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Abstract—To improve the planning of paths for unmanned
aerial vehicles (UAVs) in complex environments, we propose a
hybrid improvement strategy based on the Sand Cat Swarm
Optimization (SCSO) algorithm. This enhancement, termed
Dynamic Sand Cat Swarm Optimization (DPSCSO), aims to
optimize the global and local search capabilities of the original
SCSO algorithm. Initially, we utilize the Piecewise Linear
Chaotic Map (PWLCM) in conjunction with opposition-based
learning for population initialization. This approach enhances
the uniformity of the initial population distribution, thereby
boosting the global search capability of DPSCSO. Additionally,
we implement a dynamic adaptive adjustment mechanism
during both the search and development phases to broaden the
search range and enhance convergence accuracy. Furthermore,
we integrate the nocturnal hunting behavior of sand cats into
the selection phase of the algorithm to improve its practical
search performance. Together, these enhancements form the
novel DPSCSO path planning algorithm. To assess the efficacy
of DPSCSO, we compare its performance with five other meta-
heuristic algorithms—Sand Cat Swarm Optimization (SCSO),
Dung Beetle Optimization (DBO), Sine Cosine Algorithm
(SCA), Whale Optimization Algorithm (WOA), and Black-
winged Kite Algorithm (BKA)—using the CEC2017 benchmark
functions. Simulations in complex three-dimensional environ-
ments are conducted to evaluate their respective path planning
capabilities. Our experimental results and comparative analysis
indicate that the proposed DPSCSO algorithm outperforms the
other algorithms in path planning tasks.

Index Terms—Unmanned Aerial Vehicle, Path Planning,
Sand Cat Optimization Algorithm, Lost Behavior, Dynamic
Population Strategy.

I. INTRODUCTION

HE field of 3D trajectory planning plays a crucial

role in the continuous advancement of UAV technol-
ogy, especially in military applications. It enables UAVs
to quickly find the optimal path to reach the intended
target in complex and hazardous environments, significantly
enhancing the operational effectiveness of UAVs. However,
in UAV trajectory planning systems, numerous constraints,
such as terrain characteristics,istics, obstacles, and no-fly
zones, lead to the existence of a large number of infeasible
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paths. To effectively overcome these challenges and achieve
efficient trajectory planning, researchers generally adopt
strategies such as roadmap trajectory planning, the potential
field method, and the population intelligence algorithm [[1].
Although traditional UAV trajectory planning algorithms
[2], such as Dijkstra’s algorithm [3] and A* algorithm,
are capable of accomplishing basic path searching tasks in
simple environments, their computational effort increases
dramatically when dealing with large-scale and complex
environments, resulting in a significant decrease in efficiency.
For the problem of optimizing the target trajectory under
complex constraints [4], traditional population intelligence
optimization methods are often prone to fall into local
optimal solutions, making it difficult to explore the globally
optimal flight path. Therefore, the development of more
efficient and intelligent optimization algorithms to meet the
complex needs of UAV trajectory planning has become a key
issue in current research.

In order to address the challenges associated with trajec-
tory planning in complex environments, international schol-
ars have introduced a wide range of intelligent optimization
algorithms, such as the Ant Colony Algorithm, Fireworks
Algorithm, and others. Feature models derived from practical
problems indicate that intelligent optimization algorithms can
generally be categorized into four major types. The first
category consists of algorithms that simulate biological re-
production behaviors, promoting population evolution based
on the natural principle of survival of the fittest. Examples
include the Genetic Algorithm (GA) [5] and the Differential
Evolutionary Algorithm (DE) [6]. The second category is
based on human behavior and mimics cognitive processes
as well as human interactions with the external environment.
Examples include the Brainstorming Optimization Algorithm
(BSO) [7]], Ideology Algorithm (IA) [8], Fireworks Algo-
rithm (FWA) [9]], and Tabu Search Algorithm (TS) [[10]. The
third group encompasses optimization algorithms grounded
in mathematical, physical, and chemical principles, such as
the Sine-Cosine Optimization Algorithm (SCA) [11], the
Black Hole Algorithm (BHA) [12], and the Gravitational
Search Algorithm (GSA) [[13]. The fourth category is based
on swarm intelligence, which solves optimization problems
by simulating collective behaviors such as predation, re-
production, and migration in biological groups. Represen-
tative algorithms include the Ant Colony Algorithm (ACA)
[14], Particle Swarm Optimization (PSO) [L5], Artificial
Bee Colony Algorithm (ABC) [16], Gray Wolf Optimizer
(GWO) [17], Whale Optimization Algorithm (WOA) [18]],
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Harris Hawks Optimization (HHO) [19], Sparrow Search
Algorithm (SSA) [20], Snake Optimizer (SO) [21], Sand Cat
Swarm Optimization (SCSO) [22]], and Spider Wasp Opti-
mizer (SWO) [23]]. PSO is a population-based, gradient-free
optimization algorithm proposed by Kennedy and Eberhart
et al. [[15]. It simulates the foraging behavior of bird flocks
and achieves global search capabilities through adaptive
learning and interactions among individuals. The Ant Colony
Algorithm (ACA) is inspired by ants’ behavior of releasing
pheromones to identify optimal paths or solutions. The ABC
algorithm simulates the honey collection behavior of honey
bees. GWO performs optimization by simulating the hunting
behavior of gray wolves. WOA mimics the spiral foraging
strategy of humpback whales. HHO simulates the cooperative
hunting behavior of Harris’s hawks and incorporates Lévy
Flight to address complex, high-dimensional problems. SSA,
introduced in 2020, models the foraging and anti-predation
behaviors of sparrows. SO and SCSO simulate the foraging
and mating behaviors of snakes and sand cats, respectively.
The SWO algorithm enhances performance through simula-
tion of female wasps’ hunting, nesting, and mating behaviors
using a set of unique update strategies. In addition, numerous
other algorithms have been developed in this field. Recently,
several algorithms with superior performance have been
proposed|[24]], 250, [26], [271, (28], [29], [30], [31].

As an emerging swarm intelligence algorithm, the Sand
Cat Swarm Optimization (SCSO) algorithm features a unique
affine principle and search mechanism. However, it exhibits
certain limitations in practical applications, such as a ten-
dency to fall into local optima, slow convergence speed, and
limited effectiveness in solving complex high-dimensional
problems.

Improving the sand cat swarm optimization algorithm and
applying it to UAV trajectory planning will help further
explore the algorithm’s potential and expand the theoretical
foundation of swarm intelligence algorithms. By adjusting
algorithmic parameters and enhancing search strategies, we
can achieve a deeper understanding of key performance
indicators such as convergence and stability, thereby provid-
ing valuable references and insights for the development of
other optimization algorithms. The core principle of popu-
lation intelligence algorithms lies in performing optimiza-
tion searches through continuous iterative processes until
predefined stopping criteria are met. During each iteration,
individuals update their states according to predefined rules,
gradually converging toward the global optimal solution. This
study addresses the problem of UAV 3D trajectory planning,
with an in-depth investigation into UAV flight environment
modeling and the representation of complex threat scenar-
ios. Based on the Sand Cat Swarm Optimization (SCSO)
algorithm, we propose an improvement scheme to address
the inherent limitations of this swarm intelligence approach,
resulting in a novel path planning algorithm—Dynamic
Population-based Sand Cat Swarm Optimization (DPSCSO).
This work is closely aligned with the practical requirements
of UAV trajectory planning, leading to the development
of a tailored solution specifically designed for 3D trajec-
tory planning. To evaluate the effectiveness and efficiency
of the proposed algorithms and framework, comprehensive
tests were conducted across various complex terrain models.
Experimental results confirm the algorithm’s effectiveness,

feasibility, and robustness in UAV trajectory planning appli-
cations. The remainder of this study is structured as follows:
Section II describes the constraints modeling for UAVs, Sec-
tion III analyzes the original SCSO algorithm and outlines
the improvement strategy for Dynamic Sand cat Population
Optimization (DPSCSO). Following this, Section IV tests
the performance of the DPSCSO algorithm, while Section
V simulates experiments on 3D maps. Finally, Section VI
summarizes the results of this paper.

