
 

 

  

Abstract—In recent years, the incidence of breast cancer has 

continued to rise. Early screening and precise segmentation of 

lesion regions are essential for improving diagnostic accuracy 

and patient prognosis. However, limited data availability and 

the blurred boundaries of lesions often lead to false detections 

and missed segmentations in existing models. To address these 

challenges, this paper proposes a novel model for breast cancer 

ultrasound image segmentation, named YOLO-MAFS. The 

model integrates group convolution into the C3k2 module, 

effectively reducing computational complexity while enhancing 

segmentation accuracy. Additionally, a lightweight feature 

fusion module, MAFM, is introduced to handle the diverse 

appearances of lesion regions. To further address the issue of 

blurred lesion boundaries, the HAFB module is incorporated 

between the backbone and the detection head. Moreover, the 

LASH segmentation head is employed to improve the model’s 

ability to capture subtle features. Experimental results on the 

BUS-BRA dataset demonstrate that YOLO-MAFS achieves 

improvements of 4.2% and 2.5% in mAP@50 and mAP@50–95, 

respectively, compared to YOLOv11. The model maintains a 

lightweight architecture while delivering high accuracy, making 

it well-suited for lesion segmentation in breast cancer 

ultrasound imaging. 

 

Index Terms—Deep Learning, Breast cancer, Ultrasound 

images, YOLOv11, Segmentation 

 

I. INTRODUCTION 

ccording to data from the World Health Organization 

(WHO), the incidence of breast cancer continues to rise. 

Annually, breast cancer accounts for 12.5% of all newly 

diagnosed cancers worldwide and remains one of the leading 

causes of increased mortality among women [1].  Early 

detection and timely diagnosis play a crucial role in the 

prevention and treatment of breast cancer. These measures 

not only effectively mitigate the incidence and mortality rates 

but also significantly lower treatment costs and improve 

patient survival rates.   

In recent years, due to its advantages of being 

radiation-free, non-invasive, cost-effective, and convenient, 

breast ultrasound examination has been increasingly 
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employed in clinical practice. It has become a crucial tool for 

the screening and diagnosis of breast abnormalities. However, 

the interpretation of conventional breast ultrasound images 

largely depends on the subjective expertise of radiologists, 

making it highly susceptible to variations in individual 

experience. This not only increases the workload but also 

lead to inconsistent diagnostic outcomes. To address this 

issue, Computer-Aided Diagnosis (CAD) systems have been 

developed to improve diagnostic efficiency, thereby assisting 

physicians in making more reliable judgements [2]. Accurate 

segmentation of breast ultrasound (BUS) images is crucial in 

clinical practice, as it precisely delineates lesion areas, aids 

radiologists in localizing breast cancer, and provides 

essential information about tumor morphology [3]. 

Despite significant advancements in artificial intelligence 

for breast ultrasound image analysis, current technologies 

still face challenges in clinical implementation. Key 

limitations include the scarcity of high-quality annotated 

datasets, poor model interpretability, and insufficient 

robustness when handling complex ultrasound image 

characteristics. Consequently, developing segmentation 

methods with super generalization capacity, consistent 

diagnostic reliability, and enhanced clinical applicability 

remains a critical research priority. 

In recent years, deep learning techniques have driven 

significantly advancements in medical image segmentation, 

with architectures such as FCN [4] and U-Net [5] 

demonstrating remarkable performance through their 

powerful nonlinear representation capabilities. Nevertheless, 

traditional convolutional neural networks (CNNs) remain 

limited by their local receptive fields during feature 

extraction, making it challenging to effectively capture 

cross-scale global context information and consequently 

restricting feature diversity.  To overcome this limitation, 

Ronneberger et al. [6] put forward the Attention U-Net model, 

which integrates attention gate into the skip connections of 

the conventional U-Net, enabling the network to focus on 

clinically relevant regions while suppressing irrelevant 

background features, thereby enhancing segmentation 

accuracy. Further innovations include Qin et al.’s U2-Net [7], 

which introduces a nested U-Net structure with cascaded 

connections to strengthen multi-scale feature extraction and 

detail preservation.  The TransUNet model, introduced by 

Chen et al. [8], combines the Vision Transformer [9] with the 

U-Net architecture. The primary objective of this integration 

is to address the limitations of U-Net in capturing long-range 

dependencies, thereby enhancing the model's capacity to 

model global semantic information. 
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Moreover, some research efforts have explored the 

integration of object detection and image segmentation to 

balance efficiency and accuracy. Su et al. [10] put forward a 

hybrid method combining YOLO and LOGO. In this method, 

YOLOv5-L6 is employed to detect and crop breast masses, 

followed by a dual-branch segmentation process involving 

local and global branches. Ultimately, the results are fused to 

improve the accuracy. Li et al. [11] developed an automated 

breast mass detection and segmentation framework based on 

YOLOv5 and GOLO-CMSS architectures. Through the 

coordinated operation of detection and the global-local 

branches, along with the integration of the multi-scale 

selection (MSS) and multi-layer feature fusion (MLI) 

mechanisms, this approach has achieved more accurate 

localization and segmentation of breast masses. 

