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Abstract—Retinal vessel segmentation plays a vital role in
fundus medical image analysis and offers essential diagnostic
insights into conditions such as diabetic and hypertensive
retinopathy. However, the presence of complex vascular
structures—such as tortuous microvessels—combined
with low-contrast backgrounds, presents significant
challenges for automated segmentation techniques. To
overcome these limitations, we propose a Frequency-aware
Multi-scale Attention Wasserstein Generative Adversarial
Network (FMA-WGAN) to achieve high-precision retinal
vessel segmentation. Our method leverages an Attention
Gate-enhanced U-Net as the generator backbone and
incorporates multi-scale input features to improve sensitivity
to delicate vessel structures. In addition, a spectral-normalized
WGAN-GP discriminator is adopted to strengthen the model’s
ability to distinguish fine-grained vascular features. The
proposed loss function strategically combines Wasserstein
adversarial loss, focal frequency loss, and L1 loss, harnessing
their complementary strengths to preserve global vessel
continuity while improving boundary accuracy for microvessels.
The proposed method was evaluated on three publicly available
datasets: DRIVE, STARE, and CHASE_DB1. Experimental
results show that our model achieved the highest accuracy
on all three benchmarks, recording values of 0.9652, 0.9743,
and 0.9738, respectively. Moreover, the model demonstrated
strong performance in terms of specificity, sensitivity, and area
under the ROC curve (AUC) across most datasets. Overall,
FMA-WGAN consistently outperforms existing state-of-the-art
approaches in retinal vessel segmentation tasks.

Index Terms—Retinal vessel segmentation; Generative
adversarial network ; Frequency-aware ; Multi-scale ; Deep
learning

I. INTRODUCTION

MORPHOLOGICAL, alterations in retinal vasculature
are essential diagnostic biomarkers for a variety

of fundus-related diseases, including diabetic retinopathy,
glaucoma, and age-related macular degeneration, all of which
are characterized by changes in vessel diameter and tortuosity
[1], [2]. However, manual annotation of retinal vessels is both
time-consuming and susceptible to inter-observer variability,
primarily due to the low contrast, anatomical complexity, and
dense branching patterns of retinal images. Automated retinal
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vessel segmentation techniques not only reduce the workload
of ophthalmologists but also enhance diagnostic consistency
and operational efficiency. Therefore, the development of
robust and highly accurate vessel segmentation algorithms
holds considerable clinical significance.

Early retinal vessel segmentation methods primarily
depended on handcrafted features and conventional image
processing techniques [3], such as matched filtering,
thresholding, morphological operations, and classical
machine learning classifiers. While these methods
achieved reasonable performance in specific scenarios,
they generally involved intricate preprocessing pipelines,
were highly sensitive to noise and image variability, failed
to consistently capture fine vascular structures, and often
resulted in fragmented segmentation outputs. With the
advent of deep learning, convolutional neural networks
(CNNs) have demonstrated remarkable capabilities in
semantic segmentation tasks [4]. As a result, a wide
range of CNN-based approaches have been proposed for
retinal vessel segmentation, including Fully Convolutional
Networks (FCNs), U-shaped Networks (U-Net), and their
numerous improved variants. Among these architectures,
U-Net has emerged as the dominant framework owing to its
symmetrical encoder-decoder structure and skip connections,
which facilitate effective integration of multi-scale contextual
information. Various studies have further refined the U-Net
architecture by incorporating residual connections, dense
blocks, and attention mechanisms to enhance vessel feature
representation, thereby substantially improving segmentation
accuracy and recall.

Despite the evident superiority of deep learning-based
methods over traditional approaches, several key challenges
remain unresolved. Notably, fine vessels are often missed
due to foreground-background class imbalance, and noise
or pathological artifacts are frequently misclassified as
vessels, resulting in increased false positives [5]. Statistically,
microvessels—defined as vessels with widths less than three
pixels—account for merely 30% of the total vessel pixels [6].
This class imbalance often leads conventional CNNs to focus
disproportionately on larger vessels while overlooking sparse
microvascular structures, thereby resulting in incomplete
segmentation of fine vessels. Therefore, improving the
detection and structural continuity of microvessels, without
compromising overall segmentation performance, remains a
critical challenge and central research objective in retinal
vessel segmentation.

To address these challenges, this study proposes
a Frequency-aware Multi-scale Attention Wasserstein
Generative Adversarial Network (FMA-WGAN), integrating
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frequency domain information and a multi-scale attention
mechanism tailored for retinal vessel segmentation. The
primary contributions of this work are summarized as
follows:

(1) Multi-scale attention feature fusion: By integrating
multi-scale input branches with an attention mechanism into
the Attention Gate U-Net architecture, the model achieves
synergistic modeling and adaptive fusion of global and
local scale features. This strategy substantially enhances the
network’s responsiveness to fine-grained vascular patterns
and its ability to continuously capture delicate vessel
structures, thereby improving the accuracy and robustness
of vascular segmentation.