II. MODELING OF UAV CONSTRAINTS

When performing trajectory planning, UAVs must satisfy
constraints in numerous dimensions. In order to ensure the
successful completion of the flight mission, it is crucial to
construct a scientific and reasonable cost assessment model.
The accuracy and rationality of the model will directly affect
the success or failure of the flight mission. The constraints
faced by UAVs during flight are mainly categorized into
two main groups: firstly, the constraints of the vehicle itself,
which include the cost of path length, the limitations of turn
angle, and the limitations of climb and dive angles; and
secondly, the constraints of the environmental space, which
involves the cost of flight altitude as well as the avoidance
of dangers or obstacles. Next, we will focus on the various
cost constraints mentioned above.

A. Cost of flight altitude

During UAV flight, its altitude must be limited to a specific
range and always remain above the terrain. The specific flight
altitude cost function is as follows:

Hy,; — (Hym,i + Hmax), Hu,i > Huai + Hmax

b — 0, Hpr,i + Hmin < Hu,i < Hupi
i m7 Huyi +d < Hy,s < Huyyi + Hmin
100, Hy,; < Hpypo+d
(D
n+1
C(1 = Zi:l hi (2)

Where Hu,i,Hm,j,denote the height values of the UAV and
terrain at the ith track point respectively, and the height of the
UAV flight is obtained from the z coordinate value zi of the
track point; Hmin is the minimum safe height between the
UAV and the terrain, which is generally set to be the height
position of 5 meters above the terrain; Hmax is the cost value
of the UAV flight height, which is generally set to be the
height position of 10 meters above the terrain; n denotes
the number of waypoints, and the number of waypoints
including the endpoints is n+1; the length, width and height
of the UAV itself are set to d. The range of heights between
Hmin and Hmax above the terrain is called the terrain safety
margin. Safety margin refers to a certain amount of cushion
or margin that is set aside during the design, operation, or
evaluation process to ensure its safe and reliable operation
in all expected and unanticipated situations. The function hi
is essentially a penalty function and the following can be
concluded from Eq.

If the UAV’s flight altitude is lower than the terrain
altitude, its surrogate value is 100. When the UAV’s flight
altitude exceeds the terrain altitude and is lower than the min-
imum value of the terrain safety margin, the surrogate value
will be determined based on the actual distance between the
UAV and the terrain. This configuration can effectively avoid

Volume 33, Issue 11, November 2025, Pages 4518-4532



Engineering Letters

a collision between the UAV and the terrain. If the UAV
flies within the range of the safety margin of the terrain,
the surrogate value is 0. If the UAV flies at a height higher
than the maximum value of the terrain safety margin, the
surrogate value of the corresponding penalties increases as
the UAV flies at a higher height, and as the cost of flight
increases. By applying the above method, the UAV can be
maintained within a reasonable altitude range that is both
safe and economical.

B. Path length consideration

Path length is a crucial metric in UAV trajectory planning
tasks. We consider a path as the UAV flight distance from
the origin to the destination, the path length. To achieve path
planning, the path length is used as a cost function to make
the UAV fly a shorter distance and consume less energy.
By minimizing this cost function, a better flight path can be
found. The expression is given below:

L=/ (Tip1 — 2%+ Wis1 — vi)2 — (zig1 — 2)2 ()
n+1

Co=>_ I €
i=1

Where Ii denotes the length of the i-th segment of the
track and (xi,yi,zi) denotes the coordinate value of the track
point. Since the number of trajectory points containing start
and end points is n+2, n+1 is used to represent the number
of trajectory segments.

C. Hazard or obstacle restraint

In order to ensure that the UAV can effectively avoid the
hazardous area or obstacle area during flight, in the study
of this paper, the flight track points that are within the
hazardous area or obstacle area are penalized so that the UAV
can maintain flight within the safe area. The corresponding
constraint function can be determined as follows:

- 100a <y < Tus Yl < Yi < Yu, =1 <2z < zy
T 0, else
. 5)
O =3 ®)

i=1

Where, xi , xu denote the lower and upper limit values of
the hazardous area or obstacle area in the x coordinate, Yj,
Y, denote the lower and upper limit values of the hazardous
area or obstacle area in the y coordinate, Z;,Z, denote the
lower and upper limit values of the hazardous area or obstacle
area in z coordinate, and n denotes the number of track
points. Z;,Z, denote the lower and upper limit values of the
hazardous or obstacle area in the coordinate z, and n denotes
the number of waypoints.

D. Turning angle constraint

Considering the physical performance characteristics of
UAVs, their turning angle during steering is restricted and
should not be too large. In fact, too large a turning angle
is not practical. The limitation of the turning angle is to
some extent equivalent to the limitation of the turning radius.
Specifically, the smaller the steering angle, the larger the

corresponding turning radius; a larger turning radius helps
the UAV maintain higher stability during flight. Therefore,
during flight, the maximum turning angle should be smaller
than the safety preset angle. The current turning angle of the
UAV flight is calculated by the following equation. The turn
angle constraint function is as follows:

; = arccos (vi ' Vitl > @)
[vill - [[Vial]
19 < Jé]
- B—06;> "t ’
i { 100, 6; > B. ®)
C4 = Zai (9)
i=1

Where 6; is the angle constituted by the current three
neighboring track points, the angle constituted by the two
neighboring track paths, and [ is the safety preset angle.
Since the number of trajectory points containing the start and
end points is n+2, the number of corners constituted by all the
trajectory points is n. As can be seen from the equation, the
smaller the current turning angle is, the smaller the penalized
generation value is, and such a setting can effectively make
the UAV turn more smoothly.

E. Climb and dive angle constraint

During flight, the climb and dive angles of the UAV must
be controlled within safe limits. If the climb and dive angles
are too large, they may pose a threat to the flight safety of
the UAV. The current climb or dive angle of the UAV can be
calculated by the following formula: the climb or dive angle
constraint function is as follows:

(p; = arctan |71 — i (10)
V(@i1 — )% + (i1 — vi)?
1
L p<®
) we i
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n+1
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Where ¢; is the climb angle constituted by the current
two neighboring waypoints, and & is the safety preset angle.
Since the number of trajectory points containing the start and
end points is n+2, the number of all the trajectory points
constituting the climb angle is n+1. From Eq. it can be seen
that when the climb or dive angle of the UAV is small, the
corresponding penalization surrogate value will be reduced,
and such a setup will help to ensure that the UAV’s climb
or dive process is smoother.