Although the integration of YOLO with segmentation 

networks has improved breast mass detection and 

segmentation performance, several critical challenges remain 

unresolved. First, the existing feature extraction and fusion 

module are not adequately optimized for the distinctive 

characteristics of breast ultrasound images, such as blurred 

lesion boundaries and significant scale variations. This 

limitation results in suboptimal feature extraction and 

ineffective fusion, ultimately compromising segmentation 

accuracy. Second, in complex clinical scenarios, ultrasound 

images are affected by factors like equipment differences, 

imaging angle variations, and tissue background complexity. 

Existing methods exhibit poor robustness under these 

conditions, struggling to maintain stable performance. 

To further enhance the performance of mass detection and 

segmentation in breast ultrasound images, this study 

introduces several architectural enhancements to the 

YOLOv11 framework [12], proposing a novel YOLO-MAFS 

model optimized for efficient segmentation tasks. The key 

contributions include: 

1) An efficient multi-scale convolution (EMSConv) was 

designed to optimize the structure of the C3k2 module in 

YOLOv11. By incorporating a grouped convolution-based 

multi-scale feature processing mechanism, the proposed 

model significantly improves the model’s capacity to 

represent breast masses across varying sizes. 

2) A lightweight multi-scale feature fusion module 

(MSFM) was proposed. In this module, Ghost-Shuffle 

Convolution (GSConv) was employed to substitute for 

traditional convolution, thereby enabling low-cost and high- 

efficiency multi-level semantic information fusion. When 

integrated into the Neck structure of YOLOv11, this module 

not only significantly reduces the computational complexity 

of the model but also enhances its adaptability to complex 

breast lesions and segmentation performance.   

3) To enhance the model's ability to precisely model the 

boundaries of lesions, a hierarchical attention fusion block 

(HAFB) was introduced. This module combines local and 

global attention mechanisms along with reparametrized 

convolution (RepConv) to effectively aggregate multi-level 

semantic information, thereby strengthening the modeling of 

context relationships and improving the accuracy of 

boundary identification, especially in lesion areas with 

blurred boundaries or complex shapes. 

4) A lightweight asymmetric segmentation head (LASH) 

was developed to resolve the task-specific conflicts between 

detection, classification, and mask prediction tasks. By 

optimizing the mask generation pathway while maintaining 

inference efficiency, LASH enhances segmentation 

performance in breast ultrasound images, particularly for 

detail handling and edge transitions.  

II. METHOD INTRODUCTION 

A. Constructing YOLOv11 

YOLOv11 is a highly efficient object detection algorithm 

recently introduced by the Ultralytics team, inheriting the 

core advantages of speed and accuracy from the YOLO series. 

In addition, YOLOv11 has excellent scalability and 

adaptability, which makes it show certain potential when 

dealing with medical images that are diverse and highly 

complex [13]. 

B.  Constructing YOLO-MAFS 

To enhance the performance of YOLOv11 breast cancer 

ultrasound image segmentation, this paper proposes an 

innovative improved model based on YOLOv11, whose 

overall structure is shown in Fig.1. 

 
Fig. 1. Structural Diagram of YOLO-MAFS 

 

Firstly, the model extracts feature from the input image via 

the backbone network. In the structure of the backbone 

network, the C2k3-EMSC module is introduced. By 

employing a multi-scale processing mechanism with grouped 

convolution, the model achieves enhanced perception of 

breast masses across varying scales. These extracted 

high-level features are subsequently processed by the MSFM 

module for refined feature integration. This module is 

incorporated into the neck architecture of YOLOv11. On the 

premise of maintaining computational efficiency, it can 

effectively integrate spatial and semantic information from 

different hierarchical levels. Subsequently, the hierarchical 

attention fusion block (HAFB) is introduced to conduct a 

further fusion of the multi-scale features extracted from the 

backbone network and the neck structure. HAFB effectively 

establishes hierarchical feature dependencies by 

synergistically integrating local and global attention 

mechanisms across multiple feature levels. It enhances lesion 

boundary modeling, improves the model's understanding of 

context, and increases segmentation accuracy and continuity. 

Finally, the fused features are input into the LASH module 

for detection and segmentation, generating the final 
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segmentation results. In the subsequent chapters of this paper, 

we will present a detailed account of the design principles 

and performance of modules such as C2k3-EMSC, MSFM, 

HAFB, and LASH will be presented. This is to validate their 

effectiveness in the task of breast cancer ultrasound image 

segmentation. 

C.  Efficient Multi-Scale Convolution (EMSConv) 

In YOLOv11, if the C3k parameter is FALSE, C3k2 

becomes the original C2F module; if TRUE, the C2F 

Bottleneck is replaced by the C3k module. Drawing on the 

GhostNet proposed by Han et al. [14], this research conducts 

a structural reconstruction of the Bottleneck structure within 

the C3k2 module.  An efficient multi-scale convolution 

mechanism grounded in grouped convolution (Efficient 

Multi-Scale Convolution, EMSConv) was introduced. 

Ultimately, the module C3k2-EMSC was constructed, and its 

structure is shown in Fig.2. 

