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Abstract—In recent years, the incidence of breast cancer has
continued to rise. Early screening and precise segmentation of
lesion regions are essential for improving diagnostic accuracy
and patient prognosis. However, limited data availability and
the blurred boundaries of lesions often lead to false detections
and missed segmentations in existing models. To address these
challenges, this paper proposes a novel model for breast cancer
ultrasound image segmentation, named YOLO-MAFS. The
model integrates group convolution into the C3k2 module,
effectively reducing computational complexity while enhancing
segmentation accuracy. Additionally, a lightweight feature
fusion module, MAFM, is introduced to handle the diverse
appearances of lesion regions. To further address the issue of
blurred lesion boundaries, the HAFB module is incorporated
between the backbone and the detection head. Moreover, the
LASH segmentation head is employed to improve the model’s
ability to capture subtle features. Experimental results on the
BUS-BRA dataset demonstrate that YOLO-MAFS achieves
improvements of 4.2% and 2.5% in mAP@50 and mAP@50-95,
respectively, compared to YOLOv11. The model maintains a
lightweight architecture while delivering high accuracy, making
it well-suited for lesion segmentation in breast cancer
ultrasound imaging.

Index Terms—Deep Learning, Breast cancer, Ultrasound
images, YOLOV11, Segmentation

1. INTRODUCTION

ccording to data from the World Health Organization
(WHO), the incidence of breast cancer continues to rise.
Annually, breast cancer accounts for 12.5% of all newly
diagnosed cancers worldwide and remains one of the leading
causes of increased mortality among women [1]. Early
detection and timely diagnosis play a crucial role in the
prevention and treatment of breast cancer. These measures
not only effectively mitigate the incidence and mortality rates
but also significantly lower treatment costs and improve
patient survival rates.
In recent years, due to its advantages of being
radiation-free, non-invasive, cost-effective, and convenient,
breast ultrasound examination has been increasingly
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employed in clinical practice. It has become a crucial tool for
the screening and diagnosis of breast abnormalities. However,
the interpretation of conventional breast ultrasound images
largely depends on the subjective expertise of radiologists,
making it highly susceptible to variations in individual
experience. This not only increases the workload but also
lead to inconsistent diagnostic outcomes. To address this
issue, Computer-Aided Diagnosis (CAD) systems have been
developed to improve diagnostic efficiency, thereby assisting
physicians in making more reliable judgements [2]. Accurate
segmentation of breast ultrasound (BUS) images is crucial in
clinical practice, as it precisely delineates lesion areas, aids
radiologists in localizing breast cancer, and provides
essential information about tumor morphology [3].

Despite significant advancements in artificial intelligence
for breast ultrasound image analysis, current technologies
still face challenges in clinical implementation. Key
limitations include the scarcity of high-quality annotated
datasets, poor model interpretability, and insufficient
robustness when handling complex ultrasound image
characteristics. Consequently, developing segmentation
methods with super generalization capacity, consistent
diagnostic reliability, and enhanced clinical applicability
remains a critical research priority.

In recent years, deep learning techniques have driven
significantly advancements in medical image segmentation,
with architectures such as FCN [4] and U-Net [5]
demonstrating remarkable performance through their
powerful nonlinear representation capabilities. Nevertheless,
traditional convolutional neural networks (CNNs) remain
limited by their local receptive fields during feature
extraction, making it challenging to effectively capture
cross-scale global context information and consequently
restricting feature diversity. To overcome this limitation,
Ronneberger et al. [6] put forward the Attention U-Net model,
which integrates attention gate into the skip connections of
the conventional U-Net, enabling the network to focus on
clinically relevant regions while suppressing irrelevant
background features, thereby enhancing segmentation
accuracy. Further innovations include Qin et al.’s U>-Net [7],
which introduces a nested U-Net structure with cascaded
connections to strengthen multi-scale feature extraction and
detail preservation. The TransUNet model, introduced by
Chen et al. [8], combines the Vision Transformer [9] with the
U-Net architecture. The primary objective of this integration
is to address the limitations of U-Net in capturing long-range
dependencies, thereby enhancing the model's capacity to
model global semantic information.
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Moreover, some research efforts have explored the
integration of object detection and image segmentation to
balance efficiency and accuracy. Su et al. [10] put forward a
hybrid method combining YOLO and LOGO. In this method,
YOLOvV5-L6 is employed to detect and crop breast masses,
followed by a dual-branch segmentation process involving
local and global branches. Ultimately, the results are fused to
improve the accuracy. Li et al. [11] developed an automated
breast mass detection and segmentation framework based on
YOLOvS and GOLO-CMSS architectures. Through the
coordinated operation of detection and the global-local
branches, along with the integration of the multi-scale
selection (MSS) and multi-layer feature fusion (MLI)
mechanisms, this approach has achieved more accurate
localization and segmentation of breast masses.

