi0(n, 0) is equivalent
to a node Xi0

0 . Then the new network G1 is equivalent
to the network X(m, 0), in which a (Xi0

0 ,Xim−1

0 )-
Hamiltonian path <Xi0

0 , Xi1
0 , . . . , X

im−2

0 , X
im−1

0 > exists,
where <i0, i1, ..., im−1> is permutation of array [m−1,m−
2, ..., 1, 0].

We can know from the condition 3 of Theorem 1,
the degree of the node is more than or equal to 4,
and there are at least 4 edges between any X(n, 0)
and other copies. α and β are two nodes, and α, β ∈
Xi0(n, 0). There is a edge between α and the substructure
Xi1(n, 0) and other edges between β and Xim−1(n, 0) too.
Xi0

0 (n, 0) is the basic element in the network and any
two nodes are interconnected, so there is a Hamiltonian
path <u, Sπ0

, Sπ1
, . . . , α, β, . . . , Sπn−5

, v> in substructure
Xi0(n, 0), where Sπk

is the node of network Xi0(n, 0).
Thus there must be a Hamiltonian path in X(n, 1) which
is <(u, Sπ0

, Sπ1
, . . . , α), pi1 , . . . , pim−1

, (β, . . . , Sπn−5
, v)>,

where pi is the Hamiltonian path in Xi(n, 0). (As shown in
Figure 2)

Case 2. u and v are in distinct copies of X(n, 0),
u ∈ Xi0(n, 0), v ∈ Xim−1(n, 0). According to the
previous analysis, the equivalent network structure graph
has a Hamiltonian path <Xi0

0 , Xi1
0 , . . . , X

im−1

0 >. It can be
known from the condition 2 of Theorem 1, there is at lease
one edge between Xi(n, 0) and Xj(n, 0). Let α and β be two
nodes which are connected by edges to vertices in Xi1(n, 0)
and Xim−2(n, 0) respectively, where α ∈ Xi0(n, 0) and β ∈
Xim−1(n, 0). We have proved that Xi(n, 0) has Hamiltonian
path between any two nodes, so there is a Hamiltonian path
that include both paths <u, Sπ0 , Sπ1 , . . . , Sπn−3 , α> and
<β, Sπ0

, Sπ1
, . . . , Sπn−3

, v> in Xi0(n, 0) and Xim−1(n, 0)
respectively. Thus there is a Hamiltonian path between u and
v, <(u, pi0 , α), pi1 , . . . , pim−2

, (β, pim−1
, v)>. (As shown in

Figure 3)
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Fig. 2. For k = 1, both u and v in same substructure.
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Fig. 3. For k = 1, both u and v in distinct substructure.

(3) For k > 1, n > 2, the Hamiltonian connectivity
of X(n, k) is proved by mathematical induction. From
the above analysis, it can be seen that for k = 0 or
1, n > 1, X(n, k) is Hamiltonian-connected. Assuming that
k = τ − 1(τ ≥ 2), the Theorem 1 proposition is established,
then the Theorem 1 will be proved for k = τ . we can
know from the condition 1 of Theorem 1 that X(n, τ) is
built from m copies of X(n, τ − 1), which are X0(n, τ −
1), X1(n, τ − 1), . . . , Xm−1(n, τ − 1)(m > 2). Similarly,
X(n, τ−1) is built from m copies of X(n, τ−2), which are
X0(n, τ − 2), X1(n, τ − 2), . . . , Xm−1(n, τ − 2)(m > 2).
Because when k = τ − 1, the Theorem 1 proposition is
established, for each X0(n, τ − 1), X1(n, τ − 1), X2(n, τ −
1), . . . , Xm−1(n, τ−1), there is a Hamiltonian path between
any two nodes. Then if X(n, τ − 1) is regarded as a
node, X(n, τ) will be equivalent to m interconnected nodes.
Similarly, if X(n, τ − 2) is regarded as a node, X(n, τ − 1)
will be equivalent to m interconnected nodes. Let u and v be
any two distinct nodes in X(n, τ), and prove the Hamiltonian
of X(n, τ) in two cases.