(2) Adversarial discriminator constraint on details: Within
the WGAN-GP [7] framework, the discriminator enforces
dual-level constraints on the generated segmentation results,
simultaneously regulating global distribution consistency and
local structural fidelity. This mechanism markedly enhances
the realism and continuity of vascular details, ensuring
structurally coherent reconstructions and facilitating the
accurate delineation of fine vessel networks.

(3) Complementary loss integration from frequency and
spatial domains: We combine focal frequency loss and L1
loss to leverage their complementary strengths. Specifically,
focal frequency loss promotes alignment between the spectral
characteristics of generated results and actual vascular
structures, capturing global morphology and intricate
textures, whereas L1 loss directly enhances the regional
consistency between segmentation results and ground truth.
Together, these losses ensure both global structural fidelity
and precise local segmentation accuracy.

Comprehensive experimental evaluations performed on
three widely used benchmark datasets, namely DRIVE,
STARE, and CHASE_DB1, demonstrate that our method
markedly surpasses current cutting-edge techniques,
delivering superior quantitative performance and enhancing
the reconstruction of fine vascular details. These results
confirm the efficacy of the proposed methodological
strategies.

II. RELATED WORK

A. Early methods

Over the past few decades, numerous retinal vessel
segmentation methods have been developed, primarily
categorized into unsupervised and supervised approaches.
Unsupervised methods do not require manually annotated
ground-truth vessel data and mainly utilize intrinsic
low-level image features, such as brightness, texture,
edges, and shapes, thereby eliminating the necessity of
a training process. Chaudhuri et al. [8] were the first
to apply Gaussian-based matched filtering for retinal
vessel segmentation, encoding inherent fundus image
features to achieve automated segmentation. Following this
pioneering work, traditional digital image processing-based
unsupervised segmentation became a predominant research
methodology in early retinal vessel analysis. Kumar
et al. [9] employed matched filters combined with
Laplacian-of-Gaussian kernels to detect vessel-like
structures in retinal images. Li et al. [10] proposed
a multi-scale matched filter multiplication approach,

effectively enhancing vessel responses across multiple
scales while suppressing background noise, thus achieving
efficient extraction and accurate width estimation of retinal
vessels. Jiang et al. [11] introduced a hybrid method
combining morphological global threshold segmentation and
centerline detection, significantly reducing computational
complexity and enabling simultaneous processing of
multiple independent segmentation tasks. Zhao et al. [12]
proposed an active contour model incorporating infinite
perimeter regularization and hybrid region information,
finely delineating vessel boundaries through integrated
image intensity and local phase-enhancement features.
Nguyen et al. [13] developed an unsupervised method using
a linear combination of multi-scale line detectors, effectively
segmenting central reflex vessels and closely adjacent
structures by fusing responses from different scales. Fraz et
al. [14] presented a feature vector that integrated gradient
field orientation analysis, morphological features, linear
responses, and Gabor filter responses, subsequently classified
using Bagging and Boosting decision tree ensembles, thus
substantially enhancing segmentation accuracy. Although
traditional unsupervised methods are advantageous in
their simplicity and annotation-free implementation, their
sensitivity to image quality, lack of contextual awareness,
poor microvessel segmentation capability, and heavy
reliance on manual parameter tuning considerably limit
their accuracy and robustness in segmenting complex or
low-quality fundus images.

B. Supervised vessel segmentation methods

In recent years, deep learning–driven image segmentation
has witnessed remarkable advancements, delivering
outstanding performance in medical imaging tasks such as
retinal vessel segmentation. The majority of these methods
are based on convolutional neural networks (CNNs). Since
the introduction of the U-Net architecture by Ronneberger
et al. [15]in 2015, which features an encoder–decoder
structure with skip connections, researchers have proposed
numerous improvements incorporating dense connections
[16], attention mechanisms [17], and expansion modules
[18]. These enhancements have led to a variety of U-Net
derivatives that excel in segmenting retinal vasculature.
For instance, Cameron et al. [19]proposed Super U-Net
by adding dynamic receptive field modules and fused
upsampling strategies, significantly boosting performance
across multiple modalities. Zhang et al. [20]developed
MCSE-U-Net by introducing multi-convolution modules
and squeeze-and-excitation blocks, while employing YCbCr
color space transformation to improve vessel visibility. Luo et
al. [21]presented PA-Net, combining CNNs with lightweight
parallel Transformers to reduce data and computational
demands. Xie et al. [22]introduced ARSA-UNet, which
incorporates structure-adaptive convolutions, dilated
residual paths, feature filtering, and a deep supervision
mechanism to enhance multi-scale learning and mitigate
network degradation.Nevertheless, these methods still face
difficulties in segmenting intricate microvascular structures,
particularly under low contrast, where failure to detect edge
vessels can lead to segmentation gaps or omissions.
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Fig. 1. Overall architecture of the proposed FMA-WGAN.