Although the integration of YOLO with segmentation
networks has improved breast mass detection and
segmentation performance, several critical challenges remain
unresolved. First, the existing feature extraction and fusion
module are not adequately optimized for the distinctive
characteristics of breast ultrasound images, such as blurred
lesion boundaries and significant scale variations. This
limitation results in suboptimal feature extraction and
ineffective fusion, ultimately compromising segmentation
accuracy. Second, in complex clinical scenarios, ultrasound
images are affected by factors like equipment differences,
imaging angle variations, and tissue background complexity.
Existing methods exhibit poor robustness under these
conditions, struggling to maintain stable performance.

To further enhance the performance of mass detection and
segmentation in breast ultrasound images, this study
introduces several architectural enhancements to the
YOLOv11 framework [12], proposing a novel YOLO-MAFS
model optimized for efficient segmentation tasks. The key
contributions include:

1) An efficient multi-scale convolution (EMSConv) was
designed to optimize the structure of the C3k2 module in
YOLOv11. By incorporating a grouped convolution-based
multi-scale feature processing mechanism, the proposed
model significantly improves the model’s capacity to
represent breast masses across varying sizes.

2) A lightweight multi-scale feature fusion module
(MSFM) was proposed. In this module, Ghost-Shuffle
Convolution (GSConv) was employed to substitute for
traditional convolution, thereby enabling low-cost and high-
efficiency multi-level semantic information fusion. When
integrated into the Neck structure of YOLOv11, this module
not only significantly reduces the computational complexity
of the model but also enhances its adaptability to complex
breast lesions and segmentation performance.

3) To enhance the model's ability to precisely model the
boundaries of lesions, a hierarchical attention fusion block
(HAFB) was introduced. This module combines local and
global attention mechanisms along with reparametrized
convolution (RepConv) to effectively aggregate multi-level
semantic information, thereby strengthening the modeling of
context relationships and improving the accuracy of
boundary identification, especially in lesion areas with
blurred boundaries or complex shapes.

4) A lightweight asymmetric segmentation head (LASH)
was developed to resolve the task-specific conflicts between
detection, classification, and mask prediction tasks. By
optimizing the mask generation pathway while maintaining
inference efficiency, LASH enhances segmentation

performance in breast ultrasound images, particularly for
detail handling and edge transitions.

II. METHOD INTRODUCTION

A. Constructing YOLOvI 1

YOLOv11 is a highly efficient object detection algorithm
recently introduced by the Ultralytics team, inheriting the
core advantages of speed and accuracy from the YOLO series.
In addition, YOLOvI1 has excellent scalability and
adaptability, which makes it show certain potential when
dealing with medical images that are diverse and highly
complex [13].

B.  Constructing YOLO-MAFS

To enhance the performance of YOLOv11 breast cancer
ultrasound image segmentation, this paper proposes an
innovative improved model based on YOLOvll, whose
overall structure is shown in Fig.1.

