Engineering Letters

CA-Res3D: A Residual Framework with Channel
Attention for 3D Object Detection

D. Jyothsna, Member, IAENG, G. Ramesh Chandra

Abstract—Accurate 3D object detection in point clouds re-
mains critical for applications such as autonomous driving and
robotics, where effective feature extraction is essential for robust
performance. Traditional voxel-based networks often treat all
feature channels equally, limiting the ability to focus on the
most informative cues and leading to suboptimal detection
accuracy in complex environments. This study presents a
framework that embeds channel attention (CA) modules within
a 3D ResNet backbone to improve feature representation and
improve detection performance. The first contribution adopts a
feature recalibration mechanism that adaptively reweights voxel
feature channels by capturing global spatial context, effectively
emphasizing salient features while suppressing irrelevant infor-
mation. The second contribution is a stage-wise CA placement
strategy that inserts recalibration blocks at multiple levels of the
network, enabling progressive refinement of features from low-
level details to high-level semantic abstractions. Comprehensive
experiments demonstrate that the designed approach improves
the mean average precision by 0.53% and 1.6% on KITTI and
NuScenes datasets, respectively, for 3D object detection. The
results indicate that the proposed model localizes the objects,
which is critical for autonomous vehicles and robots.

Index Terms—Point Clouds, Voxels, 3DResnet, Channel At-
tention, Object Detection, Feature Recalibration.

1. INTRODUCTION

ITH the increasing deployment of autonomous vehi-

cles and robotics, 3D object detection has become a
critical task to understand the surrounding environment. This
rapid advancement of autonomous systems and robotics has
intensified the demand for accurate 3D object detection from
point-cloud data. Deep learning frameworks are well-suited
for real-world applications that demand accurate spatial
understanding, such as the real-time interpretation of objects
on images [1] and LiDAR-driven point clouds maneuver-
ing around obstacles [2], capabilities that are critical for
autonomous systems like robots and self-driving vehicles.
Unlike 2D images, 3D Point Clouds obtained via LiDAR
sensors, depth cameras [3] provide rich spatial perceptual
data of the surrounding vicinity, enabling precise localiza-
tion of unordered objects, and non-uniform, making direct
application of traditional convolutional networks suboptimal.
To address these challenges, structured representations, such
as voxel grids and pillar columns, have been widely adopted
to convert irregular point clouds into regular data formats
suitable for convolutional neural networks. Despite signif-
icant progress, the ability to capture fine-grained details,
particularly in cluttered or occluded environments, remains
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limited. In many real-world scenarios, accurate object local-
ization is hindered by insufficient feature representation. This
motivates the need for more intelligent mechanisms that can
adaptively enhance informative features while suppressing
irrelevant ones.

Existing point cloud approaches focus on point-centric,
voxel-centric, and point-voxel-centric approaches. While
point-centric approaches such as point-rcnn [4] and improved
point-renn [5], implementing point-based and region-based
convolutions, point GNN [6], a graph-based convolution
approach, capture refined and fine-grained details and handle
the unordered set of points efficiently, operating directly on
the raw point clouds. However, these methods face challenges
when large-scale point clouds are considered due to com-
putational complexity. The other category includes voxel-
centric approaches, where VoxelNet [7] and Second [8] have
improved on this by first transferring the point clouds into
discrete voxels that allow 3D convolutional operations on a
structured grid. VoxelNet [7] was among the pioneers who
adopted a voxel-based approach to handling sparse data using
an end-to-end Voxelization strategy, which combines feature
extraction along with bounding box prediction, followed
by SECOND [8], which enhanced voxel processing with
a sparse convolution network. PartA2[9], VoxelNeXt [10],
Voxel-NeXt-Fusion [11], Trans-LGS [12], Focals-Conv [13],
CenterPoint [14], CBGS [15], WYISYG [16], UVTR [17],
Transfusion [18], Voxel-rcnn [19], and AGONet [20] are
other recent voxel-based approaches. Pillar-based approaches
are a variant of the voxel-centric approach, which are light-
weight and the methods include PointPillars [21], SAE-
Pillars [22], Pillar-Net [23], Pillar-NeXt [24], Pillar-Focus
[25], PE-Pillar [26], and SP-Pillars [27]. These have surfaced
as a cornerstone for efficient 3D object detection by con-
verting sparse and unstructured point clouds into structured
2D representations. The other category is hybrid point-voxel
approaches: these combine the best of each method - using
voxelization for efficiency while helping to preserve fine
details via direct processing of point clouds. PV-RCNN
[28], PVRCNN++ [29], Pass PVRCNN++ [30] are point-
voxel methods that are effective in detecting objects but
are highly computational. Out of these approaches, voxel-
driven approaches balance this trade-off by organizing the
unstructured point clouds into structured format.

Despite these advantages, processing raw point clouds
poses difficulties owing to non-uniform spatial sampling,
irregular data distribution, and varying object scales. To
process the irregularly distributed data, voxelization-based
3D convolutional neural networks (CNNs) [31]-[33] have
emerged as a go-to architecture for extracting meaningful
features from these sparse inputs, facilitating effective detec-
tion across diverse scenes. Pillar-based models, a variant of
the voxel-centric approach, simplify 3D processing further
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by collapsing the height dimension and treating vertical
columns as 2D inputs, which allows the use of lightweight
2D convolutional backbones. However, this height com-
pression is problematic for detecting tall or overlapping
objects. Moreover, pillar encoding typically involves pooling
point features within each pillar without distinguishing be-
tween informative and redundant features. In voxel-centric
approaches, even though it simplifies processing, it suffers
from uniform feature treatment across voxels without differ-
entiating between the importance of various cues embedded
in the voxel features. This indiscriminate processing often
leads to noisy or less informative channels, negatively im-
pacting the overall feature representation. The assumption
that all voxel features contribute equally to the detection task
limits the model’s capacity to adapt to scene complexity.
Moreover, with the varying object appearances, it requires
adaptive mechanisms that can highlight the most relevant
features while suppressing irrelevant or redundant informa-
tion. Without such adaptability, feature representations may
lack the discriminative power [7],[21] needed for accurate
detection, particularly when dealing with partial observations
or challenging backgrounds.