F. Integrated cost constraints for trajectory planning

In this paper, the objective function of the integrated cost
constraint for trajectory planning is chosen as:

Fo = w1 C1 4+ waCoy + w3Cs + wiCy + wsCh (13)

Where F denotes the integrated cost of the trajectory
planning, Omega, are the weighting coefficients, and the
sum is 1.
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ITII. IMPROVEMENT OF SAND CAT SWARM
OPTIMIZATION ALGORITHM

A. Overview of the original sand cat colony optimization
algorithm

Sand Cat Swarm Optimization Algorithm is a swarm
intelligence optimization algorithm proposed by Farzad Kiani
and Amir Seyyesabbasi in 2022, which is mainly inspired
by the way sand cats hunt. Sand cats are equipped with
a unique hunting mechanism in which they utilize their
acute sense of hearing to capture low-frequency noises in
order to detect prey activity beneath the ground. Although
the rim of the earwheel (outer ear) is similar to that of
domestic cats, sand cats have longer middle ear apertures and
larger middle ear cavities, which allow them to accurately
differentiate between the arrival times of different sounds.
Scientific studies have shown that sand cats have the ability to
perceive frequencies below 2 kilohertz, and in this frequency
band, their hearing sensitivity is 8 decibels higher than that
of domestic cats. This superior hearing ability helps sand cats
detect noise, track prey, and launch precise attacks based on
the location of the prey. The sand cat swarm optimization
algorithm mainly simulates two major behavioral patterns of
sand cats - search and attack. Based on these characteristics
of the sand cat, the optimization algorithm includes two
phases: search and attack.

B. Mathematical modeling of optimization algorithms for
sand cat swarms

When searching for prey, the sand cat relies mainly on its
auditory perception of low-frequency noise. In the specific
search for prey, the sensitivity rg decreases linearly from 2
to 0. The mathematical expression is shown in equation (T4).

2><S]u><t
= - (2
max

Where t is the current iteration number; Tmax is the
maximum iteration number; SM is a constant to simulate
the auditory characteristics of sand cat. At the same time,
the sand cat optimization algorithm introduces the parameter
R for the transition control of the two phases of search
and attack, and each sand cat updates its own position
according to the optimal position and the current position
and the sensitivity perception range, and the mathematical
expressions are shown in Eqs. (I3)-(T7).

(14)

R =2x7¢ x rand(0,1) — id (15)
7 =1r& X rand(0,1) (16)
Pos(t +1) =7+ (Posy(t) — rand(0,1) - Pos.(t)) (17)

Where Posy, is the current global optimal position; Pos, is
the current position rand(0,1) represents the random number
of [0,1]. r is used for the search and attack phases of the
operation.

In the attack phase, we assume that the sensitivity per-
ception range of the sand cat constitutes a circular area
whose movement direction can be determined by a randomly
selected angle (6) on the circumference. Since the selected
random angle ranges from 0 to 360 degrees, its normalized
value will be between -1 and 1. In this way, each member of
the population is able to move in the search space along a

different circumferential direction. The SCSO algorithm uses
a roulette selection mechanism to assign a random angle to
each sand cat. In this way, the sand cats are able to approach
the target location efficiently while avoiding falling into local
optimal solutions. The mathematical expression of this stage

is shown in Eqs. (I8)-(19).

Posma = ‘mnd(O, 1) - Posy(t) — Pos.(t)

(18)

Pos (t+ 1) = Posy, (t) — 7+ Pospgq - cos(6) (19)

Where Posyg denotes the randomized position and en-
sures that the sand cat involved can be close to the prey.
By taking different values of R, the algorithm is made to
explore and exploit these two different behaviors, avoiding
local optimality to some extent. The position update formula
of the final sand cat algorithm is shown in (20).

Llial Posy(t) — 7 Posmq - cos(0), |R| <1,
1) =9 7 (Posb(t) ~ rand(0,1) -Posc(t)) . R > 1.
(20)

C. Pseudo-code for the sand cat swarm optimization algo-
rithm

Step SCSO Algorithm

01 Initializing the population

02  Calculate the fitness value for each individual
and determine the optimal individual Xpeg

03 Initialize the parameters r, r¢ and R

04 while (¢t <7T) do

05 for each individual sand cat do

06 Take a random angle between 0-360
degrees

07 if |R| > 1 then

08 Renewal of sand cat individuals using
the formulae

09 else

10 Renewal of individual sand cats using
the formula

11 end if

12 Update the parameters ro, ¢ and R

13 end for

14  end while

D. Flowchart of sand cat swarm optimization algorithm
E. Improvement of sand cat swarm optimization algorithm

The sand cat swarm optimization algorithm is known
for its fewer parameters, simple structure and applicabil-
ity. However, the algorithm uses roulette to execute the
attack behavior, and the blindness of this attack may re-
duce the efficiency in the optimization search process. In
the search behavior, the algorithm uses the overall fitness
as the criterion for evaluating the individual’s superiority
or inferiority, which does not completely and accurately
reflect the relationship between the individual’s superiority
or inferiority in spatial location. In addition, for coordinates
that have converged to the optimal position in a certain
dimension, the search behavior may cause them to oscillate
near the optimal solution, thus reducing the convergence
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Fig. 1: Flowchart of sand cat swarm optimization algorithm

efficiency. Meanwhile, the original algorithm also suffers
from the problems of relying on the initial solution and the
decrease of population diversity in the late iteration. In this
study, three improvement strategies are proposed with the
aim of enhancing the optimization performance of the SCSO
algorithm.

FE. PWLCM mapping combined with reverse learning for
population initialization strategy

In population intelligence algorithms, a high-quality ini-
tial population prompts the algorithm to converge faster
and effectively improves the algorithm to search globally.
However, in the original SCSO, a random approach is used
for population initialization, resulting in the population not
being evenly distributed in the solution space, which limits
the search capability of SCSO. Chaotic mapping, with its
own characteristics of randomness and traversal, has been
widely used in population diversity improvement for pop-
ulation intelligence algorithms. Currently, mappings such
as Tent, Logistic, and Sine are widely used in this field.
Compared with other mappings, PWLCM mapping has better
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Fig. 2: Histogram of scatter frequency distribution

randomness and traversal due to its segmentation mechanism
in the mapping space. Therefore, we select the PWLCM
mapping for population initialization, which is defined by
the following equation:

= 0< f(t)<p
ft)—p <
_ ) 05-p> p < f(t)<0.5
JEHD =310 gscpncrp @Y
0.5—p J >
S 1op<f <1

Where p is the control parameter of this mapping, p €
[0,1].f(t) is the value of the generated random iteration,
f(t) € [0,1]. FigPillustrates the histograms of the frequency
distributions of the 1000 point sets generated by the PWLCM
mapping and the randomized method in a two-dimensional
space. Observing Fig[Z] it can be seen that the number of
point sets distributed by PWLCM mapping in each interval
is about 100, which is relatively uniformly distributed; in
contrast, the distribution of point sets by the randomized
method in different intervals varies significantly. This shows
that the use of PWLCM mapping can significantly improve
the quality of the initial population, which in turn enhances
the global search ability of the algorithm. The generation
method of the initial population is detailed in Equation (22).

Where z;(k) is the kth dimension of the ith individual of
the population,k € [1, dim]. dim is the optimization problem
dimension. lb,ub are the upper and lower bounds of the
optimization problem. is the PWLCM mapping perturbation
factor.

zi(k) = Ib(k) + (ub(k) — Ib(k)) - f (i)
On the basis of utilizing PWLCM chaotic mapping to

(22)
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Fig. 3: Distribution of initialized populations

generate initial solutions, we introduce a reverse learning
strategy. This strategy further expands the search space of
the sand cat algorithm and improves the quality of the initial
population of sand cats. The specific expression of the reverse
learning strategy is shown in Eq. 23):

Xnewi =k- (Xmaz + szn) - Xz (23)

A reverse learning strategy is used to perturb the popula-
tion twice. Fig. 2 shows 30 sand cat individuals generated
in 2D space using PWLCM mapping, combining the reverse
learning method and stochastic method.

As can be seen from Fig[3] the populations generated using
PWLCM mapping combined with reverse learning are more
evenly distributed in the solution space without aggregation
than those generated in a randomized manner, which is more
conducive to improving the quality of the initial populations.