C. Visual transformer

Since its introduction by Vaswani et al. in 2017 [23], the
Transformer architecture has rapidly become a cornerstone in
deep learning, achieving outstanding success particularly in
natural language processing. In recent years, its application
scope has expanded into computer vision, giving rise to
influential models such as the Vision Transformer (ViT)
[24]and Swin Transformer [25]. Compared to traditional
convolutional neural networks (CNNs), Transformers possess
a natural advantage in modeling long-range dependencies,
making them highly effective for complex visual tasks.
Dosovitskiy et al. introduced ViT by dividing images into
fixed-size patches, applying linear projection, and leveraging
self-attention mechanisms to capture global semantic
features, achieving superior classification performance over
CNNs [24]. Subsequently, Liu et al. proposed the Swin
Transformer, which introduces window-based self-attention
and a hierarchical representation to improve efficiency and
scalability, setting new performance benchmarks in image
classification, object detection, and semantic segmentation
[25]. In the field of medical image segmentation, Vision
Transformers have attracted considerable attention. Xu
et al. proposed TransUNet, a hybrid architecture that
combines the local feature modeling capabilities of
CNNs with the global context learning of Transformers,
achieving state-of-the-art performance across multiple
segmentation tasks [26]. Wang et al. further introduced
Swin-UNet, which utilizes a hierarchical Transformer
backbone and skip connections to effectively extract
both global and fine-grained features from medical
images, substantially enhancing segmentation accuracy and
generalization [27]. Recently, Vision Transformers have also
shown great promise in retinal vessel segmentation. Lv
et al. developed TCDDU-Net, which integrates CNN and
Transformer structures via selectively dense-connected Swin
Transformer blocks, resulting in improved segmentation
accuracy and boundary detection [28]. Li et al. designed
GViT-RSNet, which combines graph convolutional attention
with multi-scale Vision Transformers to further enhance
representation capabilities for complex vascular structures

[29]. Despite these advances, Transformer-based models are
often computationally intensive, require large-scale datasets,
and are sensitive to hyperparameter settings—factors that
can limit their effectiveness in retinal image analysis, where
training data is typically scarce.

III. PROPOSED METHOD

In this section, we present a detailed account of the
proposed method. Section 3.1 outlines the overall structure
of FMA-WGAN. Section 3.2 explains the designs of the
generator and discriminator. Finally, Section 3.3 presents the
loss functions that guide the training process.

A. Overall architecture

As illustrated in Figure 1, the proposed FMA-WGAN
is established upon the classical generative adversarial
network (GAN) [30] framework, where iterative adversarial
learning is leveraged to model the complex and highly
nonlinear mapping between input images and target
outputs. This adversarial mechanism enables the generated
segmentation maps to progressively approximate the
statistical distribution and structural characteristics of the
ground truth. Within this framework, the generator is
optimized to produce segmentation outputs that exhibit
both global distributional consistency and local structural
fidelity, rendering them increasingly indistinguishable from
real annotations. Conversely, the discriminator is trained
to enhance its capability of differentiating authentic
samples from synthesized ones, thereby providing continuous
feedback to guide the generator toward improved realism
and coherence. When the discriminator fails to reliably
discriminate between generated predictions and ground-truth
labels, the synthetic outputs can be considered perceptually
realistic and structurally consistent.

It is important to note that traditional generative
adversarial networks (GANs) generate images based solely
on random noise inputs, which inherently lack explicit
supervisory signals. This absence of direct guidance makes
it challenging to precisely control the content of generated
outputs—an issue that becomes particularly critical in
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Fig. 2. Training workflow of the proposed FMA-WGAN.

medical image segmentation tasks, where accurate pixel-level
correspondence is essential. To overcome this limitation, we
extend the standard GAN architecture into a conditional
GAN (cGAN) [31] framework. In this configuration, the
discriminator is conditioned not only on the generated image
but also on additional contextual information—in this case,
the corresponding retinal segmentation label map. Moreover,
conventional GANs often suffer from gradient instability
during training, which can impede convergence and result in
suboptimal performance. To address this problem, we employ
the Wasserstein GAN with Gradient Penalty (WGAN-GP)
as the backbone of FMA-WGAN. WGAN-GP applies the
Wasserstein distance—commonly referred to as the Earth
Mover’s Distance—as a more reliable and informative
criterion to evaluate the discrepancy between real and
generated distributions. The loss function of WGAN-GP can
be expressed as:

LD = E(x,ỹ)∼pg
[D(x, ỹ)]− E(x,y)∼pr

[D(x, y)]

+ λgp Eŷ∼pŷ

(
∥∇ŷD(x, ŷ)∥2 − 1

)2 (1)

Let (x, y) represent a sample pair drawn from the real data
distribution pr, and (x, ỹ) denote a fake sample pair where
ỹ = G(x) is generated from the distribution pg . To enforce
the Lipschitz constraint in WGAN-GP, a set of interpolated
samples ŷ is introduced between real and generated samples.
These interpolations are sampled from a distribution pŷ , and
are computed as ŷ = ϵy + (1− ϵ)ỹ, where ϵ ∼ U(0, 1). The
gradient penalty is applied based on ŷ, encouraging the norm
of the discriminator’s gradient with respect to ŷ to be close to
1. This strategy avoids the limitations of weight clipping in
the original WGAN and leads to improved training stability

and higher-quality generation.
The overall architecture and workflow of FMA-WGAN

are depicted in Figure 2. The original retinal image is
first processed by the generator, which outputs a predicted
segmentation mask. This prediction, along with the ground
truth mask, is respectively paired with the original image
to form two input combinations for the discriminator. The
discriminator evaluates these inputs by assigning scores to
the predicted segmentation masks and optimizing a loss
function composed of the Wasserstein distance and a gradient
penalty. Through this process, the discriminator learns to
effectively distinguish between real and generated samples.
Its parameters are iteratively updated via gradients derived
from the loss function using an optimizer. Meanwhile, the
generator computes its own loss based on the feedback
received from the discriminator. Gradient signals from the
discriminator’s output are propagated backward through the
generator network, enabling the adjustment of its parameters.
This adversarial training scheme gradually guides the
generator toward producing segmentation masks that more
closely approximate the ground truth annotations.