Case 1. u, v ∈ Xi0(n, τ − 1), and u ∈ X l0(n, τ − 2),
v ∈ X lm−1(n, τ − 2), where i0, l0 ∈ (0, 1, ...,m − 1), and

X l0(n, τ − 2), X lm−1(n, τ − 2) ∈ Xi0(n, τ − 1), that is to
say, u and v are in the same copy of X(n, τ − 1), but they
are in distinct copies of X(n, τ −2). We can know from the
condition 3 of Theorem 1, the degree of the node is bigger
than or equal to 4, and there are at least 4 edges between any
X(n, τ − 2) and other copies. α and β are two nodes, and
α ∈ X li(n, τ − 2), β ∈ X li+1(n, τ − 2). There is an edge
between α and the structure Xi1(n, τ − 1) and other edges
between β and Xim−1(n, τ − 1) too.

From the previous analysis, Xi0(n, τ − 1) and
X l0(n, τ − 2) can be equivalent to nodes Xi0

τ−1 and
X l0

τ−2. And we assume that when k = τ − 1, Theorem
1 is ture, so there is a (X l0

τ−2, X
lm−1

τ−2 )-Hamiltonian path
<X l0

τ−2, X
l1
τ−2, ..., X

li
τ−2, X

li+1

τ−2, ..., X
lm−1

τ−2 > in structure
Xi0(n, τ − 1). Furthermore, this Hamiltonian path can also
be expressed as <pl0 , pl1 , ..., pli , pli+1

, ..., plm−1
>, where

pl0 is a Hamiltonian path starting with u in X l0(n, τ − 2),
pli is a Hamiltonian path in X li(n, τ − 2), and plm−1 is the
Hamiltonian path with the end of v in X lm−1(n, τ − 2).
Then in the equivalent network there is a (Xi0

τ−1,
X

im−1

τ−1 )-Hamiltonian path <Xi0
τ−1, X

i1
τ−1, ..., X

im−1

τ−1 >
in structure X(n, τ), it also can be expressed as
<pi0 , pi1 , ..., pim−1>, where pi is the Hamiltonian path in
Xi(n, τ − 1). Thus we can find there is a Hamiltonian path
<pl0 , pl1 , ..., pli , pi1 , pi2 , ..., pim−1

, pli+1
, ..., plm−1

> with u
to v in X(n, τ). So we can find the Hamiltonian path that
exists in X(n, τ). (As shown in Figure 4)

1 ( , 1)miX n − −1 ( , 1)
i

X n  −

...

1 ( , 2)lX n  −

1 ( , 2)ilX n + −

1 ( , 2)mlX n − −

( , 2)ilX n  −
 

u

v

... ...

0l
p

0 ( , 1) −iX n

0 ( , 2) −lX n

1l
p

1−ml
p

il
p

1+il
p

1i
p

1−mi
p

Fig. 4. u and v are in the same copy of X(n, τ − 1), but they are in
distinct copies of X(n, τ − 2).

Case 2. u, v ∈ Xi0(n, τ − 1), and u, v ∈ X l0(n, τ − 2),
X l0(n, τ − 2) ∈ Xi0(n, τ − 1), until u, v ∈ X(n, 0), that is
to say, u and v are in the same copy of X(n, 0). If u, v ̸∈
X(n, 0), we can obtain the Hamiltonian path between any
two distinct nodes in X(n, τ) through a proof similar to
Case 1 in (3). Then, we prove the Hamiltonian connectivity
of X(n, τ) for u, v ∈ X(n, 0).

We can know from the condition 3 of Theorem 1, the
degree of the node is bigger than or equal to 4, and there
are at least 4 edges between any X(n, τ − 2) and other
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copies. α and β are two nodes, and α ∈ X li(n, τ − 2), β ∈
X li+1(n, τ−2). There is an edge between α and the structure
Xi1(n, τ−1) and other edges between β and Xim−1(n, τ−1)
too. Then let γ and δ be two nodes which are connected
by the Hamiltonian path to vertices in X l1(n, τ − 2) and
X lm−1(n, τ − 2) respectively, where γ, δ ∈ X(n, 0).