G. Nocturnal disorientation behavior of sand cats

At night, the moon’s trajectory exhibits stable regularity
and repeatability, and its azimuth changes over time, pro-
viding reliable navigational coordinates for nocturnal sand
cats. Sand cats are able to orient themselves according to the
orientation of the moon and maintain a stable line of travel
in the desert. Once lost, sand cats will search by circling
around, using their keen sense of smell to capture the scent
marks of their companions, the aroma of plants, and the
traces of their prey; at the same time, they rely on their sense
of hearing to perceive the sound of the wind, the sound of
the winging of insects, and the sound of the flow of water
sources, so as to achieve the reidentification and localization
of the direction. Therefore, in this paper, the model of lost
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Fig. 4: Two-dimensional representation of spiral curves

behavior was introduced in the study of sand cat population,
and its mathematical formula is described as follows:

Pos (t+ 1) = Posy (t)

R (24)
7+ PoSpmq - cos(0) -a-b-1-cos(2nl),| R|<1

Pos (t+1) = Posy, (t) — rand (0,1) - Pos.. (t)

S 2
(Posy (t) —2-a-b-1-cos(2nl)),| R|>1 =

Where b-1-cos(l-2- ) represents the helix factor, which
models the curved path of a sand cat. « is a natural coefficient
that models the effects of wind and other natural factors and
has a value of 1 or -1.

The spiral factor b- [ - cos(l -2 - ) describes an isosceles
spiral, where b is a constant that controls the pitch of the
spiral, and the larger the value of b, the larger the pitch of
the spiral. [ is a random number in the range [—1, 1]. When
b takes the value of 3, 4 or 5, its image in two dimensions
is shown in Fig. 4:

From Figl] it can be visualized that the value of the
parameter b is directly proportional to the helix pitch of
the spiral curve, the larger the value of b, the larger the
helix pitch, which leads to a corresponding increase in the
search range of the algorithm. However, too large a spiral
pitch may cause the algorithm to ignore some potentially
valuable regions of the solution space. After a series of tests,
we finally decided to set the value of b to 4.

H. Dynamic adaptive adjustment mechanism strategy

In the realm of biodynamics, the sand cat has demonstrated
extraordinary aerial attitude adjustment, the core mechanism
of which is based on the law of conservation of angular
momentum. When the sand cat is in free fall, it achieves
attitude correction through asymmetric body movements.
In the initial inverted state, the sand cat utilizes the high
flexibility of its spine to break down its body into two
rotational units, the front and the back. Through the reverse
twisting of these two parts, the cat is able to correct the
posture of the front half of the body while keeping the total
angular momentum unchanged; then, through the stretching
of the waist, it completes the synchronized adjustment of the
back half of the body, and finally achieves a safe quadrupedal
landing posture.

In addition, the cat adopts the dynamic adjustment strategy
of “tuck-and-stretch” to optimize the moment of inertia.
Specifically, the cat reduces the rotational inertia of the back
by stretching the forelimbs and curling the hindlimbs to
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improve the local rotational flexibility; then it changes the
limb morphology by curling the forelimbs and stretching
the hindlimbs to complete the fine-tuning of the stance.
This process is consistent with the classical theory of rigid
body moment of inertia regulation, just like figure skaters
controlling rotational speed through limb expansion and
contraction. At the same time, the tail of the sand cat acts
as a “biological propeller”, utilizing tail rotation to generate
reverse angular momentum to assist in the dynamic balance
of the overall posture.

At the algorithm simulation level, a nonlinear adaptive
adjustment mechanism is introduced to model the attitude
adjustment process of the sand cat. The sand cat swarm op-
timization algorithm (SCSO) regulates the dynamic balance
between searching for prey and attacking prey through the
balance parameter R, while the value of R is influenced by
the auditory sensitivity parameter rg. In the SCSO algorithm,
rg decreases linearly (from 2 to 0) as the number of iterations
increases, but it is difficult to accurately simulate the complex
dynamics of the sand cat’s posture adjustment during the
hunting process in this linear update approach. For this
reason, the optimized rg updating formula (26) is proposed
to more accurately reflect the adaptive adjustment mechanism
of sand cat during global posture adjustment (corresponding
to the algorithm global search) and local posture correc-
tion (corresponding to the algorithm local attack) through
the nonlinear mapping relationship, thus realizing the deep
coupling of biomechanical process and intelligent algorithm.
Where: a, b are non-zero constant coefficients.

tmes _ 1 b
romroa (1)
e

Dung beetles are social insects that release pheromones
upon discovering food sources to attract conspecifics, thereby
enhancing the efficiency of resource collection and trans-
portation back to their habitat. However, as food availabil-
ity within the habitat increases, a “laziness phenomenon”
emerges within the population, wherein an increasing number
of individuals cease active foraging and instead resort to
stealing resources from their peers. This behavioral pattern
has been adopted in current research to model the behavior of
sand cats, where certain individuals avoid the energetic costs
of foraging and transporting resources by exploiting their
nocturnal habits to covertly appropriate the efforts of others.
Such behavior reflects a strategic trade-off between energy
expenditure and potential gains at the individual level. From
the perspective of optimization algorithms, this biological
phenomenon serves as a compelling analogy for the balance
between exploration (searching for new resources) and ex-
ploitation (utilizing known resources) in the search process.
By mapping the global optimum to the most favorable food
source in nature and simulating the “thieving dung beetle”
mechanism around this optimum, researchers have developed
a bio-inspired strategy for designing heuristic optimization
algorithms. Nevertheless, traditional models often lack the
dynamic adaptability required to effectively balance global
exploration with local exploitation in complex and dynamic
search environments, leading to issues such as premature
convergence and reduced search efficiency.

Based on a comprehensive understanding of the ecolog-
ical behavior of sandcats, this paper introduces a dynamic

(26)

population strategy. By simulating the dynamic changes in
the proportions of active foraging and resource transporting
individuals as well as stealing individuals within the sandcat
population, the algorithm categorizes the population into
two groups: the rolling ball population and the stealing
population. Specifically, the rolling ball population simu-
lates the sandcats’ active foraging and exploration of new
resources, thereby performing extensive exploration within
the search space to identify potentially optimal solutions. In
contrast, the stealing population mimics the stealing behavior
of sandcats, focusing on in-depth exploitation and refinement
within the vicinity of the current best solution. The algorithm
incorporates a dynamic adjustment mechanism that responds
to the search status in real time. Analogous to how sandcats
adjust their behavioral patterns based on food availability
in their environment, this mechanism continuously evaluates
the progress of the search throughout the iterative process
and dynamically reallocates the proportion of individuals
between the two populations. As a result, the algorithm
achieves an adaptive balance between global exploration
and local exploitation when addressing complex optimization
problems, thereby significantly improving its optimization
performance and robustness. The position update formula for
this behavior is:

Ps = P1s —PT
prs = pop x 55%
pr = Round(rg)

—a

b (27
rg =w; +c— (w; —ws)/ ((2et/t’"‘”/€) - ) @n

Pos (t+1) = Posy, (t) + 5 x gx
(|Posc (t) — Pospe (t)| + |Posc (t) — Posy, (t)|)

Among them, PS represents the number of adaptive steal-
ing sand cats, PTS is the sum of the number of rolling
sand cats and stealing sand cats in the original SCSO, and
PT is the number of adaptive rolling sand cats. rg is a
nonlinear adaptive factor, w; and w, are the initial and final
values of the rolling sand cats, respectively. Through the grid
search method, they are set to 14 and 3. t is the number of
iterations, M is the maximum number of iterations, and c is
an adjustment factor, mainly used to keep the convergence
curve between w; and w,, with a value of 1.4. a and b are
non-zero constants. Posy, is the global optimal value, Posy,
is the current global optimal position, and Pos, is the current
position, which is a d-dimensional vector following a normal
distribution, and is a constant, with a value of in the original
text. To explain the dynamic population strategy more clearly,
the dynamic change process of the sand cat population after
500 iterations is shown in Figure [5]