B. Generator and discriminator
The generator in FMA-WGAN is based on an enhanced

U-Net architecture, incorporating a multi-scale input feature
fusion strategy to improve the segmentation of fine retinal
vessels through the integration of attention mechanisms and
scale-aware representation. As illustrated in Figure 3, the
generator comprises three core components: an encoder,
a decoder, and skip connections. The encoder follows
the standard U-Net configuration, consisting of several
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Fig. 3. Generator used in the proposed AA-WGAN.

Fig. 4. Attention gate used in the proposed generator.

convolutional and downsampling layers. To augment the
model’s capacity to represent vessels at multiple scales,
we introduce a multi-scale input fusion module. This
module allows the generator to capture vascular features
at both the original and a lower-resolution scale, thereby
extracting complementary global and local information. After
convolutional processing, the low-resolution features are
upsampled using bilinear interpolation and concatenated
with the high-resolution features from the initial encoder
layer along the channel dimension. This architecture
enables the model to effectively capture retinal vessel
structures across different spatial scales and enhances its
ability to delineate fine and complex vessel branches,
leading to improved generalization across varying anatomical
patterns. The decoder resembles the conventional U-Net
structure but is augmented with attention gate modules
preceding each encoder–decoder fusion step, as depicted in
Figure 4. Overall, the generator design ensures the effective
transmission of informative features and significantly
enhances the model’s ability to represent vessels at

multiple scales, particularly microvasculature. In this
study, the discriminator D in FMA-WGAN is designed
to differentiate between the generated segmentation masks
and the corresponding ground truth masks. As shown in
Figure 5, we employ a fully convolutional PatchGAN-style
[32] discriminator and integrate the Wasserstein GAN with
Gradient Penalty (WGAN-GP) framework to promote stable
adversarial training. The discriminator assigns scores to
each patch within the input and aggregates these scores
by computing the mean across the patch map, effectively
approximating the Wasserstein distance between the real
and generated distributions. This mechanism provides a
continuous and differentiable signal to guide the generator
in producing segmentation masks that closely resemble the
real ones, particularly in terms of structural detail and
fine-grained accuracy.

C. Fourier Frequency Domain Loss

The baseline loss function adopted in our model is
the L1 loss, or mean absolute error, which enforces
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Fig. 5. Discriminator used in the proposed AA-WGAN.

pixel-wise similarity between the generator output and
the corresponding ground truth image. However, the L1
loss is inherently limited in capturing high-frequency
details such as edges and fine structures. To address this
limitation, we incorporate a Fourier-based frequency-domain
loss to enhance the model’s sensitivity to high-frequency
discrepancies. To better understand the frequency-domain
characteristics of retinal vessel images, we analyzed
the spectral distribution by computing the proportion
of high-frequency regions in both spatial extent and
energy contribution. Experimental analysis reveals that
high-frequency regions cover approximately 60.7% of the
spectral area, while contributing only 15.1% of the total
spectral energy. Although the energy associated with
high-frequency components is relatively low, these regions
encode crucial visual information such as vessel edges,
microvascular structures, and fine texture—elements that
are vital for precise segmentation. This empirical evidence
substantiates the theoretical rationale for introducing
frequency-domain constraints in segmentation models.For
more detailed information, please refer to the Appendix
section. By applying the Fourier transform, we project
both the generated and real images into the frequency
domain and enforce structural alignment, particularly in the
high-frequency bands. For the Fourier transform of a 2D
image:

F(u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y) e−j2π(ux
M + vy

N ) (2)

After applying the Fourier transform to both the generated
image and the ground truth image, their corresponding
grayscale magnitude spectra are defined as follows:

Fgen(u, v), Freal(u, v) (3)

The magnitude difference between the predicted frequency
spectrum and the target spectrum is computed as follows:

∆(u, v) = |Fgen(u, v)− Freal(u, v)| (4)

To emphasize high-frequency error regions, the Focal
Frequency Loss incorporates a dynamic weighting

mechanism that assigns adaptive weights to each frequency
component as follows:

W (u, v) = log (1 + ∆(u, v)α) , α > 0 (5)

In this formulation, the hyperparameter α controls the
strength of the weighting, and log(1 + ·) serves to smooth
the gradients, thereby preventing gradient explosion. The
final frequency-domain loss is computed by performing
an element-wise multiplication between the weighting
matrix and the spectral magnitude difference, followed by
normalization:

Lfreq =

∑
u,v W (u, v) ·∆(u, v)∑

u,v W (u, v) + ε
(6)