 
Fig. 2.  Structure diagram of C3k2_EMSC 

 

The Bottleneck-EMSC module remarkably reduces the 

computational complexity in convolution operations by 

incorporating Group Convolution, and effectively 

strengthens the feature extraction ability. Its structure is 

shown in Fig.3. Within this module, EMSConv evenly 

partitions the input channels into four subgroups. Each 

subgroup then utilizes convolution kernels of varying scales 

for feature extraction. The features extracted from each group 

are concatenated, and the features across different channels 

are subsequently fused through Pointwise Convolution (PW), 

thereby enhancing the representational capacity of each 

channel. The uniform distribution of input channels among 

multiple convolution groups not only strikes a balance in 

computational efficiency but also guarantees that each group 

can capture features independently and comprehensively.    

Within the EMSConv module, the choice of four 

convolution kernels with distinct scales, specifically 1×1, 

3×3, 5×5, and 7×7, is grounded in their respective merits in 

capturing spatial features across diverse scales. The 1×1 

convolutional kernels are specifically designed to extract 

localized fine-grained features through nonlinear 

transformations, which effectively enhances the model's 

feature representation capacity. This compact receptive field 

enables precise capture of pixel-level patterns while 

maintaining computational efficiency. The 3×3 

convolutional kernels can capture more intricate local 

patterns and extract spatial information at a medium scale by 

extending the receptive field. In contrast, the 5×5 and 7×7 

convolutional kernels, with their larger receptive fields, are 

capable of capturing broader contextual information and 

global features. Particularly in scenarios involving larger 

objects or complex scenes, these kernels facilitate 

understanding the relationships between image objects and 

the overall image structure. 

 
Fig. 3. Structure diagram of Bottleneck_EMSC 

 

As verified experimentally, as shown in TABLE Ⅰ, when 

the number of groups is insufficient, the model fails to 

fully exploit multi-scale features, thereby restricting its 

feature extraction ability. When the number of groups 

becomes excessively large, information tends to be overly 

partitioned. This result in inadequate feature fusion across 

groups and compromises the effectiveness of the final 

feature integration. Consequently, dividing the channels 

into four groups ensures that each convolutional kernel 

efficiently processes the features of its corresponding 

channel group. This strategy allows the model to more 

effectively capture feature details at multiple levels, 

thereby improving the overall robustness of the model. 

 
TABLE Ⅰ 

 TEST RESULTS 

Groups mAP@50(M) 

n=3 0.831 
n=4 0.852 

n=5 0.836 

 

In this study, the C3k2 module in the final layer of the 

Backbone and Neck in YOLOv11 is replaced with the 

enhanced C3k2-EMSC module. The replacement is carried 

out at this position because the deep-layer feature maps 

exhibit a higher number of channels and richer semantic 

information, which makes them more suitable for the 

effective operation of multi-scale architectures. 

D. Multi-Scale Feature Fusion Module (MSFM) 

To improve the efficiency of multi-scale feature fusion in 

target segmentation tasks, this study introduces a lightweight 

multi-scale feature fusion module (Multi-Scale Feature 

Fusion Module, MSFM). This module is integrated into the 

Neck component of YOLOv11, taking the place of certain 
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conventional feature fusion units. The design inspiration of 

this module is derived from the SDI module in UNetV2 [15]. 
Comprehensive optimizations have been carried out in both 

the structural design and fusion strategy to better meet the 

computational efficiency and representation requirements for 

breast cancer ultrasound image segmentation tasks. 

In contrast to the UNetV2 approach, which relies on 

standard convolution and weighted fusion, the MSFM 

module replaces traditional convolutions by integrating the 

lightweight and highly efficient Ghost-Shuffle Convolution 

(GSConv) [16]. The structure diagram of GSConv is shown 

in Fig.4. 

 
Fig .4. Structure diagram of GSConv 

 

This strategy not only substantially reduce the 

computational cost of the model but also enhances the 

representational consistency of cross-scale features by means 

of the Ghost feature generation mechanism and channel 

shuffling.   

Assume that the input to the MSFM module (shown in 

Fig.5) is a collection of feature maps 
1{ }N

i ix =
derived from 

various scales. First, channel attention is introduced for the 

higher-scale features, while spatial attention is incorporated 

for the lowest-scale features. This step aims to boost the 

intensity of representation for critical information channels or 

spatial locations. Then, through an average pooling operation 

(adaptive_avg_pool2d), the features are uniformly adjusted 

to the same spatial resolution as that of the lowest-scale 

feature ix  Subsequently, each feature is compressed through 

an independent GSConv branch to a unified channel 

dimension C . Finally, element-wise multiplication 

(Hadamard Product) is performed to achieve fusion:  

1

( )
N

MSFM i i
i

F GSConv x
=

=                     (1) 

Among them, ix represents the i -th feature map after 

scale alignment. GSConv stands for a convolutional 

operation with the ability of lightweight feature 

transformation.   

In contrast to traditional feature concatenation or 

summation strategies, this multiplicative fusion mechanism 

exhibits enhanced efficiency and robustness in information 

integration. By performing element-by-element 

multiplication operations, the module can more effectively 

uncover the co-occurrence relationships among features 

across different scales. This strengthens the synergy and 

selectivity of feature representation, thereby enhancing the 

model's ability to perceive complex image content. 

Furthermore, the incorporation of the lightweight GSConv 

(Ghost - Shuffle Convolution) as a feature compression unit 

not only effectively preserves the crucial semantic 

information within the input features but also significantly 

reduces the number of parameters and computational 

overhead of the module. Consequently, the inference 

efficiency of the overall model is improved.  