L. Description of the DPSCSO algorithm flow

The detailed steps of the improved DPSCSO (Desert Cat
Population Search Optimization Algorithm) are as follows:

(1) Parameter initialization: set the number of desert cat
population N, the search dimension D, the activity range of
each dimension [lb, ub], the maximum number of iterations
Tmax, and the selection of the fitness function;

(2) Initialization of sand cat location: segmented chaotic
mapping initialization is used;
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Fig. 5: Dynamic three-dimensional variation graph of popu-
lation size

(3) Calculating individual fitness value: calculating indi-
vidual fitness value based on the initial individual position
in steps (1) and (2) and the updated individual position in
steps (5) and (6) as the number of iterations increases;

(4) Updating parameters: calculate the value of the non-
linear factor r¢ according to Eq. (26), and then update the
values of parameters r, 6, and R,

(5) Conditional judgment: decide the next behavior of the
desert cat colony based on the value of R. Judge the size of
|R| and 1 for the update of the desert cat individual position,
and then judge the size of the current iteration number ¢ and
T.If t < T, then update the values of the parameters r, 6,
and R according to step (4);

(6) Desert cat individual position update: when |R| > 1,
the desert cat individual position is updated according to
Equation , and when |R| < 1, the desert cat individual
position is updated according to Equation (24).

(7) Algorithm iteration stopping judgment: if the current
iteration number ¢ < maximum iteration number 7', then
return to step (3) and then skip step (4), (5), (6) in turn, until
the algorithm reaches the maximum number of iterations and
outputs the global optimal solution.

J. DPSCSO time complexity analysis

The time complexity of the SCSO algorithm is O(NxDxT),
where N represents the population size, D represents the di-
mensionality, and T represents the number of iterations. DP-
SCSO adds four components compared to SCSO. The one-
dimensional Piecewise chaotic mapping has O(N x D) time
complexity. By introducing the dynamic adaptive adjustment
mechanism strategy and the nighttime lost behavior, it aims
to optimize the position update mechanism while keeping
the time complexity of the original algorithm unchanged.
Therefore, the time complexity of DPSCSO is calculated as
ONXxDxT)+ O (N x D), which remains O (N x D
x T) after simplification. Compared with SCSO, DPSCSO
maintains the same time complexity.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Algorithm testing

To ensure objectivity and fairness, the experiments were
conducted on 64-bit Windows 10 operating system, CPU
model i7-9750H, graphics card model GTX1650, and simu-
lation software MatlabR2024a.

B. Experimental design

In order to verify the effectiveness of the DPSCSO al-
gorithm, we compared it with five other metaheuristic algo-
rithms - DBO (Dung Beetle Optimization Algorithm), SCSO
(Sand Cat Swarm Optimization Algorithm), SCA (Sine Co-
sine Optimization Algorithm), WOA (Whale Optimization
Algorithm), and BKA (Black-Winged Kite Optimization
Algorithm) — were compared. On the CEC2017 standard
function set, we selected eight representative functions for
testing, including the single-peak function F1, the multi-peak
function F2, the hybrid functions F6, F7, and F8, as well
as the composite functions F9, F11, and F12. The search
interval for all the functions was set to be from -100 to
100. each experimental function was run independently for
50 runs, and the maximum number of iterations was set to
be 500, and the population size is 30. evaluation criteria
include mean (Ave), standard deviation (Std) and optimal
value (Min).

C. Comparative analysis of algorithm results

The performance of the algorithm is evaluated by the
optimal value, mean value and standard deviation, as shown
in Table|l] The smaller the optimal value and mean value, the
higher the convergence accuracy of the algorithm; the smaller
the standard deviation, the more stable the algorithm’s opti-
mization process. From the analysis results in Table 1, it can
be seen that the average performance of DPSCSO is better
than other algorithms in the eight test functions. In addition,
the standard deviation of DPSCSO is significantly lower than
that of other algorithms in most of the test functions, which
indicates that it has better optimization ability and stability.

The results for the single-peak function F2 show that
DPSCSO exhibits good convergence speed. Meanwhile, DP-
SCSO shows the best performance in terms of both mean
and standard deviation of these functions. In the tests of
multimodal functions F6-F8, DPSCSO outperforms the other
algorithms. Although DPSCSO slightly underperforms DBO
on functions F1 and F12, it still outperforms the other
algorithms in terms of overall performance. It is particularly
noteworthy that DPSCSO shows a significant advantage on
functions F9, F11, which emphasizes its effectiveness in
solving composite problems.

D. Algorithm convergence analysis

Convergence curve comparison: the convergence curves
of the DPSCSO, DBO, SCSO, SCA, WOA, and BKA algo-
rithms for the CEC2017 test functions are shown in Figure
@ In the CEC2017 comparison, the DPSCSO algorithm
demonstrates excellent performance in most of the functions
and achieves the highest level of accuracy. It is worth noting
that the convergence rate of DPSCSO shows an accelerated
trend as the number of iterations increases. This phenomenon
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TABLE I: CEC2017 Benchmark Function Results

Function = Metric DPSCSO DBO SCSO SCA WOA BKA
Ave 6.5448E+02 1.0252E+03 2.1857E+03 3.2404E+03 7.3064E+03 1.5434E+03
Fl Std 1.3179E+03 1.1926E+03 2.4723E+03 1.4905E+03 7.2190E+03 1.7915E+03
Min 3.0008E+02 3.0000E+02 3.8572E+02 1.4614E+02 8.8825E+02 3.0559E+02
Ave 8.2115E+03 8.3154E+03 8.3102E+03 8.4907E+03 8.4357E+03 8.2594E+03
F2 Std 1.1020E+01 1.1144E+01 8.6586E+00 7.5300E+00 1.7911E+01 8.3093E+00
Min 8.0400E+03 8.0994E+03 8.1892E+03 8.3053E+03 8.1385E+03 8.0895E+03
Ave 1.8559E+04 2.4935E+06 2.0364E+06 2.3186E+07 6.8369E+06 6.9494E+05
F6 Std 2.6588E+04 5.2536E+06 2.6174E+06 1.5233E+07 7.4534E+06 1.1727E+06
Min 2.4196E+03 2.6026E+03 1.1938E+04 4.9751E+06 7.8011E+04 5.8143E+03
Ave 2.6314E+03 1.8099E+04 1.4020E+04 8.4412E+04 1.6161E+04 1.3626E+04
F7 Std 2.1817E+03 1.9468E+04 1.0230E+04 5.8856E+04 1.3717E+04 9.7851E+03
Min 1.4204E+03 1.5664E+03 3.0934E+03 8.8066E+03 2.4839E+03 2.4259E+03
Ave 1.4798E+03 1.9577E+03 2.9938E+03 2.1765E+03 2.9418E+03 2.2806E+03
F8 Std 3.5314E+01 6.5637E+02 1.7806E+03 9.9534E+02 1.5573E+03 1.5103E+03
Min 1.4285E+03 1.4920E+03 1.4682E+03 1.4987E+03 1.5025E+03 1.4345E+03
Ave 1.7612E+03 1.7913E+03 1.8596E+03 1.8385E+03 1.9587E+03 1.7976E+03
Fo Std 9.2642E+01 1.2866E+02 1.1804E+02 1.0051E+02 1.2776E+02 1.5912E+02
Min 1.6016E+03 1.6135E+03 1.6275E+03 1.6844E+03 1.7016E+03 1.6017E+03
Ave 1.9491E+03 9.7463E+03 8.7077E+03 9.3716E+03 8.6450E+04 6.4905E+03
F11 Std 3.4087E+02 1.6924E+04 7.6346E+03 8.0540E+03 1.5881E+05 5.6861E+03
Min 1.9056E+03 2.0337E+03 1.9198E+03 1.9443E+03 2.1842E+03 1.9171E+03
Ave 2.1030E+03 2.1051E+03 2.1343E+03 2.1119E+03 2.1927E+03 2.1184E+03
F12 Std 4.7880E+01 7.0460E+01 5.4695E+01 2.2862E+01 9.4515E+01 6.7060E+01
Min 2.0406E+03 2.0221E+03 2.0433E+03 2.0658E+03 2.0602E+03 2.0175E+03