From the above analysis, there is a Hamiltonian
path <u, Sπ0 , Sπ1 , . . . , γ, δ, . . . , Sπn−5 , v> in
structure X(n, 0), thus there is a Hamiltonian path
<(u, Sπ0

, Sπ1
, ..., γ), ..., pl1 , ..., pli , pli+1

, ..., plm−1
, ..., (δ, ...,

Sπn−5
, v)> in structure Xi0(n, τ − 1). And because

there is a Hamiltonian path <pi0 , pi1 , ..., pim−1
>,

where pi is the Hamiltonian path in Xi(n, τ − 1).
Thus there is a Hamiltonian path between u and v
<(u, Sπ0

, Sπ1
, ..., γ), ..., pl1 , ..., pli , pi1 , pi2 , ..., pim−1

, pli+1
,

..., plm−1
, ..., (δ, ..., Sπn−5

, v)> in structure X(n, τ). (As
shown in Figure 5)

1 ( , 1)miX n − −1 ( , 1)
i

X n  −

1 ( , 2)lX n  −

1 ( , 2)ilX n + −

0 ( , 2)lX n  −

1 ( , 2)mlX n − −

( , 2)ilX n  −

0 ( , 1) −iX n

1−mi
p1i

p

 u v

1l
p

il
p

1+il
p

1−ml
p

( ,0)X n

Fig. 5. u and v are in the same copy of X(n, 0).

Case 3. u and v are in distinct copies of X(n, τ),
u ∈ Xi0(n, τ − 1), v ∈ Xim−1(n, τ − 1). According to the
previous analysis, the equivalent network structure graph
has a Hamiltonian path <Xi0

τ−1, X
i1
τ−1, . . . , X

im−1

τ−1 >. It can
be known from the condition 2 of Theorem 1, there are at
lease one edge between Xi(n, τ − 1) and Xj(n, τ − 1). Let
x0 and xm−1 be two nodes which are connected by edges to
vertices in Xi1(n, τ − 1) and Xim−2(n, τ − 1) respectively,
where x0 ∈ Xi0(n, τ − 1) and xm−1 ∈ Xim−1(n, τ − 1).
We have supposed that Xi(n, τ − 1) has Hamiltonian
path between any two nodes, so there is Hamiltonian
path that include both paths <u, Sπ0

, Sπ1
, . . . , Sπn−3

, x0>
and <xm−1, Sπ0

, Sπ1
, . . . , Sπn−3

, v> in Xi0(n, τ − 1)
and Xim−1(n, τ − 1) respectively. Thus there
is a Hamiltonian path between u and v,
<(u, pi0 , x0), pi1 , ..., pim−2

, (xm−1, pim−1
, v)> in structure

X(n, τ). (As shown in Figure 6)
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i
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i

X n  
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X n   2 ( , 1)miX n  

1 ( , 1)mi
X n  

2i
p

1i
p 1mi

p


0i
p

1mx 

v

u
0x

Fig. 6. Both u and v in distinct substructure.

Theorem 2. For casual structure X(n, k) is Hamiltonian-
connected, there must be a Hamiltonian cycle in X(n, k).

Proof. According to the theorem conditions, there is a
Hamiltonian path between any two nodes in X(n, k), x and
y are neighbor nodes, there must be a Hamiltonian path
between x and y, so there is a Hamiltonian cycle in X(n, k).

Theorem 3. If X(n, k) contains a node with degree 2 and
the amount of nodes in X(n, k) is more than 3, then X(n, k)
does not Hamiltonian strcture network.

Proof. Assume X(n, k) is Hamiltonian connected and the
degree of node x is 2 (x ∈ X(n, k)). Two neighbors of x are
nodes xl and xr. Due to X(n, k) is Hamiltonian-connected,
it is means that, there is a Hamiltonian path between any two
nodes.

⟨xl, x, xi, ..., xr⟩ is a Hamiltonian path between xl and xr.
There exist a node xi in the path, which is adjacent to x and
xi ̸= xl, xi ̸= xr. Then the node x has three neighbors,
which is contradictory to a degree of x of 2. Therefore,
there is no Hamiltonian connectivity in structure X(n, k).
(As shown in Figure 7)

x

...

lx rx

Fig. 7. An example of the conclusion of Theorem 3.

Inference1. Fi is a cut of graph E and F is the set of all
cuts. |F | is the number of element in the cut. If min

F∈F
|F | ≤

2, there is no Hamiltonian connectivity in structure X(n, k).
Proof. (1) For min

F∈F
|F | = 2, let F

′
be the edge cut set of

X(n, k) and |F ′ | = 2, then let the point set corresponding
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to edge cut set F
′

be (V1, V2), and assume the sub-graph
corresponding to V1 be E1 and the sub-graph corresponding
to V2 be E2. Thus it can be proved in two cases:

Case 1. If there are only two points in V1, as shown in
Figure 8 and Figure 9, the degree of y in Figure 8 is 1, and
the degree of x and y in Figure 9 is 2. According to theorem
3, there is no Hamiltonian connectivity Figure 8 and Figure
9. (In Figure 8, for the convenience of discussion, the degree
of y is temporarily allowed to be 1, although this does not
satisfy the minimum cut set of 2).