0BS & e

; - CBS
CBSs P'Z —*Comv2d —+BatchNorm2d * SiLU
C.BKl2 5
I I HAFB & — LASH
CBS |, c3K2 °
l 4
Cak2 * *MSEM
I ) . .
CBS 5  |UpSample[  cBs
! ) !
C3K2 C3K2 [*® *MSFM ™
} —‘ i 1 "HAFB & LASH
CBS | MSFM * cky ——1

' i 1 I
ap
_cakz_ﬁmsc |‘\Up5amp|e CB? g
SPPF ° MSFM *
107 l 23|

|
C2PSA * C3k2_EMSC ~—~HAFB & LASH

Fig. 1. Structural Diagram of YOLO-MAFS

Firstly, the model extracts feature from the input image via
the backbone network. In the structure of the backbone
network, the C2k3-EMSC module is introduced. By
employing a multi-scale processing mechanism with grouped
convolution, the model achieves enhanced perception of
breast masses across varying scales. These extracted
high-level features are subsequently processed by the MSFM
module for refined feature integration. This module is
incorporated into the neck architecture of YOLOvI11. On the
premise of maintaining computational efficiency, it can
effectively integrate spatial and semantic information from
different hierarchical levels. Subsequently, the hierarchical
attention fusion block (HAFB) is introduced to conduct a
further fusion of the multi-scale features extracted from the
backbone network and the neck structure. HAFB effectively
establishes  hierarchical  feature  dependencies by
synergistically integrating local and global attention
mechanisms across multiple feature levels. It enhances lesion
boundary modeling, improves the model's understanding of
context, and increases segmentation accuracy and continuity.
Finally, the fused features are input into the LASH module
for detection and segmentation, generating the final
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segmentation results. In the subsequent chapters of this paper,
we will present a detailed account of the design principles
and performance of modules such as C2k3-EMSC, MSFM,
HAFB, and LASH will be presented. This is to validate their
effectiveness in the task of breast cancer ultrasound image
segmentation.

C. Efficient Multi-Scale Convolution (EMSConv)

In YOLOvl11, if the C3k parameter is FALSE, C3k2
becomes the original C2F module; if TRUE, the C2F
Bottleneck is replaced by the C3k module. Drawing on the
GhostNet proposed by Han et al. [14], this research conducts
a structural reconstruction of the Bottleneck structure within
the C3k2 module. An efficient multi-scale convolution
mechanism grounded in grouped convolution (Efficient
Multi-Scale Convolution, EMSConv) was introduced.
Ultimately, the module C3k2-EMSC was constructed, and its
structure is shown in Fig.2.
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Fig. 2. Structure diagram of C3k2_EMSC

The Bottleneck-EMSC module remarkably reduces the
computational complexity in convolution operations by
incorporating  Group Convolution, and effectively
strengthens the feature extraction ability. Its structure is
shown in Fig.3. Within this module, EMSConv evenly
partitions the input channels into four subgroups. Each
subgroup then utilizes convolution kernels of varying scales
for feature extraction. The features extracted from each group
are concatenated, and the features across different channels
are subsequently fused through Pointwise Convolution (PW),
thereby enhancing the representational capacity of each
channel. The uniform distribution of input channels among
multiple convolution groups not only strikes a balance in
computational efficiency but also guarantees that each group
can capture features independently and comprehensively.

Within the EMSConv module, the choice of four
convolution kernels with distinct scales, specifically 1x1,
3x3, 5x5, and 7x7, is grounded in their respective merits in
capturing spatial features across diverse scales. The 1x1
convolutional kernels are specifically designed to extract
localized  fine-grained features through  nonlinear
transformations, which effectively enhances the model's
feature representation capacity. This compact receptive field
enables precise capture of pixel-level patterns while
maintaining ~ computational  efficiency. = The  3x3
convolutional kernels can capture more intricate local
patterns and extract spatial information at a medium scale by
extending the receptive field. In contrast, the 5x5 and 7x7
convolutional kernels, with their larger receptive fields, are
capable of capturing broader contextual information and

global features. Particularly in scenarios involving larger
objects or complex scenes, these kernels facilitate
understanding the relationships between image objects and
the overall image structure.
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Fig. 3. Structure diagrarﬂ of Bottleneck EMSC

As verified experimentally, as shown in TABLE I, when
the number of groups is insufficient, the model fails to
fully exploit multi-scale features, thereby restricting its
feature extraction ability. When the number of groups
becomes excessively large, information tends to be overly
partitioned. This result in inadequate feature fusion across
groups and compromises the effectiveness of the final
feature integration. Consequently, dividing the channels
into four groups ensures that each convolutional kernel
efficiently processes the features of its corresponding
channel group. This strategy allows the model to more
effectively capture feature details at multiple levels,
thereby improving the overall robustness of the model.