To address the limitation of discriminative power caused
by uniform feature encoding in voxel-driven representa-
tions, recent methods have introduced Transformer attention
mechanisms [12]. These enhancements aim to focus on
the relevant features only across the spatial dimensions.
Inspired by PC classification & segmentation [34] [35],
the proposed method aims to adaptively emphasize relevant
features and suppress less informative ones across spatial
and channel dimensions. To this end, this study adopts a
feature recalibration technique that dynamically adjusts the
contribution of each feature channel based on its global
importance. This helps the network focus on object-specific
cues while ignoring background clutter. Additionally, feature
recalibration ensures that meaningful spatial regions are
amplified even if they are underrepresented in the raw input.
By integrating such mechanisms into the backbone of voxel-
based networks, it becomes possible to improve the network’s
sensitivity to critical object features, leading to enhanced
detection performance under challenging conditions.

Therefore, this paper proposes an approach that integrates
feature recalibration based on Channel Attention (CA) blocks
directly within a 3D ResNet backbone. The proposed method
adaptively adjusts the importance of voxel feature chan-
nels by capturing global spatial context, thereby amplifying
salient and informative cues while suppressing irrelevant
ones. Additionally, this work introduces a stage-wise CA
placement strategy, inserting recalibration modules at mul-
tiple depths in the network to progressively refine features
from low-level details to high-level semantics. This hierarchi-
cal recalibration enhances feature discriminability throughout
the network. The main contributions are summarized as
follows.

o This paper adopts a feature recalibration mechanism for
voxelized point cloud data for selective feature channels
by emphasizing relevant features.

o This work proposes a stage-wise CA placement strat-
egy that enables progressive and hierarchical feature
refinement, effectively leveraging the network’s deep
architecture to improve feature discrimination.

o To assess the proposed framework, this work demon-
strates through extensive experiments, improvised over
cutting-edge methods for 3D object detection in point
clouds.

The following sections organize the remaining content of
this work: Section II elaborates on the research methodology,
including the techniques and procedures applied. Section III
discusses the experimental findings, analyzing the implica-
tions and significance. Finally, Section IV summarizes the
key conclusions and suggests avenues for further investiga-
tion.

II. METHODOLOGY

This section presents a two-phase voxel-driven 3D object
detection system, including a 3D ResNet-based backbone,
a region proposal network, a Rol head incorporating Rol
pooling capabilities, and a detection head for the boundary
box refinement. The proposed method distributes the points
into voxel units and extracts the features over a 3D ResNet
backbone. The 3D sparse voxels are transformed to BEV,
and multiple 2D convolutional operations generate 3D region
proposals, which are then processed by the Region of Interest
(Rol) pooling layer to isolate relevant features. The extracted
features were then forwarded to the detection head to accu-
rately refine the predicted bounding boxes. Fig. 1 depicts the
overall architecture of the proposed approach.

Problem Statement: Given a point cloud input P = {p; |
pi €R3 i=1,2,..., N}, the goal of 3D object detection
is to estimate a set of objects’ bounding boxes B = {b; |
bj € R7, j = 1,2,..., M} where each bounding box b;
is parameterized by location, size, and orientation in the 3D
space. Typically, point clouds are voxelized into a discrete
grid representation X, where the detection model f extracts
feature F' from the voxelized input and predicts the bounding
boxes B’. The objective is to learn a feature extractor that
maps the input voxels to highly discriminative features.

F=f(X) (1

B' = D(F) )

where D(.) represents the detection head. A major challenge
lies in adaptively enhancing relevant feature channels to
improve detection accuracy, especially in complex environ-
ments. To address this issue, a channel attention with feature
recalibration function is defined as eq3, which adaptively
modulates the feature map by learning channel-wise factors.

R:RC 5 RY 3)

A. Voxelization Process

The voxelization step transforms an unstructured 3D point
cloud P = {p; = (w;,y:,2)}Y, into a discretized volu-
metric grid that enables efficient convolutional operations.
The entire 3D region of interest is divided into equally
spaced voxels with dimensions (vm,vy,vz), resulting in a
3D voxel grid G € RP>*H*W Each point p; is mapped to
its corresponding voxel via eq4.

(duhzywz) = (\‘ZZ — ZminJ , \‘yl _ yminJ , \‘irz - xminJ)
V= Uy Vg

(C)]
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Fig. 1.

Outline of the voxel-centric 3D object detection architecture. The proposed architecture begins by converting the raw input point cloud into

structured voxel representations, enabling efficient 3D convolution. These voxel features are then processed through a 3D ResNet backbone with intermediate
Channel Attention modules to enhance feature discrimination. The resulting high-level features are projected into Bird’s Eye View (BEV) using a dedicated
BEV backbone for spatial reasoning. Finally, 3D object proposals are generated and refined through a detection head for accurate object localization and

detection.