In this context, the constant ε is introduced to
prevent division by zero. To comprehensively improve the
performance of the model in retinal vessel segmentation,
we combine time-domain and frequency-domain constraints
by integrating the L1 loss and the Focal Frequency Loss.
The L1 loss operates in the pixel domain, promoting global
structural alignment and accuracy between the predicted and
ground truth images. On the other hand, the Focal Frequency
Loss functions in the Fourier domain, selectively focusing
on regions exhibiting high spectral discrepancy—particularly
in the high-frequency range—which includes critical
anatomical features such as thin vessels, edges, and textures.
This dual-domain design enhances the model’s sensitivity
to both global structure and local detail. Consequently, the
final objective function of the generator in our framework
is formulated as the sum of adversarial loss, L1 loss, and
frequency-domain loss:

Ltotal = Ladv + λL1LL1 + λregLFFL (7)

In this formulation, Ladv denotes the adversarial loss
term based on the WGAN-GP objective, while LL1 and
LFFL represent the L1 loss and the Fourier-domain loss,
respectively. The weighting factors λL1 and λreg are
used to scale the contributions of the time-domain and
frequency-domain losses. These coefficients are selected
via cross-validation to balance the trade-off between global
image fidelity and the preservation of fine structural details
in the generated segmentation maps.
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IV. RESULTS AND DISCUSSION

In this section, we present the evaluation of the
proposed FMA-WGAN across three widely utilized open
retinal fundus datasets: DRIVE, STARE, and CHASE_DB1.
Extensive comparative experiments are carried out against a
range of cutting-edge techniques to rigorously validate the
effectiveness of our model in retinal vessel segmentation.

A. Datasets

• DRIVE : This dataset contains 40 retinal scans with
dimensions of 564 × 584 pixels. Of these, 33 are without
lesions, whereas 7 exhibit indications of diabetic
retinopathy.

• STARE : This collection consists of 20 fundus
photographs, covering both healthy and diseased cases,
each with a size of 700 × 605 pixels.

• CHASE_DB1 : The dataset is made up of 28 color
fundus images captured from both eyes of 14 children,
each image presented at a resolution of 999 × 960
pixels.

B. Data preprocessing

We designed a multi-step preprocessing pipeline. Initially,
the original RGB images are transformed into the YCbCr
space, enabling the decomposition of luminance and
chrominance information. Thereafter, Contrast Limited
Adaptive Histogram Equalization (CLAHE) is individually
conducted on the Y, Cb, and Cr components to refine local
contrast and facilitate the visualization of delicate vascular
structures. Finally, gamma correction is performed on the
enhanced image to further optimize brightness levels and
emphasize image details.

C. Evaluation metrics

To quantitatively assess the segmentation ability of
our model, four standard metrics are employed, namely
sensitivity, specificity, accuracy, and the area under the ROC
curve (AUC). The mathematical definitions of SE, SP, and
ACC are provided in Eqs. (8)–(10)

SE =
TP

TP + FN
(8)

SP =
TN

TN + FP
(9)

ACC =
TP + TN

TP + TN + FP + FN
(10)

The manually annotated vessel segmentation maps
provided by clinical experts serve as the reference standard
for evaluation. In this framework, TP , TN , FP , and FN
represent true positives, true negatives, false positives, and
false negatives, respectively. The model’s performance is
evaluated based on four key indices: sensitivity, specificity,
accuracy , and the area under the ROC curve. Larger
values of SE, SP, ACC, and AUC—approaching 1—indicate
superior segmentation accuracy. Furthermore, the ROC curve
together with its AUC score are employed for overall model
assessment, where a larger AUC reflects a more effective and
reliable segmentation model. where a larger AUC reflects a
more effective and reliable segmentation model.

D. Implementation details

Due to the limited number of images and the high
resolution of the fundus datasets, data augmentation
was employed to enhance training diversity and mitigate
overfitting. Specifically, the augmented images were
randomly cropped to a predefined size and subjected to
random horizontal flipping, thereby increasing the variability
and robustness of the training samples.

The experiments were conducted on a workstation
equipped with an NVIDIA GeForce RTX 4090 GPU.
The network architecture was implemented, trained, and
evaluated using the PyTorch deep learning framework.
During training, the batch size was set to 1, and the initial
learning rate for both the generator and the discriminator
was fixed at 0.0001. The Adam optimizer was employed, and
training was carried out for a total of 80 epochs. Following
the WGAN-GP protocol, the discriminator was updated five
times for every generator update in each iteration. The total
loss function used in training was a weighted combination
of three components: adversarial loss, L1 loss (spatial
domain), and Focal Frequency Loss (frequency domain).
The corresponding weights for these loss terms were set
to λL1 = 100 for the L1 loss, λreg = 10.0 for the
frequency-domain loss, and λgp = 10.0 for the WGAN-GP
gradient penalty.