TABLE I
TEST RESULTS
Groups mAP@S50(M)
n=3 0.831
n=4 0.852
n=5 0.836

In this study, the C3k2 module in the final layer of the
Backbone and Neck in YOLOvll is replaced with the
enhanced C3k2-EMSC module. The replacement is carried
out at this position because the deep-layer feature maps
exhibit a higher number of channels and richer semantic
information, which makes them more suitable for the
effective operation of multi-scale architectures.

D. Multi-Scale Feature Fusion Module (MSFM)

To improve the efficiency of multi-scale feature fusion in
target segmentation tasks, this study introduces a lightweight
multi-scale feature fusion module (Multi-Scale Feature
Fusion Module, MSFM). This module is integrated into the
Neck component of YOLOvVI11, taking the place of certain
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conventional feature fusion units. The design inspiration of
this module is derived from the SDI module in UNetV2 [15].
Comprehensive optimizations have been carried out in both
the structural design and fusion strategy to better meet the
computational efficiency and representation requirements for
breast cancer ultrasound image segmentation tasks.

In contrast to the UNetV2 approach, which relies on
standard convolution and weighted fusion, the MSFM
module replaces traditional convolutions by integrating the
lightweight and highly efficient Ghost-Shuffle Convolution
(GSConv) [16]. The structure diagram of GSConv is shown

in Fig.4.
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Fig .4. Structure diagram of GSConv

This strategy not only substantially reduce the
computational cost of the model but also enhances the
representational consistency of cross-scale features by means
of the Ghost feature generation mechanism and channel
shuffling.

Assume that the input to the MSFM module (shown in
Fig.5) is a collection of feature maps {x,}", derived from

various scales. First, channel attention is introduced for the
higher-scale features, while spatial attention is incorporated
for the lowest-scale features. This step aims to boost the
intensity of representation for critical information channels or
spatial locations. Then, through an average pooling operation
(adaptive_avg_pool2d), the features are uniformly adjusted
to the same spatial resolution as that of the lowest-scale
feature x, Subsequently, each feature is compressed through

an independent GSConv branch to a unified channel
dimension C Finally, element-wise multiplication
(Hadamard Product) is performed to achieve fusion:

N
Fysry = ©GSConv,(X,) (1)
i=1

Among them, X, represents the i -th feature map after

scale alignment. GSConv stands for a convolutional
operation with the ability of lightweight feature
transformation.

In contrast to traditional feature concatenation or
summation strategies, this multiplicative fusion mechanism
exhibits enhanced efficiency and robustness in information

integration. By performing element-by-element
multiplication operations, the module can more effectively
uncover the co-occurrence relationships among features
across different scales. This strengthens the synergy and
selectivity of feature representation, thereby enhancing the
model's ability to perceive complex image -content.
Furthermore, the incorporation of the lightweight GSConv
(Ghost - Shuffle Convolution) as a feature compression unit
not only effectively preserves the crucial semantic
information within the input features but also significantly
reduces the number of parameters and computational
overhead of the module. Consequently, the inference
efficiency of the overall model is improved.
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Fig .5. Structure diagram of MSFM

In summary, the MSFM module augments the model's
comprehensive modeling capabilities for spatial details and
contextual semantics, demonstrating excellent performance
in multi-scale feature fusion. After being integrated into the
YOLOV11 architecture, the MSFM has exerted a positive
influence on improving the quality of feature representation
and enhancing the target perception ability. Overall, this
underscores its application potential and promotional value
as a general multi-scale fusion module in tasks such as object
segmentation.