This mapping allows grouping of spatially close points into
common voxel bins. Within each voxel, features from the
associated reflectance points are aggregated by mean feature
encoding by learned transformations. The voxelized output,
represented as V€ ROEXPXHXW gerves as a compact,
spatially aligned input to 3D convolutional networks for
downstream tasks like region proposal and object detection.

B. 3D Resnet Backbone

The proposed architecture utilizes a 3D ResNet back-
bone by incorporating a sparse 3D convolutional neural
network (CNN) framework to efficiently generate feature
representation from voxelized 3D data. The input to the
3D Resnet-based backbone is the voxelized grid dimensions
obtained from equation 1. The input block initializes the
feature extraction by transforming the input voxel features
into a higher-dimensional space. Using SubMConv3d, it
computes only non-empty voxels without changing the spa-
tial resolution, which ensures that essential structural in-
formation is conserved. The convl block refines features
through two SparseBasicBlock modules, each containing
submanifold convolutions and residual connections. This
block maintains spatial resolution and addresses the van-
ishing gradient problem. This step is vital for preserving
fine-grained features at the original scale and is critical in
detecting small objects. The conv2 stage introduces down-
sampling through SparseConv3d, which has a stride value
of 2 and reduces the spatial dimension while increasing
the feature dimension to 32. In this stage, the two sparse
basic blocks refine the downsampled features. This block
primarily handles the mid-level patterns through transitions
from local to more abstract representations. In the conv3
block, further downsampling reduces the spatial resolution

TABLE I
INTERNAL ARCHITECTURE DETAILS OF THE 3D RESNET BACKBONE
I-INPUT, O-OUTPUT, K-KERNEL, S-STRIDE, P-PADDING,
SCONV3D - SUBMANIFOLD3DCONYV, Sp. CONV3D -

SPARSECONVOLUTION3D

Conv. Layers 1 o K S P
Input SConv3D 4 16 333 L1,1 1,11
Conv_1 (C1) SConv3D 16 16 3,3,3 1,1,1 1,1,1
Conv_2 (C2)  Sp. Conv3D 16 32 333 222 11,1

SConv3D 32 32 3,3,3 1,1,1 1,1,1
Conv_3 (C3) Sp. Conv3iD 32 64 333 222 11,1

SConv3D 64 64 3,3,3 1,1,1 1,1,1
Conv_4 (C4)  Sp. Conv3D 64 128 333 222 01,1

SConv3D 128 128 333 LL,1 L1,
Output Sp. Conv3D 128 128 3,1,1 222 0,00

to one-fourth of the original and expands feature channels to
64. Sparse convolutions and basic blocks improve the high-
level feature extraction, which tries to overcome the difficulty
of maintaining semantic context at coarser resolutions. The
final convolutional block, conv4, performs additional down-
sampling, which results in 128-dimensional features at one-
eighth of the original resolution. The internal architecture
of the backbone is provided in Table I, where SConv3D is
the submanifold convolution and Sp.Conv3D is the sparse
convolution. Conv_1, Conv_2, Conv_3, Conv_4 are the
convolution layers in which SConv3D and Sp.Conv3D are
implemented. The residual block, the Sparse Basic Block
(SBB), contains two convolution layers with the Submanifold
convolution operations performed alongside batch normaliza-
tion and ReL.U. This helps prevent vanishing gradients during
training and accelerates convergence, which is shown in Fig.
2.
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Fig. 2. Residual Block (Sparse Basic Block)

1) Channel Attention: Inspired by the Squeeze-and-
Excitation mechanism [36], the proposed work designed
channel attention through a feature recalibration module
that explicitly models interdependencies between channels
using global spatial context to improve the quality of voxel
features by adaptively recalibrating the importance of each
feature channel. The recalibration is critical because the
spatial distribution of features across voxels contains rich
cues that can guide the model to selectively enhance relevant
feature channels and filter out redundant and irrelevant ones.
The recalibration process begins by squeezing the spatial
dimensions of the feature map X € RPXHXWXC jpto a
compact descriptor using global average pooling as eq5 for
each channel c=1,... C. Next, the channel-wise descriptors
pass across two sequential linear layers employing ReLU
activation, with the final output modulated by a sigmoid
function. This facilitates the model to learn inter-channel
dependency and produces an attention score for each channel
as depicted in eq6 where W1 and W2 denote the weights of
learned fully connected layers, and o indicates the sigmoid
function. Finally, the feature maps are scaled as follows
after recalibration - multiplication along the channel-wise
dimension of the encoded features with attention scores
rescales it as in eq7.

w
Xc,d,h,w (5)

1 D H
Ze = BT 2 2

d=1h=1w=1

Input Features
Global A.verage 1, ]
Pooling
Fully Connected [1, C/]
Layler-l
!
RelLU [1,Ch]
Fully Connected [1,C]
Layer-2 T
[1.C]
Fig. 3. Channel Attention
Se =0 (Wy- ReLU (W - Z.)) (6)
2, =S.- X, @)

This operation enhances the discriminative power of infor-
mative channels and suppresses less useful or noisy channels
that might result from incomplete or ambiguous input ob-
servations. Fig. 3 shows the feature recalibration procedure
for each channel. By integrating this module within the
backbone, the network learns to focus on the most relevant
features for robust 3D object detection.