E. Ablation experiments

To validate the effectiveness of the proposed model, a
series of ablation studies were conducted to assess the
individual and combined contributions of key architectural
components. The Attention Gate U-Net (AG-Unet) was
employed as the baseline model. Subsequently, three
modules—namely the Multi-scale input fusion, WGAN-GP
adversarial optimization, and Frequency-aware loss—were
incrementally integrated into the baseline. The performance
of each configuration was then systematically evaluated
across three publicly available retinal image datasets:
DRIVE, CHASE_DB1, and STARE.

TABLE I
RESULTS OF ABLATION EXPERIMENTS ON THE DRIVE

DATASET.

Model ACC SPE SEN AUC

Baseline 0.9480 0.9646 0.7826 0.9534
Baseline + WGAN 0.9513 0.9632 0.8010 0.9657
Baseline + WGAN + ML 0.9590 0.9730 0.8562 0.9752
Baseline + WGAN + FA 0.9623 0.9693 0.8620 0.9788
Baseline + ML + FA 0.9627 0.9680 0.8572 0.9789
FMA-WGAN (Ours) 0.9652 0.9723 0.8733 0.9845

TABLE II
RESULTS OF ABLATION EXPERIMENTS ON THE STARE

DATASET.

Model ACC SPE SEN AUC

Baseline 0.9531 0.9624 0.8242 0.9563
Baseline + WGAN 0.9564 0.9647 0.8127 0.9596
Baseline + WGAN + ML 0.9662 0.9767 0.8667 0.9771
Baseline + WGAN + FA 0.9746 0.9724 0.8740 0.9801
Baseline + ML + FA 0.9710 0.9734 0.8781 0.9778
FMA-WGAN (Ours) 0.9743 0.9760 0.8839 0.9892
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TABLE III
RESULTS OF ABLATION EXPERIMENTS ON THE

CHASE_DB1 DATASET.

Model ACC SPE SEN AUC

Baseline 0.9534 0.9598 0.8065 0.9554
Baseline + WGAN 0.9576 0.9651 0.7938 0.9661
Baseline + WGAN + ML 0.9673 0.9793 0.8425 0.9792
Baseline + WGAN + FA 0.9712 0.9747 0.8564 0.9884
Baseline + ML + FA 0.9681 0.9762 0.8512 0.9821
FMA-WGAN (Ours) 0.9738 0.9825 0.8606 0.9879

The quantitative results of the ablation study, including
accuracy (ACC), sensitivity (SE), specificity (SP), and AUC,
are presented in Table I–III. As observed, the inclusion of
the WGAN-GP module on top of the baseline AG-Unet
model led to consistent performance gains across the
DRIVE, CHASE_DB1, and STARE datasets. On average,
ACC increased by 0.0036 and AUC by 0.0088, indicating
that the WGAN-GP module enhances segmentation quality
by stabilizing adversarial training and improving the
delineation of fine structures and vessel boundaries. Further
improvements were achieved by sequentially incorporating
the Multi-scale and Frequency-aware modules. Notably,
sensitivity exhibited significant enhancement, with average
gains of 0.0526 and 0.0616, respectively, across the three
datasets. These results suggest that the Multi-scale module
effectively captures vascular features across different spatial
scales, thereby improving recognition of complex vessel
architectures. Simultaneously, the Frequency-aware module
contributes by extracting high-frequency structural details,
ultimately boosting the model’s generalization ability in
diverse retinal imaging scenarios.

In summary, the complete model—FMA-WGAN
(Ours)—which incorporates the Multi-scale input strategy,
WGAN-GP-based discriminator, and the Frequency-aware
loss module, achieved superior performance on all
three benchmark datasets. These results conclusively
demonstrate that the proposed combination of architectural
and loss-function enhancements substantially improves the
model’s capability in retinal vessel segmentation, particularly
in capturing fine structures and complex vascular patterns.

TABLE IV
EXPERIMENTAL RESULTS ON THE DRIVE DATASET.

Model Year ACC SPE SEN AUC

U-Net++ [33] 2018 0.9573 0.9761 0.7762 0.9796
IterNet [34] 2020 0.9574 0.9831 0.7791 0.9813
Wave-Net [35] 2023 0.9561 0.9764 0.8164 –
AFNet [36] 2023 0.9580 0.9818 0.8139 0.9820
ResDO-Unet [37] 2023 0.9561 0.9791 0.7985 –
WS-DMF [38] 2024 0.9494 0.9841 0.8504 –
SMDAA [39] 2024 0.9615 0.9703 0.8609 0.9806
(DA-U)+Net [40] 2025 0.9546 0.9720 0.8300 –
PA-Net [21] 2025 0.9582 0.9807 0.8284 0.9833
FMA-WGAN (Ours) – 0.9652 0.9723 0.8733 0.9845

F. Comparison with the state-of-the-art methods

A comparative study was carried out between the proposed
FMA-WGAN model and a set of advanced approaches
for retinal vessel segmentation. The experiments were
implemented on three benchmark datasets: DRIVE, STARE,

TABLE V
EXPERIMENTAL RESULTS ON THE STARE DATASET.