E. Hierarchical Attention Fusion Block (HAFB)

In the realm of deep learning, particularly within computer
vision tasks, multi-scale feature fusion and attention
mechanisms have been extensively demonstrated to
substantially boost the model's capacity to perceive complex
scenarios. However, existing methods often encounter the
problem of poor coordination between local and global
information when fusing features, which in turn limits the
model's comprehensive understanding of fine-grained targets
and contextual semantics. To address this challenge, this
study proposes a novel module - the Hierarchical Attention
Fusion Block (HAFB). The structure diagram of HAFB is
shown in Fig.6. Specifically, this module is an improvement
on the hierarchical attention branch (LocalGlobalAttention)
proposed in HCF-Net [17], integrating both local and global
attention branches and refining the fusion of input features
through a hierarchical feature processing path. This design
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not only preserves the spatial details of the input features but
also strengthens the semantic representation capacity of the
global context via an adaptive weighting mechanism.

HAFB employs a parallel multi-branch architecture to
extract features at different scales and semantic hierarchies.
This module encompasses three crucial branches: the local
branch, the global branch, and the serial convolution branch.
Each of these branches is designed to model local details,
global context, and structural information, respectively. This
design significantly elevates the model's performance in
high-precision localization tasks, such as lesion detection.

LacalGlobalAttention (P=2)

HxWxC1

LacalGlobalAttention (P=2)

softmax 1

£ % Feature
- Feed-Forward — X .
= Selection
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Fig .6. Structure diagram of HAFB

Suppose the input feature tensors are F, € R and

F, e R™*% _ Initially, channel compression is carried out
via point-wise convolution to acquire the intermediate feature
F',F, e R with a unified dimension. Subsequently,
these are fed into five parallel branches for processing,

RHXWXC

yielding the local attention branches £, € and

F . eR™C the

lacal,

HxW H :
Fp, € R and F,,,, eR"™ and the convolutional

global attention  branches

branch F

"€ RT7C - After summing up the results of all
branches along the channel dimension, they are fed into the
re-parameterizable convolutional layer (Re-parameterizable

Convolution, RepConv [18]). Eventually, the fused feature

output F e R”"*“is acquired. Among them, RepConv is a

module that adopts a multi-branch structure during the
training stage and fuses into a single convolution operation
during the inference stage. It can significantly improve the
inference speed while ensuring performance.

To achieve effective discrimination and interaction
between the local and global branches, this study partitions
the feature map into non-overlapping regions in the spatial
dimension by manipulating the Patch size parameter.
Subsequently, the aggregation and displacement operations
of local regions are accomplished. Employing the Unfold and
Reshape operations, the features F and F, are partitioned

into contiguous non-overlapping blocks, presenting a feature

. . . H W
representation of dimension px p,—,—, C . Then, average
p p

processing is performed on each channel to obtain a feature

. . . H W
representation of dimension pxp,—,—

. Introduce this
feature into the feed-forward neural network (Feed-Forward
Neural Network, FFN) [19] for linear transformation, and
map it to the probability distribution of spatial response
through the activation function. This distribution is utilized to
assign attention weights to each Patch. By doing so, explicit
modulation in the spatial dimension is achieved, thereby
enhancing the significance of local or global features.

Upon acquiring the weighted Patch representations, this
study further incorporates a task-relevant feature selection
mechanism to bolster the discriminative power of the model.

Letd=HXW
pxp

Here, ¢, € R represents the Patch representation on the i -th

, and represent the weighted result as (z, ),.i] .

channel. To accomplish effective label selection, the
following weighting strategy is proposed:

t; = P-sim(t,, &)1, )
Where, & eRY represents the task embedding vector,

PeR* is the learnable linear projection matrix, and
sim(,) denotes the normalized cosine similarity function
(with a range of [0, 1]).