Case 2. If |V1| > 2 and |V2| > 2, because |F ′ | = 2, which
is E1 to E2, have two sides, and these two sides connect to
x and y, Let E

′

1 = E1 − x − y be the point in E1 except
for x and y. Assume there is a Hamiltonian path between x
and y that is x → E2 → E

′

1 → y. Then E2 has three edges
connected to E1, which are E2 and x, E2 and E

′

1, E2 and
y, respectively, contradicting the hypothesis. (As shown in
Figure 10)

Fig. 8. Example 1 in case 1.

Fig. 9. Example 2 in case 1.

Fig. 10. Example in case 2.

Therefore, for min
F∈F

|F | = 2, X(n, k) does not have
Hamiltonian connectivity.

(2) For min
F∈F

|F | < 2, let F be the edge cut set of X(n, k)

and |F | < 2, let the point set corresponding to edge cut set
F be (V3, V4), the subgraph corresponding to V3 be E3, and
the subgraph corresponding to V4 be E4. It means that V3

is one point in E3, V4 is one point in E4. Let u, v be the
point in subgraph E3, assuming that there is a Hamiltonian
path between u and v that’s u → E4 → (E3 − u− v) → v,
then E4 has two edges connected to E3, because |F | < 2,
so the assumption is not true. Therefore, for min

F∈F
|F | < 2,

X(n, k) does not have Hamiltonian connectivity. (As shown
in Figure 11 and Figure 12)

Fig. 11. Sample graph with |F | equal to 1.

Fig. 12. Sample graph with |F | equal to 0.

Ilustration 1. FiConn(4, 1) does not have Hamiltonian
connectivity.

Proof. Figure 13 shows the structure of FiConn(4, 1), there
is no Hamiltonian path between points (0, 0) and (0, 2). In
addition, according to the example 2 in case 1 of Inference1,
FiConn(4, 1) does not have Hamiltonian connectivity.

(0,0) (0,1) (0,2) (0,3)

(1,0)

(1,1)

(1,2)

(1,3)
(2,0)

(2,1)

(2,2)

(2,3)

0[0]FiConn

0[2]FiConn 0[1]FiConn

Fig. 13. FiConn(4, 1) structure diagram.

A. Basic Properties of the ExCCC Structure

ExCCC, the Exchanged Cube-Connected Cycles[21], is a
new network structure by replacing each node in Exchanged
Hypercube (EH) with a cycle. EH network is created by
removing some edges from Hypercube network.

EH network can be represented by an undirected graph
EH(s, t) = {(V,E)|s ≥ 1, t ≥ 1}, the set of nodes V =
{as−1...a0bt−1...b0c|ai, bj , c ∈ {0, 1},i ∈ [0, s), j ∈ [0, t)},
This set contains three types of edges, which are

E1 : v1 ⊕ v2 = 1
E2 : v1[0] = v2[0] = 1, v1[s+ t : t+1] = v2[s+ t : t+1]
H(v1[t : 1], v2[t : 1]) = 1
E3 : v1[0] = v2[0] = 0, v1[t : 1] = v2[t : 1]
H(v1[s+ t : t+ 1], v2[s+ t : t+ 1]) = 1
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Here ⊕ denotes XOR operations, v[x : y] represents the
address from x to y in the address string, for example, for
node 0111, v[2, 3] = 01 represents the Hamming distance
between node x and y.

There are two types of Hypercube in EH(s, t) networks,
one is the s-dimensional hypercube H(s : yt−1...y0c) and
the other is the t-dimensional hypercube H(t : xs−1...x0c),
in which the number of s-dimensional hypercube is 2t and
the number of t-dimensional hypercube is 2s.

Ilustration 2. EH(1, 2) does not have Hamiltonian
connectivity.

Proof. Because node 1000 and 0000 are neighbors
in the graph, and their degrees are all 2, EH(1, 2) is
not Hamiltonian-connected. Similarly, ExCCC(1, 2) is not
Hamiltonian-connected. (As shown in Figure 14)

1000

0000

1100

0100

1110

0110

0010

10100001

0101

0011

0001

1001

1101 1111

1011

Fig. 14. Structure of EH(1, 2).