 
Fig .5. Structure diagram of MSFM 

 

In summary, the MSFM module augments the model's 

comprehensive modeling capabilities for spatial details and 

contextual semantics, demonstrating excellent performance 

in multi-scale feature fusion. After being integrated into the 

YOLOv11 architecture, the MSFM has exerted a positive 

influence on improving the quality of feature representation 

and enhancing the target perception ability. Overall, this 

underscores its application potential and promotional value 

as a general multi-scale fusion module in tasks such as object 

segmentation. 

E. Hierarchical Attention Fusion Block (HAFB) 

In the realm of deep learning, particularly within computer 

vision tasks, multi-scale feature fusion and attention 

mechanisms have been extensively demonstrated to 

substantially boost the model's capacity to perceive complex 

scenarios. However, existing methods often encounter the 

problem of poor coordination between local and global 

information when fusing features, which in turn limits the 

model's comprehensive understanding of fine-grained targets 

and contextual semantics. To address this challenge, this 

study proposes a novel module - the Hierarchical Attention 

Fusion Block (HAFB). The structure diagram of HAFB is 

shown in Fig.6. Specifically, this module is an improvement 

on the hierarchical attention branch (LocalGlobalAttention) 

proposed in HCF-Net [17], integrating both local and global 

attention branches and refining the fusion of input features 

through a hierarchical feature processing path. This design 

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4558-4567

 
______________________________________________________________________________________ 



 

 

not only preserves the spatial details of the input features but 

also strengthens the semantic representation capacity of the 

global context via an adaptive weighting mechanism.     

HAFB employs a parallel multi-branch architecture to 

extract features at different scales and semantic hierarchies. 

This module encompasses three crucial branches: the local 

branch, the global branch, and the serial convolution branch. 

Each of these branches is designed to model local details, 

global context, and structural information, respectively. This 

design significantly elevates the model's performance in 

high-precision localization tasks, such as lesion detection.   

 
Fig .6. Structure diagram of HAFB 

 

Suppose the input feature tensors are 1

1

H W CF  
 and 

2

2

H W CF  
 . Initially, channel compression is carried out 

via point-wise convolution to acquire the intermediate feature 
* *

1 2, H W CF F    with a unified dimension. Subsequently, 

these are fed into five parallel branches for processing, 

yielding the local attention branches
1

H W C

lacalF   and 

2

H W C

lacalF   , the global attention branches 

1

H W C

globalF   and 
2

H W C

globalF    and the convolutional 

branch H W C

convF   . After summing up the results of all 

branches along the channel dimension, they are fed into the 

re-parameterizable convolutional layer (Re-parameterizable 

Convolution, RepConv [18]). Eventually, the fused feature 

output H W CF   is acquired. Among them, RepConv is a 

module that adopts a multi-branch structure during the 

training stage and fuses into a single convolution operation 

during the inference stage. It can significantly improve the 

inference speed while ensuring performance.  

To achieve effective discrimination and interaction 

between the local and global branches, this study partitions 

the feature map into non-overlapping regions in the spatial 

dimension by manipulating the Patch size parameter. 

Subsequently, the aggregation and displacement operations 

of local regions are accomplished. Employing the Unfold and 

Reshape operations, the features *

1F and *

2F are partitioned 

into contiguous non-overlapping blocks, presenting a feature 

representation of dimension p p ,
H

p
,
W

p
, C . Then, average 

processing is performed on each channel to obtain a feature 

representation of dimension p p ,
H

p
,
W

p
. Introduce this 

feature into the feed-forward neural network (Feed-Forward 

Neural Network, FFN) [19] for linear transformation, and 

map it to the probability distribution of spatial response 

through the activation function. This distribution is utilized to 

assign attention weights to each Patch. By doing so, explicit 

modulation in the spatial dimension is achieved, thereby 

enhancing the significance of local or global features.   

Upon acquiring the weighted Patch representations, this 

study further incorporates a task-relevant feature selection 

mechanism to bolster the discriminative power of the model. 

Let d =
H W

p p




, and represent the weighted result as

*

1( )C

i it =
 . 

Here, d

it  represents the Patch representation on the i -th 

channel. To accomplish effective label selection, the 

following weighting strategy is proposed:   

 ( , )i i it P sim t t=                           (2) 

Where, 
*C  represents the task embedding vector, 

* *C CP  is the learnable linear projection matrix, and 

(, )sim denotes the normalized cosine similarity function 

(with a range of [0, 1]). 

In this context,   acts as the task embedding, designating 

which tokens are relevant to the task. Each token it is 

re-weighted according to its relevance to the task embedding 

(measured by the cosine similarity), thereby effectively 

emulating token selection.  Subsequently, a linear 

transformation of P is applied to each token for channel 

selection. Then, Reshape and smooth interpolation 

operations are carried out. Finally, the features 
H W C

lacalF   and 
H W C

globalF   are generated. In 

addition, after directly adding *

1F and *

2F , the result is fed 

into a 3×3 convolutional layer. The output H W C

convF   of 

the serial convolutional branch is thus obtained, which 

enhances the ability to model local structures.  Ultimately, the 

features output by the three branches are fused in RepConv to 

generate a unified context-aware feature representation. 