In this context, & acts as the task embedding, designating

which tokens are relevant to the task. Each token ¢, is

re-weighted according to its relevance to the task embedding
(measured by the cosine similarity), thereby effectively
emulating token selection. Subsequently, a linear
transformation of P is applied to each token for channel
selection. Then, Reshape and smooth interpolation
operations are carried out. Finally, the features

HxWxC HxWxC
Fow €RT7 and  F,,, € R are generated. In

addition, after directly adding F and F, , the result is fed
c RHXWXC of

the serial convolutional branch is thus obtained, which
enhances the ability to model local structures. Ultimately, the
features output by the three branches are fused in RepConv to
generate a unified context-aware feature representation.

The HAFB module can be embedded into various
backbone networks. In this paper, it is integrated between the
head and neck components of the YOLOv11 model. This
integration aims to fully harness its advantages in multi-scale
and fine-grained information extraction.

into a 3x3 convolutional layer. The output F.

conv

F.  Lightweight Asymmetric Segmentation Head (LASH)

In this paper, we proposed a lightweight asymmetric
segmentation head (LASH) based on the Lightweight
Asymmetric Detection Head (LADH) proposed by Zhang et
al. [20]. To address the different requirements of regression
tasks, mask prediction tasks, and classification tasks, this new
head is more suitable for segmenting high-pixel images. It
aims to enhance the computational efficiency and task
accuracy of the model. Fig. 7 provides an overview of the
LASH structure.

During the instance segmentation process, the regression
task primarily focuses on the location and bounding box
information of the object, necessitating the precise capture of
the object's spatial location and dimensions. To extract these
boundary features more effectively, compared with the
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original detection head of YOLOvI1, the LASH model
innovatively substitutes two conventional convolutions with
three 3x3 depth-wise separable convolutions (DWConv) in
the regression task. By doing so, this design allows the model
to extract more intricate features layer-by- layer and
incorporate information at different scales. As a result, it
significantly improves the stability and accuracy of the
regression outcomes.

{proto | = [‘c8s | -Upsampid - cas | cs |
l DBS —— DBS —— DBS 4’Conv2d
Conv2d
DBS —— DBS 4‘Conv2d

Fig .4. Structure diagram of LASH

Regarding the mask prediction task, this task necessitates
precise pixel-level processing. Especially in complex
scenarios, the delicate features of the target are of great
significance. Within LASH, two conventional convolutions
in the mask prediction head are substituted by two 3x3
depth-wise separable convolutions.  Furthermore, the
employment of two depth-wise separable convolutions can
effectively extract the details within an image, prevent
overfitting, and improve the capacity to capture details in the
segmentation task. This optimization can effectively improve
the accuracy and robustness of the mask prediction task.
Especially when handling medical images with high noise
levels and complex backgrounds, it enables better
preservation and segmentation of crucial lesion areas.

In the classification task, LASH continues to adopt
traditional convolutional operations instead of depth-wise
separable convolutions. Traditional convolutions are capable
of effectively extracting high-level features of images
globally, meanwhile ensuring a relatively high classification
accuracy. In the context of the classification task for breast
cancer ultrasound images, this approach proves to be more
suitable. The reason is that the conventional convolutions are
better able to integrate global information, thereby enhancing
the classification accuracy. This is particularly evident when
the target regions are relatively ambiguous or have ill-defined
boundaries.

In summary, the LASH model optimizes the original
detection head of YOLOvll. By reasonably substituting
convolutional operations, it can better satisfy the
characteristics and demands of diverse tasks. As a result, in
the high-pixel image segmentation task, the model can more
effectively cope with complex scenarios and capture details,
thus enhancing the overall performance of detection and
segmentation.