can be attributed to the use of chaotic mapping initialization
in the DPSCSO algorithm, which helps to explore promising
regions in the search space during the initial iteration phase.
In addition, the dynamic adaptive regulation mechanism
strategy employed by DPSCSO as well as the nighttime lost
behavior strategy help to maintain the search capability in the
later stages of the iteration. This superiority is particularly
evident in functions F1, F6, and F9.

V. MODELING OF HAZARDOUS OR
OBSTRUCTED AREAS

During UAV flight, its trajectory planning must take full
account of various potential threat areas and obstacles. For
example, threats such as birds and enemy attacks in the flight
environment, and obstacles such as buildings. In order to
facilitate the implementation of the trajectory planning algo-
rithm, a cylinder model is used in this chapter to represent
these hazardous regions or obstacles. The radius parameter
of the cylinder determines the coverage of the threat area,
and the larger the radius, the higher the danger level of
the area or the wider the influence of the obstacles. In this
study, a 100x150x2 discrete elevation data matrix is used to
construct the environment model, and this modeling method
can intuitively reflect the spatial distribution characteristics
of the threat, provide effective obstacle avoidance constraints
for UAV trajectory planning, and thus significantly enhance
flight safety. Its environment simulation modeling graphic is
shown in Fig

A. Experimental analysis of trajectory planning

In order to verify the effectiveness and superiority of the
Dynamic Sand Cat Swarm Optimization Algorithm (DP-
SCSO) in UAV 3D trajectory planning, this chapter conducts
20 simulation experiments of DPSCSO with the Sand Cat

Swarm Optimization Algorithm (SCSO), the Dung Beetle
Optimization Algorithm (DBO), the Snake Optimization
Algorithm (SO), the Whale Optimization Algorithm (WOA),
and the Black-winged Kite Optimization Algorithm (BKA),
and the results are The results are analyzed in depth. The
simulation platform chosen was Matlab2024a.During the
simulation of the algorithms, the relevant parameters were
set as follows: the planning area was a 100x150x2 3D
map space, the population size was set to 30, and the
maximum number of iterations of the algorithm was 200. In
the comprehensive constraint objective function, the weight
coefficients of each objective function are set as 1=0.2,
2=0.25, 3=0.25, 4=0.15, 5=0.15. The coordinates of the
starting point S are (10,90,1.1), and the coordinates of the
target point T are (130,10,1.4). The parameter settings of
each related algorithm are detailed in Table

In order to comprehensively test the efficiency of the Dy-
namic Sand Cat Swarm Optimization Algorithm (DPSCSO)
for UAV 3D trajectory planning in different environments, a
variety of different map environments are constructed in this
chapter for validation. Among them, the experimental data
of trajectory planning in environment I is detailed in Table

Table shows the performance data statistics of each
algorithm obtained through 20 experimental simulations. Ob-
serving the data, it can be found that DPSCSO outperforms
the other algorithms in terms of the mean, standard deviation,
maximum and minimum values of the objective function,
except for BKA, which is slightly better in terms of the mini-
mum value of the objective function. The difference between
the maximum value and the minimum value of DPSCSO is
small, which indicates that the results are more centralized,
and the algorithm is more robust and the optimization is sta-
ble, avoiding the occurrence of the phenomenon of extreme
deviation. . In terms of the maximum value of the objective
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Fig. 6: Comparison of convergence curves for CEC2017 benchmark functions

Volume 33, Issue 11, November 2025, Pages 4518-4532



Engineering Letters

40

Fig. 7: 3D map modeling of hazardous or obstacle areas

function, the results obtained by DPSCSO optimization are
smaller, which indicates that DPSCSO is able to consistently
maintain better results during multiple optimization searches.

TABLE II: ALGORITHM PARAMETER SETTINGS

Algorithm Population Iterations Parameters
Size
DPSCSO 30 500 rg=2-— .
t/Tmax _
2 (%)
SCSO 30 500 TG =SM:
( 2X s Xt )
Tinax
DBO 30 500 rdb = 6;
edb =
fdb = 7;
sb=11
SO 30 500 N = 30;
T = 1000;
cl =0.5;
c2 = 0.05;
c3=2
WOA 30 500 a=2x(1-
t/max); k=1
BKA 30 500 p=20.9
TABLE III: TRAJECTORY PLANNING DATA IN 3D
MAPS
Algorithm Objective Standard Maximum Minimum
Function Deviation Value Value
Mean
DPSCSO 73.2694 0.2022 73.6193 72.9834
SCSO 106.8034 16.9712 114.8828 73.5261
DBO 98.3795 16.3121 117.7606 75.0867
SO 105.8926 9.7267 114.9397 88.2019
WOA 76.8821 4.0359 85.9478 73.8753
BKA 75.0980 3.7928 84.1270 73.0241

B. Actual three-dimensional navigation route of the drone

Fig[g] presents the actual navigation routes of the UAV in
3D trajectory planning optimized by each algorithm. As can
be seen from the 3D figure, DPSCSO plans a shorter path,
and its route connects the starting point and the end point
more directly, reducing unnecessary detours, thus completing
the voyage with a shorter distance and saving resources.
DPSCSO chooses a lower route, reducing the distance of
upward flight. In addition, DPSCSO plans a smoother route

with no obvious twists and turns, making the navigation
process relatively smooth. For UAVs, this helps to reduce
energy loss and mechanical wear due to frequent turns, thus
improving navigation efficiency and extending equipment
life. In contrast, the trajectories of other algorithms such
as WOA and BKA have some unreasonable fluctuations in
altitude changes.

C. Comparison of algorithm iteration curves

From the iteration curves of each algorithm in Fig[9] it
can be seen that DPSCSO shows a significant improvement
in terms of optimization speed and finding ability compared
to other algorithms, demonstrating its excellent performance.