IV. HAMILTONIAN ANALYSIS OF BCUBE NETWORK
STRUCTURE

A. Design of Hamiltonian Path Algorithm

Depth-first search is a case of traversal of graphs. There
are two main types of graph traversal, depth-first search
traversal and breadth-first search traversal. The design of the
Hamiltonian path algorithm mainly uses depth-first search
traversal.

The main idea of depth-first search is to assume that in
the initial state none of the vertices in the graph have been
accessed. Depth-first search can start from a vertex v in the
graph, first visit the node, and then start depth-first traversal
of the graph successively from the unvisited nodes adjacent
to v, until all vertices connected to v edges in the graph are
accessed. If there are any unaccessed vertices in the graph,
select another unaccessed vertex as the starting point and
repeat the process until all vertices in the graph are accessed.

The steps for depth-first search are roughly as follows:
1) First access vertex v.
2) Then access the first adjacency point w of v.
3) If w exists and w is not accessed, the algorithm is

recursively executed from vertex w. Then access the
next adjacency of vertex v until all vertices have been
accessed.

As shown in Figure 15, it is assumed that the search is
started from the node v1, the node v1 is accessed first, and
then the node v2 adjacent to the v1 node is accessed. Since
the node v2 is not accessed, the search is started from the
node v2. And so on, starting from the nodes v4, v8, v5
in order to search. After accessing node v5, because the
neighboring points of node v5 have been accessed, the access
search returns to node v8. Also continue back to nodes v4

and v2 until it returns to node v1. And since the node v1
has an adjacent point that is not accessed, the search starts
again from the node v1 to the node v3. Then continues the
search. Therefore, the resulting vertex access sequence is
v1 → v2 → v4 → v8 → v5 → v3 → v6 → v7.

2v 3v

4v
5v 6v

7v

8v

2v 3v

4v
5v 6v

7v

8v

1v

Fig. 15. An example of a tree structure.

B. Hamilton Connectivity of BCube Network Structure

Our goal is to prove that there is a Hamiltonian path
between two arbitrary nodes. The Hamiltonian connectivity
of BCube(n, k) is analyzed sequentially from the bottom to
the top. For n = 1, only one switch is connected to a server.
Obviously, BCube(1, k) is not Hamiltonian-connected, which
makes no sense for the research of data center network
structure. So we only discuss the case of n ≥ 2.

Lemma 1. For any integer n with n ≥ 2 and k = 0,
BCube(n, 0) is Hamiltonian-connected.

Proof. For BCube(n, 0) (n ≥ 2), BCube(n, 0) is built
from n servers and an n-port switch. According to the nature
of the network, any two nodes are connected by edges in
BCube(n, 0). Thus it can be known from (1) in the proof of
Theorem 1, that BCube(n, 0) is Hamiltonian-connected.

Lemma 2. For any integer n and k with n < 3 and k > 0,
BCube(n, k) is not Hamiltonian-connected.

Proof. For BCube(n, k) (n < 3, k > 0), suppose k =
1, BCube(2, 1) consists of two BCube(2, 0). As shown in
Figure 16 and Figure 17, the degree of each server is 2 and
the number of servers is bigger than or equal to 3. According
to the inference 1, BCube(2, 1) does not have Hamiltonian
connectivity.

10 11

00 01

00 01 10 11

Fig. 16. Structure of BCube(2, 1) which is
built from 2 copies of BCube(2, 0).

(11)(10)

(01)(00)

Fig. 17. BCube(2, 1) corresponding diagram.
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For k = 2, BCube(2, 2) is bulit from two copies of
BCube(2, 1). As shown in Figure 18, the Hamiltonian path
from the point (0, 0, 0) to the point (0, 1, 1) is (0, 0, 0) →
(1, 0, 0) → (1, 1, 0) → (1, 1, 1) → (1, 0, 1) → (0, 0, 1) →
(0, 1, 1), and this path obviously does not contain all
the points in the graph. Therefore, BCube(2, 2) is not
Hamiltonian-connected.

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

(1,0,0) (1,0,1)

(1,1,0) (1,1,1)

switch server

Fig. 18. BCube(2, 2) corresponding structure and diagram.

For k > 2, BCube(2, k) is built from two copies
of BCube(2, k − 1), BCube(2, k − 1) consists of two
BCube(2, k − 2), BCube(2, k − 2) is equivalent to a node,
equivalently, BCube(2, k) contains nodes of degree 2, and
the number of nodes is more than 3. According to theorem
2, there is no Hamiltonian connectivity for BCube(2, k).