III. EXPERIMENT AND RESULTS

A. Data and Experimental Setup

In this study, the research objects are derived from the
publicly available BUS-BRA [21] dataset. This dataset
includes 1,875 anonymized images from 1,064 female
patients. These images were acquired by four ultrasonic
scanners during a systematic investigation at the National
Cancer Institute (Rio de Janeiro, Brazil). The dataset
encompasses tumors confirmed by biopsy, which are
categorized into 722 benign cases and 342 malignant cases.
To tackle the problem of a limited number of datasets and
mitigate the influence of overfitting, in this research, some of
the 1,875 images in the dataset were augmented through
translation and flipping operations. Eventually, 2,552 images
were obtained. The images were partitioned according to a
ratio of 7:2:1. Specifically, 1786 images were designated for
training, 510 for testing, and 256 for validation. Additionally,
measures were taken to ensure that each type of tumor was
uniformly distributed across the training set, test set, and
validation set. Such a distribution facilitates the model in
precisely learning the characteristics of each type of tumor
and guarantees the accuracy of the model evaluation.

This experiment was conducted on a system running the
Windows 10 operating system, equipped with an Intel(R)
Core (TM) 19-14900HX processor clocked at 2.20 GHz and
an NVIDIA GeForce RTX 4060 graphics card. The
deep-learning framework consisted of Python version 3.9.20,
PyTorch version 2.5.1, and CUDA version 12.1. During the
training phase, the initial learning rate was set to 0.01, the
momentum was set at 0.937. The size of the input images was
640%640, the batch size was 16, and the number of epochs
was 300.

B. Contrast Experiment

To comprehensively validate the effectiveness of the
YOLO-MAFS model proposed in this study in instance
segmentation tasks, this section conducts comparative

experiments between YOLO-MAFS and mainstream
lightweight as well as medium-to-high complexity YOLO
series models. These comparative models include
YOLOv11n-seg, YOLOv11s-seg, YOLOv8n-seg,

YOLOv8s-seg, YOLOv5n-seg, and YOLOvS5s-seg. All
models were trained and evaluated on the same breast
ultrasound image dataset. The evaluation metrics
encompassed mAP@50, mAP@50-95, GFLOPs, and the
number of model parameters. The experimental results are
shown in TABLE II.

As can be observed from TABLE II, YOLO-MAFS
exhibits significant advantages in multiple key metrics. In
terms of detection accuracy, YOLO-MAFS achieved the
highest mAP@50 value of 0.852, representing a 4.2%

TABLE II
COMPARISON OF MODEL ACCURACY AND COMPUTATIONAL PERFORMANCE IN TASK SEGMENTATION
Methodology Map@50 Map@50-95 Map@50 Map@50-95 GFLOPs Parameters
B) (B) ™M) M)
YOLOvI1n-seg [12] 0.801 0.567 0.810 0.553 10.2 2834958
YOLOvI11s-seg [12] 0.831 0.568 0.830 0.566 353 10067590
YOLOvVS8n-seg [22] 0.807 0.551 0.808 0.553 10.7 2937174
YOLOv8s-seg [22] 0.832 0.559 0.828 0.560 57.3 10482454
YOLOv5n-seg [23] 0.779 0.525 0.784 0.533 6.9 1886015
YOLOVS5s-seg [23] 0.790 0.542 0.797 0.54 26.4 7643158
YOLO-MAFS 0.843 0.575 0.852 0.578 10.9 3858286
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over the baseline model YOLOv11n-seg and surpassing the
moderately complex models YOLOvlls-seg and
YOLOVS8s-seg by 2.2% and 1.8%, respectively. Meanwhile,
under the more stringent mAP@50-95 metric, YOLO-MAFS
achieved a relatively high score of 0.578, significantly
outperforming YOLOvllIn-seg (0.553), YOLOvlls-seg
(0.566), and YOLOvVS8s-seg (0.560). This result fully
demonstrates YOLO-MAFS’s stronger stability and
generalization in multi-scale object detection and detail area
recognition. YOLO-MAFS not only exhibits outstanding
segmentation accuracy, but also strikes an efficient balance
between model scale and inference speed, thereby presenting
significant potential for practical deployment. The GFLOPs
of YOLO-MAFS is 10.9, which is only marginally higher
than those of YOLOvlln-seg (10.2) and YOLOv8n-seg
(10.7), yet substantially lower than those of larger-scale
models like YOLOv11s-seg (35.3) and YOLOvS8s-seg (57.3).
Simultaneously, the number of parameters of YOLO-MAFS
is 3.86M, which lies within the scope of lightweight models.
This suggests that the model exhibits favorable deployment
adaptability and is appropriate for applications in
resource-constrained edge devices or real-time diagnostic
scenarios.