D. Experimental analysis of track planning in complex three-
dimensional maps

To thoroughly evaluate the performance of the algorithm
across diverse scenarios and mitigate the potential bias
caused by random outcomes from testing on a single map,
this study extends the experimental framework to include
more complex three-dimensional maps. This enhancement
provides a stronger theoretical foundation for the algorithm’s
practical application and broader promotion. In this chap-
ter, seven recently proposed algorithms—LWSCSO, ISCSO,
SCSO, HHO, WOA, GA, and SCA—are selected for com-
parative analysis. A total of twenty simulation experiments
are conducted for each algorithm, and the results are sys-
tematically analyzed. To ensure experimental fairness, all
tests are carried out on the MATLAB (2024a) platform
under a consistent Windows 10 environment. The simulation
parameters are set as follows: the planning area is defined
as a three-dimensional map space of 100 x 150 x 2; the
population size is set to m = 30; and the maximum
number of iterations is set to 500. In the comprehensive
constrained objective function, the weight coefficients for
each objective are assigned as follows: a; = 0.2, as = 0.25,
as = 0.25, ay = 0.15, and a5 = 0.15. The S-coordinate of
the starting point and the t-coordinate of the target point
are specified accordingly. The parameter settings for the
compared algorithms are summarized in Table

In order to comprehensively test the efficiency of the Dy-
namic Sand Cat Swarm Optimization Algorithm (DPSCSO)
for UAV 3D trajectory planning in different environments, a
variety of different map environments are constructed in this
chapter for validation. Among them, the experimental data
of trajectory planning in environment I is detailed in Table

E. Actual three-dimensional navigation route of the drone

To comprehensively validate the effectiveness of DPSCSO
in three-dimensional UAV trajectory planning under diverse
environmental conditions, this chapter conducts simulations
across multiple map scenarios for verification purposes. The
trajectory planning experimental data for Environment 2 are
summarized in Table which presents statistical results
obtained from 20 independent simulation runs for each al-
gorithm. As shown, the mean value of the objective function
for DPSCSO is notably lower, indicating that, on average,
DPSCSO demonstrates superior performance in optimizing
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Fig. 8: 3D map trajectory planning simulation

the objective function, thereby achieving better trajectory
planning outcomes for drones. In comparison, the mean
values of SCSO and SCA are significantly higher, suggesting
that these original algorithms are less effective in optimiza-
tion when compared to DPSCSO. Additionally, DPSCSO
exhibits a relatively small standard deviation, reflecting its
strong stability and robustness with minimal variation across
multiple runs. On the contrary, SCSO and GA display larger
standard deviations, indicating less consistent performance.
The small gap between the maximum and minimum values of
DPSCSO further confirms its consistent behavior. In contrast,
algorithms such as SCSO show a considerable difference
between their maximum and minimum values, highlighting

greater variability in their results. FigurdI0)] illustrates the
three-dimensional trajectory planning of drones under vari-
ous algorithm optimizations. It can be observed that the flight
path generated by DPSCSO is lower, shorter, and avoids
unnecessary detours. Moreover, the trajectory is relatively
smooth with no abrupt turns, indicating a stable flight process
and reducing the distance wasted on frequent maneuvers.

E. Comparison of algorithm iteration curves

FigurdI] presents the iterative convergence curves of
each algorithm in Environment 2. As shown in the fig-
ure, DPSCSO and LWSCSO converge rapidly in the early
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TABLE IV: ALGORITHM PARAMETER SETTINGS

Algorithm Population Number of Parameters
Size Iterations
DPSCSO 30 500 a=[-1,1];
b=4;
P =0.7;
Wy = 14,
Wy = 3;
c=14
LWSCSO 30 500 Wi =0.9;
Wo = 0.7;
B=1.5
ISCSO 30 500 rg=2-—
(exp(((—2 %
t) /Tmax) *
cos(2 % 7 *
£)+1)
SCSO 30 500 rg = Spr- (2%
S * t)/Tmax
HHO 30 500 Eo =1[-1,1]
WOA 30 500 a= 2t 0
SCA 30 500 a=2
GA 30 500 Cross = 0.2

stages of iteration, with their curves declining quickly and
stabilizing early, which suggests that these algorithms can
efficiently locate optimal solutions. In contrast, SCSO and
GA exhibit slower convergence rates, with GA maintaining
a relatively high objective function value over a prolonged
period, leading to suboptimal performance. Similarly, WOA
and HHO converge more slowly than DPSCSO and result
in higher final objective function values. Overall, DPSCSO
demonstrates superior optimization effectiveness and stability
compared to the original algorithm and other metaheuristic

TABLE V: TRAJECTORY PLANNING DATA IN 3D
MAPS
Algorithm Objective Standard Maximum Minimum
Function Deviation Value Value
Mean
DPSCSO 73.0457 0.1115 73.1731 72.8976
LWSCSO 73.6326 1.0864 76.7011 73.0681
ISCSO 75.2722 4.8485 88.2539 732114
SCSO 98.3568 19.1662 114.6881 73.9426
HHO 81.6374 6.8512 92.8741 73.2263
WOA 83.5943 17.8919 117.4369 87.9247
SCA 105.8267 9.7404 115.5224 92.3108
GA 94.0275 17.3316 118.2403 73.5557

algorithms such as HHO, WOA, GA, and SCA in UAV
trajectory planning, indicating its promising application po-
tential in this domain.

Based on the above experiments, for the problem of drone
trajectory planning in three-dimensional space, DPSCSO
demonstrates superior path optimization capabilities in en-
vironments with low obstacle density and exhibits enhanced
obstacle avoidance performance in areas with high obsta-
cle density. In summary, the proposed swarm intelligence
algorithm achieves notable improvements in performance
across various trajectory planning tasks. This offers strong
support for safe and efficient drone flight and indicates
promising potential for application in complex operational
environments. Future research will further investigate its
applicability across a broader range of scenarios.

VI. CONCLUSION

This study proposes three enhancements to the Sand Cat
Swarm Optimization (SCSO) algorithm. Firstly, the introduc-
tion of the Piecewise Linear Chaotic Mapping (PWLCM)
strategy during population initialization improves the uni-
form distribution of the initial population, reducing the
risk of local optima entrapment. Secondly, departing from
conventional SCSO approaches, this research incorporates
the nocturnal disorientation behavior of sand cats to develop
a novel hybrid search strategy that integrates linear and spiral
trajectories. This innovative approach not only diversifies
the search patterns of SCSO but also boosts its capacity
to detect global optima and hastens convergence. Lastly,
a dynamic adaptive adjustment mechanism, grounded in
nonlinear factors, is proposed to enable flexible positioning
of sand cats. Initially, emphasizing nonlinear factors en-
hances global exploration, while in later stages, it effectively
balances global exploration with local exploitation.

To assess the efficacy of the enhanced Sandcat Swarm
Optimization (DPSCSO) algorithm, we conducted extensive
experiments utilizing the CEC2017 benchmark test functions.
Our findings from Experiment 1 reveal that DPSCSO exhibits
superior global search performance and resilience when com-
pared to meta-heuristic algorithms including SCSO, DBO,
SO, WOA, and BKA. Experiment 2 results demonstrate
that DPSCSO displays enhanced path avoidance capabilities
and safety in regions with high-density obstacles, outper-
forming LWSCSO, ISCSO, SCSO, HHO, WOA, GA, and
SCA. These thorough experiments confirm the efficacy of
the DPSCSO algorithm in improving the efficiency of path
planning for unmanned aerial vehicles.

REFERENCES

[1] S. Uluskan, “Noncausal trajectory optimization for real-time range-
only target localization by multiple uavs,” Aerospace Science and
Technology, vol. 99, p. 105558, 2020.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

[31 G. G. Wang and S. Deb, “Brain storm optimization algorithm,”
Knowledge-Based Systems, vol. 48, pp. 1-12, 2013.

[4] M. Pant, H. Zaheer, L. Garcia-Hernandez et al., ‘“Differential evolu-
tion: A review of more than two decades of research,” Engineering
Applications of Artificial Intelligence, vol. 90, p. 103479, 2020.

[5] X. Hu, S. Yang, Z. Cai et al., “An ideology algorithm for global
optimization,” Applied Soft Computing, vol. 12, no. 11, pp. 3494—
3504, 2012.