Model Year ACC SPE SEN AUC

U-Net++ [33] 2018 0.9612 0.9801 0.8122 0.9841
IterNet [34] 2020 0.9701 0.9886 0.7715 0.9881
Wave-Net [35] 2023 0.9641 0.9836 0.7902 –
AFNet [36] 2023 0.9712 0.9779 0.7972 0.9902
ResDO-Unet [37] 2023 0.9567 0.9792 0.7963 –
WS-DMF [38] 2024 0.9613 0.9854 0.8448 –
SMDAA [39] 2024 0.9631 0.9711 0.8654 0.9819
(DA-U)2Net [40] 2025 0.9620 0.9734 0.8210 –
PA-Net [21] 2025 0.9709 0.9805 0.8813 0.9908
FMA-WGAN (Ours) – 0.9743 0.9760 0.8839 0.9892

TABLE VI
EXPERIMENTAL RESULTS ON THE CHASE_DB1

DATASET.

Model Year ACC SPE SEN AUC

U-Net++ [33] 2018 0.9657 0.9801 0.8012 0.9869
IterNet [34] 2020 0.9655 0.9823 0.7970 0.9851
Wave-Net [35] 2023 0.9664 0.9821 0.8284 –
AFNet [36] 2023 0.9669 0.9817 0.8194 0.9867
ResDO-Unet [37] 2023 0.9672 0.9794 0.8020 –
WS-DMF [38] 2024 0.9566 0.9797 0.7841 –
SMDAA [39] 2024 0.9689 0.9749 0.8939 0.9832
(DA-U)2Net [40] 2025 0.9581 0.9720 0.8160 –
PA-Net [21] 2025 0.9677 0.9779 0.8570 0.9875
FMA-WGAN (Ours) – 0.9738 0.9825 0.8606 0.9879

and CHASE_DB1. Model evaluation employed four key
metrics: accuracy (ACC), sensitivity (SEN), specificity
(SPE), and the area under the ROC curve (AUC). A summary
of the detailed results is presented in Table IV–VI.

Several key observations can be made based on the results
presented in Table IV through Table VI: (1) On the DRIVE
dataset, FMA-WGAN achieved the highest values in terms
of accuracy (ACC), sensitivity (SE), and area under the ROC
curve (AUC). On the STARE dataset, it attained the highest
ACC and SE scores, while on the CHASE_DB1 dataset, it
recorded the best ACC, specificity (SP), and AUC values.
These results collectively demonstrate that FMA-WGAN
offers the most consistent and robust performance across all
three datasets, highlighting its superior capability for accurate
retinal vessel segmentation. (2) Sensitivity (SE) quantifies the
proportion of correctly detected vessel pixels relative to the
total number of annotated vessel pixels, and serves as a key
indicator of the model’s effectiveness in identifying vascular
structures. Due to the highly imbalanced nature of retinal
images—where background pixels significantly outnumber
vessel pixels—SE is particularly critical for evaluating
segmentation performance. Our proposed FMA-WGAN
consistently achieves higher SE values compared to other
models, demonstrating its superior capability in recognizing
vessel pixels. As shown in Figure 6, a bar chart
comparison of SE across various models further confirms
that FMA-WGAN outperforms competing approaches with
a notable margin in sensitivity.

Figure 7 illustrates the Receiver Operating Characteristic
(ROC) curves of seven different models evaluated on the
DRIVE, CHASE_DB1, and STARE datasets. In general,
ROC curves that are closer to the upper-left corner
indicate superior classification performance. As shown in
the figure, FMA-WGAN exhibits the most favorable ROC
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Fig. 6. Sensitivity comparison of different models.

positioning on both the DRIVE and CHASE_DB1 datasets,
with curves approaching the ideal top-left corner. On the
STARE dataset, its performance is similarly competitive,
closely aligning with the best-performing models. These
observations collectively demonstrate that FMA-WGAN
achieves the most consistent and robust results in terms of
ROC-based evaluation.

G. Qualitative analysis

Figure 8 displays the qualitative segmentation results
produced by FMA-WGAN across the DRIVE, STARE,
and CHASE_DB1 datasets, alongside comparative results
from U-Net++, SMADD, and PA-Net. To facilitate detailed
visual analysis, magnified insets of the green-boxed regions
are also provided. Several key observations emerge from
this comparison: (1) FMA-WGAN demonstrates markedly
improved accuracy in the segmentation of elongated vessels,
exhibiting substantially fewer discontinuities compared to
competing methods. This superior performance highlights
the efficacy of the Multi-scale module in modeling
long-range contextual dependencies by integrating features
across multiple spatial resolutions. Such capability not only
mitigates vessel fragmentation but also enhances the model’s
robustness and adaptability to complex retinal anatomical
structures. (2) The model also excels at identifying finer
microvascular details and preserving the continuity of
the retinal vasculature. This advantage stems from the
Frequency-aware module, which addresses the common issue
of high-frequency detail loss in traditional segmentation

methods. By emphasizing spectral-domain learning, it
enables the model to recover subtle structural boundaries and
minute vessel features more effectively.

In summary, FMA-WGAN delivers qualitatively superior
segmentation results across all three datasets, clearly
outperforming the benchmark and competing models in
visual fidelity and structural preservation.