The HAFB module can be embedded into various 

backbone networks. In this paper, it is integrated between the 

head and neck components of the YOLOv11 model. This 

integration aims to fully harness its advantages in multi-scale 

and fine-grained information extraction. 

F.  Lightweight Asymmetric Segmentation Head (LASH) 

In this paper, we proposed a lightweight asymmetric 

segmentation head (LASH) based on the Lightweight 

Asymmetric Detection Head (LADH) proposed by Zhang et 

al. [20]. To address the different requirements of regression 

tasks, mask prediction tasks, and classification tasks, this new 

head is more suitable for segmenting high-pixel images. It 

aims to enhance the computational efficiency and task 

accuracy of the model.  Fig. 7 provides an overview of the 

LASH structure. 

During the instance segmentation process, the regression 

task primarily focuses on the location and bounding box 

information of the object, necessitating the precise capture of 

the object's spatial location and dimensions.  To extract these 

boundary features more effectively, compared with the 
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original detection head of YOLOv11, the LASH model 

innovatively substitutes two conventional convolutions with 

three 3×3 depth-wise separable convolutions (DWConv) in 

the regression task. By doing so, this design allows the model 

to extract more intricate features layer-by- layer and 

incorporate information at different scales. As a result, it 

significantly improves the stability and accuracy of the 

regression outcomes.  

 
Fig .4. Structure diagram of LASH 

 

 Regarding the mask prediction task, this task necessitates 

precise pixel-level processing. Especially in complex 

scenarios, the delicate features of the target are of great 

significance. Within LASH, two conventional convolutions 

in the mask prediction head are substituted by two 3×3 

depth-wise separable convolutions.  Furthermore, the 

employment of two depth-wise separable convolutions can 

effectively extract the details within an image, prevent 

overfitting, and improve the capacity to capture details in the 

segmentation task. This optimization can effectively improve 

the accuracy and robustness of the mask prediction task. 

Especially when handling medical images with high noise 

levels and complex backgrounds, it enables better 

preservation and segmentation of crucial lesion areas. 

In the classification task, LASH continues to adopt 

traditional convolutional operations instead of depth-wise 

separable convolutions.  Traditional convolutions are capable 

of effectively extracting high-level features of images 

globally, meanwhile ensuring a relatively high classification 

accuracy. In the context of the classification task for breast 

cancer ultrasound images, this approach proves to be more 

suitable. The reason is that the conventional convolutions are 

better able to integrate global information, thereby enhancing 

the classification accuracy. This is particularly evident when 

the target regions are relatively ambiguous or have ill-defined 

boundaries. 

In summary, the LASH model optimizes the original 

detection head of YOLOv11. By reasonably substituting 

convolutional operations, it can better satisfy the 

characteristics and demands of diverse tasks. As a result, in 

the high-pixel image segmentation task, the model can more 

effectively cope with complex scenarios and capture details, 

thus enhancing the overall performance of detection and 

segmentation.   

III.  EXPERIMENT AND RESULTS 

A. Data and Experimental Setup 

In this study, the research objects are derived from the 

publicly available BUS-BRA [21] dataset. This dataset 

includes 1,875 anonymized images from 1,064 female 

patients. These images were acquired by four ultrasonic 

scanners during a systematic investigation at the National 

Cancer Institute (Rio de Janeiro, Brazil).  The dataset 

encompasses tumors confirmed by biopsy, which are 

categorized into 722 benign cases and 342 malignant cases.  

To tackle the problem of a limited number of datasets and 

mitigate the influence of overfitting, in this research, some of 

the 1,875 images in the dataset were augmented through 

translation and flipping operations. Eventually, 2,552 images 

were obtained. The images were partitioned according to a 

ratio of 7:2:1. Specifically, 1786 images were designated for 

training, 510 for testing, and 256 for validation. Additionally, 

measures were taken to ensure that each type of tumor was 

uniformly distributed across the training set, test set, and 

validation set. Such a distribution facilitates the model in 

precisely learning the characteristics of each type of tumor 

and guarantees the accuracy of the model evaluation. 

This experiment was conducted on a system running the 

Windows 10 operating system, equipped with an Intel(R) 

Core (TM) i9-14900HX processor clocked at 2.20 GHz and 

an NVIDIA GeForce RTX 4060 graphics card. The 

deep-learning framework consisted of Python version 3.9.20, 

PyTorch version 2.5.1, and CUDA version 12.1. During the 

training phase, the initial learning rate was set to 0.01, the 

momentum was set at 0.937. The size of the input images was 

640×640, the batch size was 16, and the number of epochs 

was 300. 

B.  Contrast Experiment 

To comprehensively validate the effectiveness of the 

YOLO-MAFS model proposed in this study in instance 

segmentation tasks, this section conducts comparative 

experiments between YOLO-MAFS and mainstream 

lightweight as well as medium-to-high complexity YOLO 

series models. These comparative models include 

YOLOv11n-seg, YOLOv11s-seg, YOLOv8n-seg, 

YOLOv8s-seg, YOLOv5n-seg, and YOLOv5s-seg.  All 

models were trained and evaluated on the same breast 

ultrasound image dataset. The evaluation metrics 

encompassed mAP@50, mAP@50-95, GFLOPs, and the 

number of model parameters.  The experimental results are 

shown in TABLE Ⅱ.  