2) 3D Resnet-Channel Attention Pipeline: While single-
stage recalibration improves feature quality, feature represen-
tations in deep networks are hierarchical: early layers capture
local spatial patterns and edges, while deeper layers encode
more abstract semantic concepts. Thus, applying channel
attention at only one stage limits the network’s ability to
refine features across different abstraction levels. To leverage
this hierarchical nature, this study proposes a stage-wise
SE placement strategy wherein recalibration modules are
integrated after each major stage of the 3D ResNet back-
bone. Formally, let the backbone consist of L stages, each
producing feature maps {X1), X X (+D1 where:

{(xW x@  x{T+y (®)

This design allows the network to adaptively refine feature
maps progressively. Early stages can focus on enhancing
fine-grained local details such as edges and surfaces, while
deeper stages emphasize semantic consistency. The multi-
stage recalibration enables more nuanced and context-aware
feature refinement throughout the entire network. Implemen-
tation outcomes exhibit that it consistently improves feature
discriminability and detection performance over single-stage
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Fig. 4. Pipeline for Sparse 3D Resnet integrated with Channel Attention

recalibration or no recalibration. Fig. 4 depicts the pipeline
for the integration of channel attention with ResNet blocks.

C. BEV & RPN

To simplify spatial reasoning in 3D point cloud data, the
Bird’s Eye View (BEV) projection is employed. The 3D
voxel feature map Fppy (x,y) € REXPXHXW g collapsed
along the vertical (Z) axis to obtain a 2D BEV feature map
Fgpy(z,y) by summing features across all height slices.

Fppy(z,y) =Y F(z,y,2) ©)

This results in a height-compressed representation, pre-
serving spatial layout in the X-Y plane while aggregating
semantic cues from all vertical layers, making it suitable
for dense prediction tasks on ground planes. The Region
Proposal Network (RPN) operates on this BEV feature map.
It overlays a set of predefined anchors on the 2D BEV grid
and evaluates each anchor for objectness and localization. For
every anchor location, the RPN predicts p’- the objectness
score (probability of containing an object), t’- the bounding
box regression vector for refinement.

(p',t") = RPN(Fppv) (10)

D. Detection Head

The detection head refines the Region of Interest (Rol)
features to improve the 3D box predictions. The initial trans-
formation is a shared two-layer MLP transforming the Rol
features into compact feature vectors. Then, these flattened
representations are routed through dual processing streams- a
regression branch for spatial localization and a classification
branch for detection confidence. The box regression branch
computes the residual adjustments from the region proposals

Training Loss

Loss Value
=3
P

0 25000 50000 75000 100000 125000

No. of Iterations

150000 175000 200000

—e—Classification Loss Regression Loss Total Loss

Fig. 5. Loss Curves

in 3D to the ground-truth bounding boxes, thus ensuring
more precise localization. The entire network undergoes end-
to-end training with a combined loss function, which serves
as a classification and regression loss aimed at predicting the
final bounding box parameters.

L = Ls(v',0) 4+ ALyeg (', b) (11)

where y’ and b’ are predicted class scores and bounding
boxes, y and b are ground-truth labels and boxes.

The training loss curve presented in Fig. 5 illustrates
the convergence behavior of the proposed model for the
classification, regression, and overall loss components. In
the initial training stages, all three losses start at relatively
high values, reflecting the model’s unoptimized state. As the
number of iterations increases, there is a steep decline in
the loss values, indicating that the model is quickly learning
meaningful representations. The regression loss consistently
decreases at a faster rate compared to the classification loss,
suggesting that the model is more efficient in minimizing
localization errors. The total loss follows a smooth declin-
ing trend, combining the effects of both components, and
eventually stabilizes, confirming that the model has reached
a balanced state of learning.

III. EXPERIMENTATION ANALYSIS
A. Datasets and Implementation Details

KITTI Dataset: The experimental analysis was carried out
using the KITTI [37] dataset with 7481 data instances. Here,
the samples are further split into 3712 instances for training
and 3769 instances for testing as a default split. Furthermore,
custom split the training split of 3712 samples in a 5:1 ratio
of training and validation sets. The training of the proposed
model is done on a single NVIDIA GeForce RTX 4080
consisting of 16GB of GPU memory and 32GB of RAM over
100 epochs, employing a batch size of 2 and a learning rate of
0.01 with the ADAM optimizer. To evaluate the performance
of the model, the Average Precision metric was computed.
The point clouds are clipped in the range of [Om,70.4m] in
the X-axis, [-40m, +40m] in the Y-axis, and [-3m, +1m] in
the Z-axis. The voxel size is set as (0.05m, 0.05m, 0.05m)
with Rol per Image 160 at each stage. To compute average
precision, the IoU thresholds are set at 0.7 for cars, 0.5 for
pedestrians, and 0.5 for cyclists.
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NuScenes Dataset: The experimentation was carried out
using the NuScenes [38] dataset with 28130 samples, of
which 22504 samples are split into the train set, 5626 sam-
ples are split into the validation split, and 6019 samples for
testing. For the NuScenes dataset, point clouds are clipped
in the range of [-54m, +54m] in the X-axis and Y-axis, [-5m,
+3m)] in the Z-axis. The voxel size is (0.075m, 0.075m, 0.2m)
with Rol per Image 160. To compute the average precision
metric, the IoU thresholds are set at 0.7 for cars, 0.5 for
pedestrians, and 0.5 for cyclists. The proposed model was
trained on a single RTX 4080, NVIDIA machine with 16GB
graphics memory and 32GB RAM, with 40 epochs, batch
size 2, and Adam one-cycle optimizer with a learning rate
of 0.01 and a weight decay of 0.01.