Theorem 4. For any integer n and k with n ≥ 3 and
k > 0, BCube(n, k) is Hamiltonian-connected.

Proof. For BCube(n, k) (n ≥ 3, k > 0), BCube(4, 1)
is built from four copies of BCube(4, 0) and four 4-ports
switches which is shown in Figure 19. More generically, a
BCube(n, k) is constructed from n BCube(n, k− 1) and nk

n-ports switches. Each server in a BCube(n, k) has k + 1
ports, which are numbered from level-0 to level-k. So, a
BCubek has nk servers and k + 1 level of switches, with
each level having nk n-port switches.

00 01 02 03

（00）

（10） （11）

10 11 12 13

（01）

20 21 22 23

（02）

（12） （13）

30 31 32 33

（03）

2 1 3 4 6 7 8 5 10 11 9 121314 15 16

Fig. 19. Structure of BCube(4,1).

The Hamming distance between two servers A and B is
represented by H(A,B). If two servers are neighbors, the
Hamming distance between them is 1. More generically, if
two servers are connected to the same level-i switch, it is
the same about the i-th digit in their address arrays.

In the Hamiltonian path of BCube, S =
[an−1, an−2, . . . , a0] is the source server, D =
[dn−1, dn−2, . . . , d0] is the destination server, for any
unit of BCube(n, k − l) Xi(n, k − l) (l = 0, 1, 2, . . . , k).
In Figure 20, assuming that the source server S is (0, 1)
and the target server D is (2, 2), a Hamiltonian path can
be found from the source server to the destination server
as (0, 1) → (0, 0) → (0, 2) → (0, 3) → (1, 3) → (1, 0) →
(1, 1) → (1, 2) → (3, 2) → (3, 0) → (3, 1) → (3, 3) →

(2, 3) → (2, 0) → (2, 1) → (2, 2). In the figure, the square
represents the switch, the circle represents the server, the
black line represents the way of the Hamiltonian path of
the source server (0, 1) and the target server (2, 2), and the
bottom digit represents the order of the servers in the path
from the source server to the target server.

1) If the source server Sl and destination server D are in
different units, the highest bit is different, according to the
depth-first principle, S traversal all servers of other modules
first and finally returned to the module traversal of the target
server D.

2) If the source server Sl and destination server D are in
same units, the highest bit is same, we need to go through
the rest Xj(n, k − l), then to Xi(n, k − l)(i ̸= j).

According to the depth-first principle, we can
look for the Hamiltonian path between any pair of
servers of BCube(n, k). And the servers are numbered
v0, v1, ..., v

k+1
n − 1. Then we find the Hamiltonian paths of

these four structures, which are BCube(4, 0), BCube(4, 1),
BCube(5, 0), and BCube(5, 1). Then, the results are shown
in Table 2.

TABLE II
THE HAMILTONIAN PATH OF THE BCUBE STRUCTURE.

Values Node Path
n = 4, k = 0 v0 → v3 v0 → v1 → v2 → v3

n = 4, k = 1 v0 → v12

v0 → v1 → v2 → v3 → v7 → v4
→ v5 → v6 → v10 → v8 → v9 →
v11 → v15 → v13 → v14 → v12

n = 5, k = 0 v0 → v4 v0 → v1 → v2 → v3 → v4

n = 5, k = 1 v0 → v20

v0 → v1 → v2 → v3 → v4 → v9
→ v5 → v6 → v7 → v8 → v13 →
v10 → v11 → v12 → v14 → v19
→ v15 → v16 → v17 → v18 →
v23 → v21 → v22 → v24 → v20

C. The Algorithm for Finding BCube Hamiltonian Paths

In this part, we design a Hamilton path algorithm between
any two different nodes in BCube. According to the method
of finding Hamiltonian path in Theorem 4, we designed
the algorithm in this section. But before we introduce
our algorithm, we should explain some solutions in the
algorithm.

As shown in Figure 20, when constructing the algorithm
shown in Theorem 4 with 02 as the initial node and 13
as the target node in BCube(4, 1), we find that traversing
through node 33 will not continue to traverse back to (01).
We summarize this problem into four cases:

1) When the starting node S and the destination node
D are the last nodes in a BCube(n, 0), the algorithm
cannot be used if the remainder of nk+1 divided by 2
is 1 for all servers.