As can be observed from TABLE Ⅱ, YOLO-MAFS 

exhibits significant advantages in multiple key metrics.  In 

terms of detection accuracy, YOLO-MAFS achieved the 

highest mAP@50 value of 0.852, representing a 4.2% 

 

 
TABLE Ⅱ  

COMPARISON OF MODEL ACCURACY AND COMPUTATIONAL PERFORMANCE IN TASK SEGMENTATION

Methodology Map@50 

(B) 

Map@50-95 

(B) 

Map@50 

(M) 

Map@50-95 

(M) 

GFLOPs Parameters 

YOLOv11n-seg [12] 0.801 0.567 0.810 0.553 10.2 2834958 

YOLOv11s-seg [12] 0.831 0.568 0.830 0.566 35.3 10067590 

YOLOv8n-seg [22] 0.807 0.551 0.808 0.553 10.7 2937174 

YOLOv8s-seg [22] 0.832 0.559 0.828 0.560 57.3 10482454 

YOLOv5n-seg [23] 0.779 0.525 0.784 0.533 6.9 1886015 

YOLOv5s-seg [23] 0.790 0.542 0.797 0.54 26.4 7643158 

YOLO-MAFS 0.843 0.575 0.852 0.578 10.9 3858286 
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over the baseline model YOLOv11n-seg and surpassing the 

moderately complex models YOLOv11s-seg and 

YOLOv8s-seg by 2.2% and 1.8%, respectively. Meanwhile, 

under the more stringent mAP@50-95 metric, YOLO-MAFS 

achieved a relatively high score of 0.578, significantly 

outperforming YOLOv11n-seg (0.553), YOLOv11s-seg 

(0.566), and YOLOv8s-seg (0.560). This result fully 

demonstrates YOLO-MAFS’s stronger stability and 

generalization in multi-scale object detection and detail area 

recognition. YOLO-MAFS not only exhibits outstanding 

segmentation accuracy, but also strikes an efficient balance 

between model scale and inference speed, thereby presenting 

significant potential for practical deployment.  The GFLOPs 

of YOLO-MAFS is 10.9, which is only marginally higher 

than those of YOLOv11n-seg (10.2) and YOLOv8n-seg 

(10.7), yet substantially lower than those of larger-scale 

models like YOLOv11s-seg (35.3) and YOLOv8s-seg (57.3). 

Simultaneously, the number of parameters of YOLO-MAFS 

is 3.86M, which lies within the scope of lightweight models. 

This suggests that the model exhibits favorable deployment 

adaptability and is appropriate for applications in 

resource-constrained edge devices or real-time diagnostic 

scenarios. 

Based on the above analysis, it can be concluded that 

YOLO-MAFS efficiently integrates multi-scale perception 

and attention-guided mechanisms within a lightweight 

architecture. This design enables the model to strike an 

effective balance between high segmentation accuracy and 

low computational overhead. The multi-scale strategy allows 

the model to capture rich contextual information across 

various spatial resolutions, enhancing its ability to recognize 

complex structures. Meanwhile, attention guidance focuses 

computational resources on the most relevant regions, 

improving precision in challenging scenarios. Together, 

these strategies make YOLO-MAFS particularly well-suited 

for accurate and efficient medical image segmentation. 

 To compare the model performance more clearly, Fig.8 

and Fig.9 respectively illustrate the P-R curves of the 

baseline model YOLOv11n-seg and the improved model 

YOLO-MAFS on the validation set. Meanwhile, the 

detection results are presented in the form of a histogram 

(Fig.10). 

 
Fig.8. The validation findings of the YOLOv11n-seg model 

 
 Fig.9. The validation findings of the YOLO-MAFS model 

 

 
Fig.10. The mAP@50 performance comparison between YOLOv11n-seg 

and YOLO-MAFS 

 

It can be clearly observed from Fig.10 that in the task of 

breast cancer segmentation, YOLO-MAFS shows more 

outstanding performance than YOLOv11n-seg. Specifically, 

in the detection of benign and malignant masses, the 

mAP@50 of YOLO-MAFS reached 0.845 and 0.858, 

respectively. Compared with YOLOv11n-seg, these values 

were increased by 2.8% and 5.4%, respectively, indicating 

that YOLO-MAFS achieved relatively significant 

performance improvements across different categories.  This 

can be partly attributed to the numerous optimized designs in 

YOLO-MAFS model. In particular, the introduction of 

HAFB has played a significant role. By strengthening the 

model's capacity to perceive multi-scale information and its 

ability to focus on local key features, YOLO-MAFS attains a 

higher level of accuracy in both the detailed characterization 

of benign masses and the boundary identification of 

malignant masses.  In the malignant category, the remarkable 

enhancement of detection performance demonstrates that 

when confronted with highly challenging lesions, such as 

those with complex morphologies and blurred margins, 

YOLO-MAFS exhibits a more robust capacity for feature 

extraction and discrimination. This advancement not only 

elevates the overall detection precision of the model but also 

bolsters its adaptability and dependability when dealing with 

diverse types of lesions in real-world clinical settings. 
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TABLE Ⅲ 
ABLATION STUDY ON THE YOLO-MAFS MODEL 

Methodology Map@50 

(B) 

Map@50-95 

(B) 

Map@50 

(M) 

Map@50-95 

(M) 