B. Evaluation of the Proposed Method

Results on the KITTI Dataset: The proposed model is
assessed on the KITTI dataset under three categories-Easy,
Moderate, and Hard. Several experiments were carried out
on the validation set, and finally tested the model. Table II
demonstrates the object detection performance with average
precision for the mentioned three objects at 40 recall points.
The IoU threshold is 0.7 for Car and 0.5 for Pedestrian
and Cyclist. From the results obtained, the proposed model
has improved the average precision with 82.3% for Car and
44.9% for Pedestrian on the Moderate difficulty, i.e., an
improvement of 1.02% and 1.9% on the most recent methods,
Pass-PVRCNN++ [30] and VoxelNeXt [10] methods on the
“Car” object. 2.95% and 2.2% improvement for the pedes-
trian object compared to the same methods. In comparison
with the state-of-the-art approaches, overall mAP is improved
to 0.53% by achieving the improved precision of 65.45%.
Table III shows the improvement of results on the validation
split with the average precision metric for the mentioned
three objects.

To explore the visualizations on the KITTI dataset, the
feature maps from various channels are depicted for both
the 3D Resnet backbone and the 3D Resnet backbone with
CA, as shown in Fig. 6 (a) and (b). In comparison with the
above two variants of backbone, there is a notable difference
in channel 6, marked green for the object activation with
the SE integrated backbone. However, sparse activations in
a few channels suggest that the features they capture are
not crucial for the current input but could become relevant
for other inputs with different spatial arrangements and ob-
ject configurations. Finally, by combining low-level features
extracted from earlier layers with higher-level abstractions
from deeper layers, the model constructs a comprehensive
understanding of the scene, enabling it to form a spatial
hierarchy that integrates information across all levels and
supports robust decision-making. Also, the individual feature
maps are depicted in Fig. 7.

Fig. 8, 9, and 10 depict the qualitative detections of
the proposed model in the scenes under sparse regions,
dense regions, and comparative analysis with the VoxelNeXt
method. Fig. 8 (a) and (b) represent the predictions of
Car and Pedestrian objects in less crowded areas or sparse
regions. Fig. 9 (a) and (b) show the detections in crowded
and dense regions with objects Car, Pedestrian, and Cyclist,
which has high occurrence and overlapping of objects. From

this, it is evident that the proposed model is capable of
detecting objects under occluded conditions also. Fig. 10
shows the comparison of detections of the proposed model
with the VoxelNeXt model, where it is evident that a few
missed detections of VoxelNeXt are detected by the proposed
method, which signifies the improvement of the proposed
method. The representations for Car, Pedestrian, and Cyclist
are in green, blue, and yellow bounding boxes, respectively.

Results on the NuScenes Dataset: The proposed 3D Sparse
ResNet with channel attention framework has been evaluated
on the NuScenes dataset, which is a large-scale autonomous
driving dataset. All the results are based on LIDAR-only
inputs without leveraging external data. The objects used
in evaluating on NuScenes dataset for the mean average
precision metric are Car, Bus, Construction Vehicle, Trailer,
Truck, Bicycle, Barrier, Motor Cycle, Pedestrian, and Traffic
Cone. Training and testing are performed using center-based
detection head aligned with [10]. Table IV discusses the de-
tailed results on the NuScenes test split. With the mentioned
ten objects, the proposed model achieved mAP of 66.1%,
which is improved by 1.6% compared to the most recent
method, VoxelNeXt. For the objects Car and Mot., it has
improved the average precision results have improved on the
proposed model. However, there is a significant improvement
for the Car Class with 2.9%. The underlined scores represent
the second-highest average precision values. Table V shows
the improvement of average precision on the validation split.
The highlighted bold ones represent the improved detections
in terms of average precision.

C. Ablation Studies

To verify the effectiveness of the feature recalibration
module, 3D ResNet has been taken into consideration. Table
VI describes the improvement of the average precision of
all three classes, Car, Pede, and Cyclist, on the Moderate
Category, which implies that the slightly overlapped objects
are present in the scene. Notably, the pedestrian detection
accuracy improves by 5.0%, indicating the CA module’s
ability to amplify subtle and discriminative features in sparse
and challenging input regions. Similarly, the car and cyclist
categories show respective improvements of 3.1% and 3.9%,
reflecting better spatial focus and inter-channel sensitivity in
the feature learning process.

To validate the effectiveness of stage-wise placement of
the channel attention model, layered positioning of channel
attention plays a key role. Specifically, the proposed study
evaluated three configurations: (i) inserting CA blocks only
after the initial convolutional layer (early-stage), (ii) insert-
ing CA blocks after every convolutional block (full-stage).
Results on the validation set reveal that full-stage integra-
tion improves performance gain, improving mAP to 84.6%.
Early-stage CA provides modest gains, likely due to its
limited ability to capture high-level semantic dependencies.
These findings suggest that distributed CA placement across
the network enables better feature recalibration, contributing
to both spatial precision and precise localization of objects
under dense or occluded regions. Tables VII and VIII show
the variants of positioning channel attention blocks. Fig. 11
depicts the 3D mAP of Car, Ped, and Cycl classes with the
CA module.
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TABLE 11
3D OBJECT DETECTION PERFORMANCE: AVERAGE PRECISION METRIC ON KITTI TEST SPLIT AT 40 RECALL POINTS. DIFFICULTY LEVELS:
E-EASY, M-MODERATE, AND H-HARD.