Volume 33, Issue 11, November 2025, Pages 4518-4532



ineering Letters

Eng

Best 3D path obtained by LWSCSO

Best 3D path obtained by DPSCSO

areas ‘

A End = Thread [N

@  Start

areas ‘

A End = Thread [N

® Start

(b) LWSCSO

Best 3D path obtained by SCSO

(a) DPSCSO

Best 3D path obtained by ISCSO

areas ‘

Thread [N

y/ km
A End

® Start

areas ‘

y/ km

A End ===Thread [N

® Start

(d) SCSO

Best 3D path obtained by WOA

(c) ISCSO

Best 3D path obtained by HHO

areas ‘

A  End weThread [

@  Start

areas ‘

A  End = Thread I

® Start

(f) WOA

Best 3D path obtained by GA

(e) HHO

Best 3D path obtained by SCA

areas ‘

A  End =——=Thread [N

® Start

areas ‘

y/ km

A  End =——Thread [N

@® Start

(h) GA

() SCA

0on

ing simulati

ectory plann

10: 3D map traj

Fig.

Volume 33, Issue 11, November 2025, Pages 4518-4532



Engineering Letters

Iterative curve

170 ’ 1
—%*— LWSCSO

160 DPSCSO | |

150 —&—ISCSO

SCsO

140 —s—HHO |
—&—WOA 1

130 GA

120

DBO
—
¥

Optimal value
>

SCA
SCSO
% ]

ISCSO | wscso DPSCSO s

A

&

200 300
Number of iterations

400 500

Fig. 11: Comparison of convergence speed in 3D maps

[6]

[7]
[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Mirjalili, “Sine cosine algorithm: a novel optimization algorithm for
solving optimization problems,” Knowledge-Based Systems, vol. 96,
pp. 120-133, 2016.

A. Hatamlou, “Black hole: a new heuristic optimization approach for
data clustering,” Information Sciences, vol. 222, pp. 175-184, 2013.
E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Gsa: a gravita-
tional search algorithm,” Information Sciences, vol. 179, no. 13, pp.
2232-2248, 2009.

M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,”
IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28-39,
2006.

D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (abc) algorithm,”
Journal of Global Optimization, vol. 39, pp. 459-471, 2007.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 4661, 2014.

S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Ad-
vances in Engineering Software, vol. 95, pp. 51-67, 2016.

A. A. Heidari, S. Mirjalili, H. Faris, 1. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: Algorithm and applications,”
Future Generation Computer Systems, vol. 97, pp. 849-872, 2019.

J. Xue and B. Shen, “A novel swarm intelligence optimization
approach: sparrow search algorithm,” Systems Science & Control
Engineering, vol. 8, no. 1, pp. 22-34, 2020.

F. A. Hashim and A. G. Hussien, “Snake optimizer: A novel meta-
heuristic optimization algorithm,” Knowledge-Based Systems, vol. 242,
p. 108320, 2022.

A. Seyyedabbasi and F. Kiani, “Sand cat swarm optimization: A
nature-inspired algorithm to solve global optimization problems,”
Engineering with Computers, vol. 39, no. 4, pp. 2627-2651, 2023.
M. Abdel-Basset, R. Mohamed, M. Jameel, and M. Abouhawwash,
“Spider wasp optimizer: a novel meta-heuristic optimization algo-
rithm,” Artificial Intelligence Review, vol. 56, no. 10, pp. 11675—
11738, 2023.

S. Mirjalili, “Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm,” Knowledge-Based Systems, vol. 89, pp.
228-249, 2015.

A. Askarzadeh, “A novel metaheuristic method for solving constrained
engineering optimization problems: crow search algorithm,” Comput-
ers & Structures, vol. 169, pp. 1-12, 2016.

B. Abdollahzadeh, F. S. Gharehchopogh, and S. Mirjalili, “African
vultures optimization algorithm: A new nature-inspired metaheuristic
algorithm for global optimization problems,” Computers & Industrial
Engineering, vol. 158, p. 107408, 2021.

S. Mirjalili, “Sca: a sine cosine algorithm for solving optimization
problems,” Knowledge-Based Systems, vol. 96, pp. 120-133, 2016.
P. D. Kusuma, “Best couple algorithm: A new metaheuristic with two
types of equal size swarm splits,” JAENG International Journal of
Applied Mathematics, vol. 54, no. 8, pp. 1615-1623, 2024.

P. D. Kusuma, “Group better-worse algorithm: A superior swarm-
based metaheuristic embedded with jump search,” JAENG Interna-
tional Journal of Applied Mathematics, vol. 54, no. 4, pp. 614-622,
2024.

M. U. Sheikh, M. Riaz, F. Jameel et al., “Quality-aware trajectory
planning of cellular connected uavs,” in Proceedings of the 2nd ACM
MobiCom Workshop on Drone Assisted Wireless Communications for
5G and Beyond, 2020, pp. 79-85.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

H. Wang, Y. Yu, and Q. Yuan, “Application of dijkstra algorithm
in robot path-planning,” in 2011 Second International Conference on
Mechanical Automation and Control Engineering. 1EEE, 2011, pp.
1067-1069.

A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a literature
review,” in 2019 International Conference on Machine Learning, Big
Data, Cloud and Parallel Computing (COMITCon). 1EEE, 2019, pp.
380-384.

Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in Ad-
vances in Swarm Intelligence: First International Conference, ICSI
2010, Beijing, China, June 12-15, 2010, Proceedings, Part I, vol. 1.
Springer Berlin Heidelberg, 2010, pp. 355-364.

V. K. Prajapati, M. Jain, and L. Chouhan, “Tabu search algorithm (tsa):
A comprehensive survey,” in 2020 3rd International Conference on
Emerging Technologies in Computer Engineering: Machine Learning
and Internet of Things (ICETCE). 1EEE, 2020, pp. 1-8.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of the ICNN’95-International Conference on Neural Net-
works, vol. 4. IEEE, 1995, pp. 1942-1948.

G. Chen, X. Wang, S. Mo, J. Zhang, W. Xiong, H. Long, and
M. Zou, “Multi-objective power flow optimization based on improved
hybrid crow search algorithm: A novel approach,” Engineering Letters,
vol. 30, no. 4, pp. 1417-1435, 2022.

R. Gong, M. Chu, L. Liu, and L. Liu, “Twin margin hyperplanes
distribution machine with equality constraints,” Engineering Letters,
vol. 33, no. 8, pp. 2949-2960, 2025.

Volume 33, Issue 11, November 2025, Pages 4518-4532



	Introduction
	MODELING OF UAV CONSTRAINTS
	Cost of flight altitude
	Path length consideration
	Hazard or obstacle restraint
	Turning angle constraint
	Climb and dive angle constraint
	Integrated cost constraints for trajectory planning

	IMPROVEMENT OF SAND CAT SWARM OPTIMIZATION ALGORITHM
	Overview of the original sand cat colony optimization algorithm
	Mathematical modeling of optimization algorithms for sand cat swarms
	Pseudo-code for the sand cat swarm optimization algorithm
	Flowchart of sand cat swarm optimization algorithm
	Improvement of sand cat swarm optimization algorithm
	PWLCM mapping combined with reverse learning for population initialization strategy
	Nocturnal disorientation behavior of sand cats
	Dynamic adaptive adjustment mechanism strategy
	Description of the DPSCSO algorithm flow
	DPSCSO time complexity analysis

	EXPERIMENTAL RESULTS AND ANALYSIS
	Algorithm testing
	Experimental design
	Comparative analysis of algorithm results
	Algorithm convergence analysis

	MODELING OF HAZARDOUS OR OBSTRUCTED AREAS
	Experimental analysis of trajectory planning
	Actual three-dimensional navigation route of the drone
	Comparison of algorithm iteration curves
	Experimental analysis of track planning in complex three-dimensional maps
	Actual three-dimensional navigation route of the drone
	Comparison of algorithm iteration curves

	CONCLUSION
	References