GFLOPs Parameters 

+EMSC+MSFM+HAFB+LASH 0.843 0.575 0.852 0.578 10.9 3858286 

+MSFM+HAFB+LASH 0.831 0.564 0.836 0.567 10.9 3903086 
+EMSC+MSFM+HAFB 0.833 0.57 0.831 0.571 12.8 4384486 

+EMSC+HAFB+LASH 0.838 0.573 0.839 0.568 11.2 3071582 
+EMSC+MSFM+LASH 0.835 0.569 0.828 0.566 8.9 2404558 

+EMSC+MSFM 0.83 0.568 0.832 0.571 10.6 2804918 

+EMSC+HAFB 0.829 0.574 0.834 0.573 12.3 4284430 
+EMSC+LASH 0.828 0.572 0.828 0.567 10.7 3852974 

+MSFM+HAFB 0.837 0.575 0.838 0.57 12.6 4334542 
+MSFM+LASH 0.829 0.566 0.83 0.569 9.0 2419222 

+HAFB+LASH 0.832 0.565 0.828 0.574 10.7 3897774 

+EMSC 0.827 0.565 0.829 0.575 10.2 2790158 
+MSFM 0.825 0.562 0.825 0.567 10.6 2849462 

+HAFB 0.828 0.570 0.828 0.570 10.7 3852974 
+LASH 0.818 0.554 0.827 0.565 8.6 2403502 

YOLOv11 0.801 0.567 0.810 0.553 10.2 2834958 

 

C. Ablation Experiment 

To assess the functions and indispensability of the 

EMSConv, MSFM, HAFB, and LASH modules, a series of 

ablation experiments were carried out in this study.  Using 

YOLOv11 as the baseline model, each module was 

incrementally added or removed. Comparative tests were 

then performed within the task of breast ultrasound image 

segmentation. The evaluation indicators encompass 

mAP@50, mAP@50-95, GFLOPs, and the quantity of 

parameters. The detailed results are presented in TABLE Ⅲ. 

The experimental findings demonstrate that each module 

effectively enhances the model's performance in diverse 

aspects. Upon the introduction of EMSConv, the model's 

capacity for multi-scale feature representation was notably 

enhanced. Specifically, the mAP@50 increased from 0.810 

to 0.827, thereby validating its superiority in scale perception. 

With an efficient semantic fusion mechanism, MSFM 

improves the quality of feature fusion while maintaining low 

computational cost. This enables the model to approximate 

the performance of the full-fledged structure even under a 

lightweight configuration.  The HAFB module bolsters the 

model's comprehension of contextual information and 

boundary details. Evidently, the mAP@50-95 has been 

elevated from 0.553 to 0.574. This module is especially 

conducive to the segmentation of lesions characterized by 

ambiguous morphologies and intricate boundaries. LASH 

optimizes the mask generation path. It demonstrates excellent 

performance in terms of detail preservation and edge 

transition, and moreover, does not introduce an increase in 

inference latency.  

 Further analysis reveals that the absence or isolated 

utilization of individual modules imposes inherent 

limitations. Specifically, when the LASH module is removed 

from YOLO-MAFS, the model demonstrates moderately 

enhanced performance on certain local metrics; however, the 

overall parameter count increases substantially, leading to a 

marked decline in efficiency. When the EMSConv module is 

excluded, although the mAP@50-95 improves slightly from 

0.553 to 0.567, the overall detection accuracy remains 

inferior to that of the complete model. Integrating EMSConv 

and MSFM into the baseline model confers distinct 

advantages in scale adaptation and feature fusion, yet the lack 

of a boundary refinement mechanism frequently results in 

edge misalignment or contour distortion. When only the 

HAFB module is added, improvements in edge extraction 

and local feature integration are observed; nevertheless, the 

model’s parameter count and computational complexity rise 

significantly. Furthermore, feature redundancy tends to 

induce over-segmentation or artifacts, rendering the overall 

performance suboptimal. 

In summary, individual modules typically optimize only 

specific aspects, making it difficult to simultaneously balance 

detection accuracy, edge details, and computational 

efficiency. In contrast, YOLO-MAFS achieves 

multi-dimensional collaborative optimization through the 

integration of multiple modules. While maintaining a 

reasonable number of parameters and GFLOPs, it delivers 

outstanding performance with a mAP@50 of 0.852 and a 

mAP@50-95 of 0.578, which strongly validates the necessity 

and effectiveness of the multi-module collaborative design. 

D. Generalization Experiments 

To comprehensively evaluate the generalization capability 

of the proposed YOLO-MAFS model across different data 

distributions, we conducted experiments not only on the 

BUS-BRA dataset for training and validation, but also on the 

BUSI dataset as a cross-domain evaluation. These 

experiments provide strong evidence of the model’s ability to 

handle diverse data sources in real-world applications. 

The experimental results on the BUSI dataset [24] are 

presented in Fig.11 and Fig.12.  Compared with the baseline 

model, YOLO-MAFS achieved an improvement in 

mAP@50, increasing from 0.797 to 0.815, which represents a 

1.8 percentage point gain. 