Model Name YoP Car (R40) % Pedestrian (R40) % Cyclist (R40) % mAP
E M H E M H E M H
Voxel-Net [7] 2018 7750 65.10 57.70 39.50 3370 31.50 61.20 4840 4440 51.00
SECOND [8] 2018 83.10 7370 66.20 51.10 4260 37.30 70.50 5390 4690 58.37
Point-RCNN [4] 2019 8590 7580 68.30 49.40 41.80 38.60 7390 59.60 53.60 60.77
PointPillar [21] 2019  79.10 75.00 68.30 52.10 4350 4150 75.80 59.10 5290 60.81
PointGNN [6] 2020 88.30 7940 7220 5190 4370 40.10 78.60 6340 57.10 63.86
Part-A2-Free [9] 2020 8590 7790 72.00 5450 4450 4240 78.60 6270 57.70 64.02
Voxel-RCNN [19] 2021  90.70 81.60 77.40 5250 44.80 39.00 77.50 64.00 53.10 64.51
PV-RCNN [28] 2020 90.20 8140 76.80 52.10 4320 40.20 78.60 63.70 57.60 64.87
PVRCNN++ [29] 2022 87.72 8129 76.78 4750 4031 38.15 8034 6746 6048 064.45
Pillar-Trans-LGS [12] 2023 88.07 7896 74.05 49.52 4275 39.62 7847 6624 5891 64.07
VoxelneXt [10] 2024 89.10 8040 7690 52.10 4270 39.10 8130 6530 5740 6492
Pass-PVRCNN++ [30] 2025 87.65 8128 76.79 47.66 4195 3890 8043 6845 6093 64.89
CA-Resnet (Ours) 2025 88.80 8230 77.02 51.00 4490 39.60 8140 66.10 57.90 65.45
TABLE III

3D OBJECT DETECTION PERFORMANCE: AVERAGE PRECISION METRIC ON KITTI VAL. SPLIT AT 40 RECALL POINTS. DIFFICULTY LEVELS:
E-EAsY, M-MODERATE, AND H-HARD

Model Name Car (R40) % Pedestrian (R40) % Cyclist (R40) %
E M H E M H E M H
VoxelNet [7] 84.10 72,54 6838 5675 51.16 46.81 78.16 59.79 51.03
SECOND (8] 8525 7566 71.64 5472 5065 4593 7772 6192 58.69
PointRCNN [4] 86.18 7594 7327 57.53 5020 4642 83.15 64.04  59.50
PointPillars [21] 87.74 7838 7552 5392 4843 4358 81.10 6236 5824
Part-A2 [9] 87.81 78.839 73,51 58.10 5255 48.06 79.97 6482 5793
PointGNN [6] 88.33 7947 7229 5192 4377 40.14 78.60 63.48 57.08
SP-Pillars [27] 88.93 7993 76.16 58.16 5294 4832 86.28 66.78  62.65
CA-Resnet (ours) 91.58 8245 79.69 6576 57.82 52,55 8329 69.76 63.67
Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7
- ........
Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

o ........

Fig. 6. (a)Feature Maps for 3D Resnet (b)Feature Maps for 3D Resnet+CA

Table IX shows the importance of stage-wise positioning
of the CA blocks contributing to the mean average pre-
cision. This describes the mAP of Car, Pedestrain(pede.)
and Cyclist(Cycl) classes of each difficulty level, Easy,
Moderate, and Hard. A progressive ablation study evaluating
the impact of stage-wise integration of CA modules into a
3D ResNet (3DR) architecture across the input layer, along
with four convolutional layers(L1-L5). Beginning with the

baseline 3DR, a steady improvement in detection accuracy
is observed as SE modules are incrementally introduced
at deeper layers. Specifically, initial inclusion at L1 yields
modest gains, while cumulative placements up to L5 result
in significant performance boosts, notably improving the
moderate difficulty category from 65.33% to 69.05%. Full
deployment of SE across all layers (L1-L5 and final output)
achieves the improved scores, with 80.21% on easy, 70.01%
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TABLE IV
COMPARISON OF MAP METRIC ON NUSCENES TEST SPLIT FOR 3D OBJECT DETECTION. THE ‘-‘ INDICATES THAT DATA IS NOT PUBLICLY
AVAILABLE.
Method Car T.C. Ped. Mot. C.V  Trailer Bar. Byc. Bus Truck mAP
Point Pillar [21] 68.4  30.8 59.7 27.4 4.1 234 38.9 1.1 28.2 23.0 30.5
itKD [32] 794 4590 7391 3021 35 26.4 537 539 543 40.3 413
CBGS [15] 81.1 70.9 80.1 51.5 10.5 429 65.7 223 549 48.5 52.8
CenterPoint [14] 84.6  76.7 83.4 53.7 17.5 532 709 287 60.2 51.0 58.0
VPSNet [33] 84.8 - - - 229 38.9 68.2 - 72.5 58.6 61.7
Focals-Conv [13]  86.7 81.4 87.5 645 238 59.5 74.1 363 677 56.3 63.8
PillarNet [23] 874 821 87.2 674 304 61.8 76.0 403 609 56.7 65.0
VoxelNeXt [10] 84.6  79.0 85.8 732 287 55.8 746 457 647 53.0 64.5
Ours 87.5 81.5 87.3 742 289 61.7 75.1 434  65.1 56.3 66.1
TABLE V