H. Discussion

This section introduces an extensive set of experiments
performed on three open datasets—DRIVE, CHASE_DB1,
and STARE—to assess the performance of the proposed
FMA-WGAN network. The results indicate that
FMA-WGAN consistently surpasses a range of advanced
methods with respect to accuracy (ACC), while also
achieving high sensitivity (SEN), specificity (SP), and
AUC across the majority of datasets. These findings
verify the model’s strong segmentation capability and
generalization ability. The findings show that incorporating
each module yields notable gains in segmentation accuracy
over the datasets, validating the architectural design and
underscoring the synergistic benefits of the integrated
modules.

Despite these promising outcomes, some limitations were
observed under challenging conditions. Specifically, the
model showed slightly decreased sensitivity on images with
low contrast or artifact interference, revealing opportunities
for further improvement in fine-detail recovery. Moreover,
while FMA-WGAN introduces additional components
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Fig. 7. ROC curves on the DRIVE, CHASE_DB1, and STARE datasets.

compared to the traditional U-Net architecture, and maintains
a relatively moderate parameter scale, further optimization
is still warranted in terms of computational efficiency and
deployment feasibility.

V. CONCLUSIONS

In this work, we propose a novel framework for
retinal vessel segmentation, termed FMA-WGAN, which
extends the classical Attention U-Net architecture by
incorporating three key innovations: multi-scale feature
learning, frequency-aware constraints, and generative
adversarial training. Specifically, the WGAN-GP-based
discriminator enhances the model’s ability to distinguish
fine vessel boundaries by enabling more stable adversarial
learning. The multi-scale module enables the network
to capture vascular structures across different spatial
resolutions, thereby improving its robustness to scale
variation. Furthermore, the frequency-aware loss guides
the generator to emphasize high-frequency components
within the image, substantially improving the modeling of
microvascular details and subtle anatomical features.

Experiments conducted on the publicly accessible
DRIVE, CHASE_DB1, and STARE datasets show that the

proposed FMA-WGAN surpasses the baseline and other
comparative methods across various evaluation indices, such
as accuracy, sensitivity, specificity, and the area under the
ROC curve (AUC). These findings confirm the individual
effectiveness of the integrated components—namely
multi-scale feature learning, WGAN-GP adversarial
training, and frequency-aware loss—and highlight their
synergistic contribution to enhancing overall segmentation
performance.

Although FMA-WGAN has achieved substantial progress
in retinal vessel segmentation, it may still face limitations
when dealing with images characterized by extremely low
contrast or the presence of noise-induced artifacts. In future
work, we intend to investigate more robust preprocessing
techniques that offer enhanced noise resilience. Furthermore,
we plan to incorporate lightweight Transformer-based
modules to improve both segmentation accuracy and
computational efficiency. Additionally, we aim to explore
self-supervised learning paradigms to alleviate the reliance
on manually annotated datasets, thereby promoting the
broader applicability of the proposed approach in real-world
clinical scenarios.
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Fig. 8. Segmentation results on the DRIVE, STARE, and CHASE_DB1 datasets.

APPENDIX

Experimental Verification of High-Frequency Characteristics

Fig. A1. Representative retinal images and their
corresponding Fourier spectra from the DRIVE dataset.

To examine the energy distribution characteristics of

retinal images in the frequency domain—particularly the
relationship between vascular structures and high-frequency
components—we conducted a spectral analysis on the
DRIVE dataset using a two-dimensional Fourier transform
(2D FFT). Each image was first converted to grayscale, and
its frequency magnitude spectrum was computed via Fourier
transformation. To facilitate clearer observation of frequency
properties, the spectrum was shifted (FFT shift) such that the
low-frequency components were repositioned at the center.
Given an image size of H ×W , the center of the frequency
spectrum is located at (H/2,W/2). A radial frequency mask
was constructed based on the Euclidean distance in the
frequency domain, and the boundary between low and high
frequencies was defined as half of the maximum possible
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radial distance, calculated as follows:

r = 0.5 ·

√(
H

2

)2

+

(
W

2

)2

(11)

All frequency components with a radial distance greater
than rrr from the center of the frequency domain are
classified as belonging to the high-frequency region, while
those within the radius rrr are considered low-frequency
components. The spectral energy contribution of the
high-frequency region is subsequently computed to quantify
its proportion relative to the total energy of the image, as
defined below:

HighFreqEnergyRatio =

∑
(u,v)∈SHF

|F (u, v)|∑
(u,v)

|F (u, v)|
(12)

Figure A1 illustrates the frequency spectra of
representative retinal images from the DRIVE dataset after
applying the two-dimensional Fourier transform. As shown,
the high-frequency components are broadly distributed
across the spectrum. The proportion of high-frequency
energy present in the dataset was quantitatively analyzed,
and experimental results indicate that high-frequency
components account for approximately 15% of the total
spectral energy in the images. In the context of retinal vessel
segmentation, fine vascular structures and boundary regions
are predominantly encoded in the high-frequency domain.
Although these regions contribute relatively little energy,
they are densely packed with structural details that are
crucial for precise segmentation. These findings validate the
theoretical motivation for introducing frequency-domain loss
functions, which enhance the model’s ability to reconstruct
high-frequency features and improve segmentation accuracy,
particularly for microvascular structures.
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