2) When the initial node S is the last node in a
BCube(n, 0), the target node D is the last-to-last node
in a BCube(n, 0). This algorithm cannot be used if the
remainder of nk+1 divided by 2 is 0 for all servers.

3) When the initial node S is not the last node in a
BCube(n, 0), the target node D is the last-to-last node
in a BCube(n, 0). The algorithm cannot be used if the
remainder of nk+1 divided by 2 is 1 for all servers.

4) When the initial node S is not the last node in a
BCube(n, 0), the target node D is the last-to-last node
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in a BCube(n, 0). This algorithm cannot be used if the
remainder of nk+1 divided by 2 is 0 for all servers.

It is worth noting that this problem can be easily improved.
When traversing the penultimate BCube(n, 0) node, let the
last node in the BCube(n, 0) equal to Dn−1 be placed in
another location, we also considered this when designing the
algorithm.

00 01 02 03

（00）

（10） （11）

10 11 12 13

（01）

20 21 22 23

（02）

（12） （13）

30 31 32 33

（03）

2 3 1 4 13 6 7 8 5 10 11 9 12

Fig. 20. (02) to (13) cannot use this method directly.

Our proposed algorithm can be described by the following
processes:

Step1: First, judge the same bits of the source node S =
[s0, s1, ..., sn−1] and the target node D = [d0, d1, ..., dn−1],
execute the string matching match() function, and get the
number of level, indicating that the S is different from the
level = D. This indicates that the initial node and the target
node are in the same BCube(n, k − level) node.

Step 2: Use the algorithm 2 Traveling function to traverse
the BCube(n, k − level − 1) which contain S to get the
Hamiltonian path to all nodes.

Step 3: Then traverse all BCube(n, k− level− 1) from 0
to nk−level (except the BCube(n, k− level− 1) node where
the target node D is located).

Step 4: At this time, all the nodes except the BCube(n, k−
level − 1) where the target node D is located have been
traversed. Algorithm 3 will continue to traverse the remaining
BCube(n, n− level− 1) until all the nodes are traversed to
get the Hamiltonian path.

We designed algorithm 1,2,3 to implement the above
process.

This algorithm 1 is an algorithm for traversing
BCube(n, 0). This algorithm is designed to achieve: to give
an initial node S, it can return Hamiltonian path L and the
Destination server S. The time complexity of the algorithm
is O(n). This algorithm can be called by the latter two
algorithms to realize the traversal of any BCube(n, k) node
meeting certain restrictions (n>2).

The first solution to the problem in this section is to judge
by the length of Node set L. If L = nk + 1 − 2n + 1, it
means that the second-to-last BCube(n, 0) is traversed and
the server number corresponding to the last Dn−1 of target
node D in the second-to-last BCube(n, 0) is placed in L to
avoid the above problem.

The function of algorithm 2 is that given source
sever S and the level, which is same as k in the
corresponding BCube(n, k). The Xi

level stored in
∏
[] is the

BCube(n, level) node to be traversed. As the Traveling()
function is executed continuously, the recursive function will
be executed to achieve traversal. The level will change
constantly, so that all the nodes in T are traversed, and the
Total L (Hamiltonian path sequence) will be output. The time
complexity of the algorithm is O(nlevel).

Algorithm 1 BCube Meta-structure Hamiltonian Path
Input: Source server S = [a0, a1, ..., an−1]
Output: Node set L, Destination server D

1: function BASICCELLPATH(S)
2: if (TotalL).len== nk+1 − 2n+ 1 then
3: L[n] = [S];
4: else
5: L[n] = [S, [a0, a1, ..., Dn−1]];
6: end if
7: i = 0;
8: while L[n].len< n do
9: if i ̸= an then

10: L.add([a0, a1, ..., i]);
11: end if
12: i++;
13: end while
14: D = L[n− 1];
15: end function

Algorithm 2 BCube Recursive Search for Hamiltonian Path
Input: Currently traversed BCube(n, k), Source server
S, Currently traversed level
Output: Hamiltonian paths TotalL, Target server D

1: function TotalL,D=TRAVERSING(
∏
[], S, level)

2: if level = 0 then
3: L,D =BasicCellPath(S);
4: level = level + 1;
5: TotalL = TotalL+ L;
6: else
7:

∏
[] = [X0

level, X
1
level, ...X

n−2
level, X

n−1
level];

8: for i = 0 to n− 1 do
9: (TotalL,D) =Traversing(

∏
[i], S, level−1);

10: S = D;
11: end for
12: end if
13: end function

In algorithm 3, the initial and target nodes are returned
to the same bit level, indicating that the two nodes are
in the same BCube(n, level). The algorithm first traverses
the BCube(n, level − 1) where the initial node is located,
then traverses the other BCube(n, level − 1) except where
the target node D is located, and finally returns the
BCube(n, level − 1) where D is located. The algorithm
continues until S = D, returns the Hamilton path sequence
Total L.