COMPARISON OF AVERAGE PRECISION METRIC ON NUSCENES VALIDATION SPLIT FOR 3D OBJECT DETECTION

Method Car Ped. CV Bar. T.C. Truck Bus Byc. Trailer Mot.
SECOND [8] 81.8 777 150 592 574 51.7 669 175 37.3 42.5
CenterPoint [14] 85.0 853 155 67.1 700 58.2 69.5 409 35.7 58.8
Transfusion [18] 869 87.5 252 703 772 60.8 73.1 573 434 729
WYSIWYG [16] 80.0 669 7.5 345 279 35.8 54.1 0.0 28.5 18.5
PillarNeXt [24] 848 86.1 21.8 682 742 58.0 68.3 565 37.1 68.4
AGONet [20] 81.5 722 133 512 481 50.1 622 59 34.0 32.5
VoxelNeXt [10] 85.6 854 179 68.1 700 58.4 71.6 434 38.6 59.7
Ours 881 8.1 301 781 83.9 57.2 66.0 445 63.0 74.6
(a)
Fig. 7. Individual Feature Maps
TABLE VI
AVERAGE PRECISION RESULTS ON THE MODERATE
CATEGORY IMPROVEMENTS OVER THE 3D RESNET MODEL (b)
Model Name Car% Pede. % Cycl. %
(R40) (R40) (R40)
3D Resnet 79.2 39.9 62.2
3D Resnet + CA 82.3 449 66.1
Improvement (3.1 )3 )39 Fig. 8. Visualization of Qualitative Predictions on the KITTI dataset in

on moderate, and 65.37% on hard difficulty levels. These
results substantiate the effectiveness of the proposed stage-
wise CA placement strategy in progressively refining deep
feature representations for 3D object detection.

Fig. 12 showcases a comparison of mean Average Pre-
cision (mAP) for three classes—Car, Pedestrian (Ped), and
Cyclist (Cyc)—measured at recall thresholds R11 and R40.
The bar graph illustrates that while both R11 and R40
yield high mAP values for cars and cyclists, a noticeable
improvement is observed in the cyclist category during the

the sparse and less crowded regions.

transition from R11 to R40. Conversely, pedestrian detection
shows only a marginal difference between the two settings.
A line graph representing the relative gain highlights that the
cyclist category experiences the most significant performance
boost, while pedestrian detection shows minimal gain. This
indicates that increasing the recall value from R11 to R40
particularly benefits categories with more spatial variability,
such as cyclists. Collectively, the results emphasize the
effectiveness of denser proposal sampling with improved
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(a)

(b)

Fig. 9. Visualization of Qualitative Predictions on the KITTI dataset in
dense regions.

Point Cloud Image

VoxelNeXt

Proposed Model

Fig. 10. Comparison of predictions between VoxelneXt and the proposed
model in dense regions.

TABLE VII
ABLATION EXPERIMENTS ON THE MODEL VARIANTS WITH THE
POSITIONING OF THE CHANNEL ATTENTION FOR EASY AND MODERATE

DIFFICULTY
Model Variants Easy Diff. Mod. Diff.
Car Ped. Cycl Car Ped. Cycl.
3D Resnet 89.67 5442 7978 78.65 48.16 69.18
3DR+CA 90.02  55.71 81.44 7923 50.29 69.21
3DR+CA& Conv  91.58 65776 8329 8245 57.82 69.76
performance in detection, especially for complex object

classes.

TABLE VIII
ABLATION EXPERIMENTS ON THE MODEL VARIANTS WITH THE
POSITIONING OF THE CHANNEL ATTENTION FOR HARD DIFFICULTY

Model Variants Hard Diff.

Car Ped. Cycl
3D Resnet 7592 4509  65.09
3D Resnet + CA Input 76.50 4731  63.55
3DR + CA Input & Conv ~ 79.90 5255 63.67

TABLE IX
ABLATION EXPERIMENTS ON MAP OF THE MODEL VARIANTS WITH
THE LAYERED POSITIONING OF THE CHANNEL ATTENTION. L1 ... L5
REPRESENTS THE LAYERED CA MODULE AT EACH POSITION

E Mod. Hard
3DR L1 L2 L3 L4 L5 o ar
Diff. (%) Diff. (%) Diff. (%)
v 74.62 65.33 62.03
v v 75.72 66.24 62.45
v v v 75.80 66.58 62.39
v vV 76.06 67.30 63.02
v v v v Vv 78.76 69.05 63.93
v v vy v v Vv 80.21 70.01 65.37
3D mAP with CA Block
90 814 81,9 848
80 714 714 722
70 58.7
60 492 SL1
% 50
£ 40
30
20
10
0
Car Pedestrian Cyclist
Object Classes
m 3D Resnet 3D Resnet + (CA Input) 3D Resnet + (CA Input & Conv)

Fig. 11. 3D mAP comparison with CA-block at different stages on the
validation set
mAP Comparison at R11 and R40
100 3
90
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70 "
% % 5 2
3
. <]
g 40
30 1
20 0.5
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Classes
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Fig. 12. 3D mAP comparison at different recall values

The evaluation results shown in tables X and XI across
three object categories—Car, Pedestrian, and Cyclist—are
summarized under three difficulty levels: Easy (E), Moderate
(M), and Hard (H), using 2D detection, Bird’s Eye View
(BEV), and Average Orientation Similarity (AOS) metrics.
For the Car category, performance remains consistently high,
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TABLE X
MAP RESULTS OF 2D, BEV, AND AOS ON THE CAR CLASS FOR
CATEGORIES — EASY, MODERATE, AND HARD