 
Fig.11. The validation findings of the YOLOv11n-seg model 

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4558-4567

 
______________________________________________________________________________________ 



 

 

 
Fig.12. The validation findings of the YOLO-MAFS model 

 

 
Fig.13. Visual comparison of segmentation results on the BUSI dataset 
 

Furthermore, to further highlight the advantages of 

YOLO-MAFS, we compared its segmentation results with 

those of the baseline model (Fig. 13). Visualizations reveal 

that YOLO-MAFS delivers higher confidence, more precise 

boundary localization, and fewer missed or false detections in 

breast tumor ultrasound image segmentation. These 

outcomes validate YOLO-MAFS’s robust performance and 

cross-dataset stability, underscoring its potential for 

real-world application.   

E.  Model Evaluation 

To comprehensively evaluate the performance of the 

YOLO-MAFS model, this study conducts comparative 

experiments against same-scale models such as 

YOLOv11n-seg, YOLOv8n-seg, and YOLOv5n-seg, 

assessing its overall effectiveness in segmentation tasks. 

 As shown in Fig.14, the segmentation outcomes of diverse 

models for different types of defects are depicted. The 

experimental findings demonstrate that, in comparison to the 

existing benchmark models, the YOLO-MAFS model 

exhibits superiority in terms of the segmentation accuracy of 

various defect regions, the capacity to identify boundary 

contours, and the detection performance of minute targets. 
Meanwhile, the model still maintains high stability and 

robustness when dealing with complex backgrounds and 

diverse defect morphologies, demonstrating excellent 

generalization ability. These advantageous features 

comprehensively attest to the application potential and 

practical significance of the YOLO-MAFS model within the 

realm of medical image segmentation tasks. 

IV. DISCUSSION 

Although the proposed model has achieved significant 

performance improvements in the task of breast cancer 

ultrasound image segmentation, particularly showcasing 

robust resilience and adaptability when handling lesions with 

ambiguous boundaries and intricate morphologies, certain 

inaccuracies still persist in the actual segmentation outcomes.  

The root cause of the problem lies in the fact that, despite 

the introduction of the HAFB module to enhance boundary 

and context modeling, it still lacks sufficient discriminative 

power for fine-grained structures and ambiguous boundaries. 

This is particularly evident when the boundary features of 

benign and malignant lesions are highly similar, leading to 

segmentation deviations.  
Therefore, future research will focus on further refining 

feature extraction mechanisms and enhancing boundary 

perception capabilities, while actively exploring 

uncertainty-aware learning methods to more accurately 

model ambiguous regions that are prone to diagnostic 

confusion. These targeted enhancements aim to mitigate the 

issues of missed detections and false positives arising from 

boundary inaccuracies in medical image segmentation tasks. 

By addressing such critical challenges, the overarching goal 

is to substantially improve the model’s reliability and elevate 

its practical effectiveness in real-world clinical applications. 

 

 
Fig.14. Visual comparison of segmentation results 
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V. CONCLUSION 

In this study, an innovative model named YOLO-MAFS is 

proposed for the segmentation task of breast cancer 

ultrasound images. The model is designed to accurately 

detect and segment lesions of varying scales with high quality, 

thereby providing solid technical support for 

medical-assisted diagnosis. Based on the architecture of 

YOLOv11, the model has undergone systematic optimization 

and improvement. Firstly, the Efficient Multi-scale 

Convolution Module (EMSConv) is incorporated to replace 

the original C3k2 structure, which enhances the model's 

multi-scale feature modeling capability. Meanwhile, it 

effectively reduces the number of parameters and 

computational burden, thereby improving the model's 

adaptability to lesions of different sizes. Secondly, a 

lightweight multi-scale feature fusion module (MSFM) is 

developed, which adopts Ghost-Shuffle Convolution 

(GSConv) to achieve efficient semantic fusion. This method 

can significantly reduce computational complexity while 

ensuring segmentation accuracy. To strengthen the boundary 

modeling ability, a Hierarchical Attention Fusion Block 

(HAFB) is introduced. By integrating local and global 

attention mechanisms with RepConv, the model's ability to 

perceive the edges and context of complex lesions is 

effectively enhanced. Finally, a lightweight asymmetric 

segmentation head (LASH) is developed. Considering the 

differences between detection, classification, and mask 

prediction tasks, an asymmetric branch structure is designed. 

This structure optimizes the mask generation pathway and 

improves the representation of segmentation details. 

Extensive experimental validation confirms the superior 

performance of YOLO-MAFS, which achieves significant 

improvements of 4.2% in mAP@50 and 2.5% in 

mAP@50-95 compared to YOLOv11. The ablation studies 

demonstrate that each carefully designed module contributes 

independently and synergistically to enhance three critical 

capabilities: multi-scale feature perception, precise boundary 

modeling, and efficient semantic fusion. Comprehensive 

generalization experiments validate the robustness of the 

YOLO-MAFS model across diverse clinical scenarios. 

Notably, YOLO-MAFS maintains low computational 

complexity while delivering more accurate breast lesion 

segmentation than other models of similar scale, effectively 

reducing both false positives and missed detections. These 

results underscore its strong generalization ability and 

substantial clinical potential for breast cancer diagnosis. 

Despite these advancements, the model still faces 

challenges when dealing with lesions that have ambiguous 

boundaries or complex structures. Future research will focus 

on developing more refined boundary supervision techniques, 

enhanced multi-scale attention mechanisms, and optimized 

mask prediction strategies to further improve the 

segmentation accuracy and stability for clinically difficult 

cases. 
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