The complexity of single execution of algorithm 3 is
O(nk), because in fact, the complexity of algorithm 2 is
O(nlevel), while the number of times that algorithm 3
executes Travsessing() is nk−level. The number of recursion
of algorithm 3 is loglevel k according to level and k, so the
time complexity of the whole algorithm 3 is O(logk ∗ nk).
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Algorithm 3 BCube Hamiltonian Path Any Different Unit
Input: Source server S, Destination server D
Output: Hamiltonian paths TotalL

1: function L =FINDBCUBE(S,D)
2: for i = 0 to n− 1 do
3: if match(S! = D) then
4: level = i;
5: else
6: return TotalL;
7: end if
8: end for
9: (L,D1) = Travsesing(

∏
[XS ], S, level − 1);

10: S = D1;
11: TotalL = TotalL+ L;
12: T [] = [X0, X1, ..., XD−1, XD+1, ..., Xnk−level−1];
13: for i = 0 to nk−level − 1 do
14: (L,D1) = Travsesing(T [i], S, level − 1);
15: S = D1;
16: TotalL = TotalL+ L;
17: end for
18: FindBCube(S,D)
19: end function

D. Hamilton Path of DCell Network Structure

About the Hamiltonian of DCell network structure, Wang
Xi has already proved in the paper “Research on Path
Coverage and Restricted Connectivity on DCell Network”
[22]. The main idea is that enumeration method is used to
prove Hamiltonian connectivity for low-level DCell(n, k).
In addition, Mathematical Induction is used for high-level
DCell(n, k).
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Fig. 21. Structure corresponding grahp of DCell(4, 1).

Similar to BCube(n, k), we can also find servers between
any two points in DCell(n, k) according to the depth-first
principle. The structure corresponding graph of DCell(4, 1)
is shown in Figure 21. Then we find the Hamiltonian paths
of these four structures, which are DCell(4, 0), DCell(4, 1),
DCell(5, 0), and DCell(5, 1). And the results are shown in
Table 3.

TABLE III
THE HAMILTONIAN PATH OF THE DCELL STRUCTURE.

Values Node Path
n = 4, k = 0 v0 → v2 v0 → v1 → v3 → v2

n = 4, k = 1 v0 → v4

v0 → v1 → v2 → v3 → v16 → v17
→ v7 → v5 → v9 → v8 → v10
→ v11 → v18 → v19 → v15 →
v12 → v14 → v13 → v6 → v4

n = 5, k = 0 v0 → v4 v0 → v1 → v2 → v3 → v4

n = 5, k = 1 v0 → v14

v0 → v1 → v2 → v3 → v4 → v25
→ v26 → v27 → v28 → v29 →
v24 → v22 → v21 → v20 → v23
→ v18 → v17 → v15 → v16 →
v7 → v8 → v9 → v5 → v6 →
v11 → v10 → v12 → v13 → v14

V. CONCLUSION

In this paper, by studying the Hamiltonian and structural
characteristics of X(n, k), which is the meta-structure of the
large data center network, we have proposed and proved if a
network structure is Hamilton-connected, it will follow three
conditions.

We also propose the theorems to judge a network structure
that it is no Hamiltonian graph. In addition, we also proved
that for BCube(n, k) (n ≥ 3, k ≥ 0), any two servers A
and B can find a Hamiltonian path from A to B through the
unique coding algorithm of BCube. That is, the BCube(n, k)
(n ≥ 3, k ≥ 0) is Hamiltonian-connected.

The paper mainly proves the Hamiltonian connectivity
to the proposed theorem and what situation there is
no Hamiltonian connectivity properties, the Hamiltonian
connectivity properties of BCube are discussed. But the
disjoint paths and restricted connectivity of BCube networks
are still open issues, which we will continue to discuss later.
Futhermore, we have a preliminary understanding of another
structure FiConn, which can simply prove the Hamiltonian
connectivity of the low-level FiConn structure, and will also
discuss and prove the Hamiltonian connectivity of the high-
level FiConn structure in the next period of time.
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