Task E M H

2D 96.55 93.36 90.71

BEV  93.10 89.40 86.65

AOS 96.53 9323 90.48
TABLE XI

MAP RESULTS OF 2D, BEV, AND AOS ON THE PEDESTRIAN AND
CYCLIST CLASSES FOR CATEGORIES — EASY, MODERATE, AND HARD

Task Pedestrian Cyclist

E M H E M H
2D 70.5 593 553 87.6 788 721
BEV 541 463 43.0 829 70.1 63.6
AOS 633 522 485 872 717 710

with 2D detection achieving 96.55% for Easy, 93.36% for
Moderate, and 90.71% for Hard. BEV and AOS scores
follow closely, indicating reliable spatial and orientation
estimates even under challenging conditions. Pedestrian de-
tection shows a notable drop in all metrics as difficulty
increases, with 2D detection ranging from 70.5% to 55.3%,
and BEV and AOS reflecting similar declines. In contrast,
Cyclist detection remains strong, particularly in 2D and
AOS, where easy-level scores exceed 87%, though there is
a gradual decrease in performance under harder conditions.
These trends highlight that while the model is highly robust
for vehicles and cyclists, pedestrian detection remains more
sensitive to increased complexity and occlusion in the scenes.
These results collectively demonstrate that high accuracy in
2D, BEYV, and AOS directly supports more reliable and com-
prehensive 3D object detection. Strong performance across
views and orientation metrics indicates the model’s ability
to localize the objects accurately in three-dimensional space,
even under challenging conditions.

The Precision-Recall (PR) curves depicted in Fig. 13, Fig.
14, and Fig. 15 for Car, Pedestrian, and Cyclist classes reflect
the model’s strong detection capabilities across varying dif-
ficulty levels. For the Car category, the curves are tightly
grouped and remain consistently high, indicating reliable
detection even in complex scenarios. Pedestrian detection
shows a smooth progression across Easy, Moderate, and
Hard settings, demonstrating the model’s ability to adapt
to changes in object visibility and scene density. Cyclist
detection maintains strong precision values across a wide
recall range, particularly under simpler conditions, and re-
tains balanced performance as complexity increases. The
clear separation of curves across difficulty levels provides
valuable insight into how the model responds to different
environmental and occlusion challenges. Overall, the PR
curves reinforce the effectiveness of the detection framework,
highlighting its robustness, scalability, and generalization
across object types and its deployment potential for robust
3D perception systems.

Table XII depicts the hyperparameters of the model which

Car
1 —
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Recall
Fig. 13. Precision-Recall Curve for Car Class
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Fig. 14. Precision-Recall Curve for Pedestrian Class
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Fig. 15. Precision-Recall Curve of Cyclist Class

are emprirically chosen based on the default parameters of
the OpenPCDet’s standard. Table XIII presents a comparative
summary of the parameter efficiency and accuracy achieved
by different 3D object detection models. Part-A2, with
59.23M parameters, attains an accuracy of 77.9%, whereas
PV-RCNN, despite having considerably fewer parameters
(13.12M), delivers a higher accuracy of 81.4%. SparseDet
balances parameter count and performance with 25.10M
parameters and 78.45% accuracy. In contrast, the proposed
model demonstrates a clear advantage by requiring only
11.17M parameters while achieving the highest accuracy
of 82.30%. This highlights the model’s ability to achieve
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TABLE XII
HYPERPARAMETERS CONFIGURATION OF THE MODEL

HyperParameter Value
Batch Size 2
Optimizer Adam
Learning Rate 0.01
Weight Decay 0.01
Momentum 0.9
No. of Epochs 100
TABLE XIII
PARAMETER EFFICIENCY AND PERFORMANCE ACROSS DIFFERENT
MODELS

Model Name No. of Parameters (in Million) Car-Mod.(%)
Part-A2[9] 59.23 77.9
PV-RCNN]J28] 13.12 81.4
SparseDet[35] 25.10 78.45
Ours 11.17 82.30

superior detection performance with significantly reduced
computational complexity, making it more practical for de-
ployment in resource-constrained environments.

The key findings of this study emphasize the effective-
ness of integrating channel-focused attention mechanisms
into 3D convolutional architectures for point cloud-based
object detection. By systematically inserting channel at-
tention modules at varying convolution layers of the 3D
ResNet backbone, the model demonstrates a consistent im-
provement in class-wise detection performance. Notably,
introducing CA modules enhances the model’s ability to
prioritize informative features while suppressing less relevant
activations, leading to measurable gains, especially for the
medium difficulty category of the objects. These outcomes
suggest that attention-based recalibration, when applied in a
structured, stage-wise manner, substantially strengthens the
model’s feature discrimination (from Fig. 6 and Table VIII)
and improves the detection capability across different object
categories.

IV. CONCLUSION

This work deliberates a two-stage voxel-based approach
with sparse 3D Resnet combined with Channel Attention
for 3D object detection, leveraging two key enhancements.
Firstly, channel attention mechanism was adopted for feature
recalibration, and secondly, systematic integration of layer-
wise CA across 3D Resnet for deeper refinement of selective
features. The experimentation results showed an improve-
ment in the detection performance of the moderate category
of the three objects: Car to 82.3%, Pedestrian to 44.9%,
and Cyclist to 66.1% in LiDAR-only modality on the KITTI
dataset. Highlighting the potential of voxel representation in
incorporating the Channel attention mechanism, enhancing
the overall mean average precision of the model on the

KITTI dataset to 65.45% and on the NuScenes dataset to
66.1% within the sparse networks with improved feature
discrimination.

The proposed approach fills the performance gap between
traditional 3D object detection methods and sparse point
cloud detection, pertaining to accurate and precise detection
and recall of objects. However, even though the current
approach achieved better improvements, there is a necessity
to improve the precision. In this direction, future works
focus on extending this model to improve the precision by
developing the region proposal network, which is of more
importance in detecting objects in dynamic and cluttered
environments, along with the sparsity of the data.
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