Based on the above analysis, it can be concluded that
YOLO-MAFS efficiently integrates multi-scale perception
and attention-guided mechanisms within a lightweight
architecture. This design enables the model to strike an
effective balance between high segmentation accuracy and
low computational overhead. The multi-scale strategy allows
the model to capture rich contextual information across
various spatial resolutions, enhancing its ability to recognize
complex structures. Meanwhile, attention guidance focuses
computational resources on the most relevant regions,
improving precision in challenging scenarios. Together,
these strategies make YOLO-MAFS particularly well-suited
for accurate and efficient medical image segmentation.

To compare the model performance more clearly, Fig.8
and Fig.9 respectively illustrate the P-R curves of the
baseline model YOLOvllIn-seg and the improved model
YOLO-MAFS on the wvalidation set. Meanwhile, the
detection results are presented in the form of a histogram
(Fig.10).
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It can be clearly observed from Fig.10 that in the task of
breast cancer segmentation, YOLO-MAFS shows more
outstanding performance than YOLOv1 1n-seg. Specifically,
in the detection of benign and malignant masses, the
mAP@50 of YOLO-MAFS reached 0.845 and 0.858,
respectively. Compared with YOLOv11n-seg, these values
were increased by 2.8% and 5.4%, respectively, indicating
that YOLO-MAFS achieved relatively significant
performance improvements across different categories. This
can be partly attributed to the numerous optimized designs in
YOLO-MAFS model. In particular, the introduction of
HAFB has played a significant role. By strengthening the
model's capacity to perceive multi-scale information and its
ability to focus on local key features, YOLO-MAFS attains a
higher level of accuracy in both the detailed characterization
of benign masses and the boundary identification of
malignant masses. In the malignant category, the remarkable
enhancement of detection performance demonstrates that
when confronted with highly challenging lesions, such as
those with complex morphologies and blurred margins,
YOLO-MAFS exhibits a more robust capacity for feature
extraction and discrimination. This advancement not only
elevates the overall detection precision of the model but also
bolsters its adaptability and dependability when dealing with
diverse types of lesions in real-world clinical settings.
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TABLE III
ABLATION STUDY ON THE YOLO-MAFS MODEL
Methodology Map@50 Map@50-95 Map@50 Map@50-95 GFLOPs Parameters
B) (B) M) M)
+EMSC+MSFM+HAFB+LASH 0.843 0.575 0.852 0.578 10.9 3858286
+MSFM+HAFB+LASH 0.831 0.564 0.836 0.567 10.9 3903086
+EMSC+MSFM+HAFB 0.833 0.57 0.831 0.571 12.8 4384486
+EMSC+HAFB+LASH 0.838 0.573 0.839 0.568 11.2 3071582
+EMSC+MSFM+LASH 0.835 0.569 0.828 0.566 8.9 2404558
+EMSC+MSFM 0.83 0.568 0.832 0.571 10.6 2804918
+EMSC+HAFB 0.829 0.574 0.834 0.573 12.3 4284430
+EMSC+LASH 0.828 0.572 0.828 0.567 10.7 3852974
+MSFM-+HAFB 0.837 0.575 0.838 0.57 12.6 4334542
+MSFM+LASH 0.829 0.566 0.83 0.569 9.0 2419222
+HAFB+LASH 0.832 0.565 0.828 0.574 10.7 3897774
+EMSC 0.827 0.565 0.829 0.575 10.2 2790158
+MSFM 0.825 0.562 0.825 0.567 10.6 2849462
+HAFB 0.828 0.570 0.828 0.570 10.7 3852974
+LASH 0.818 0.554 0.827 0.565 8.6 2403502
YOLOvI1 0.801 0.567 0.810 0.553 10.2 2834958

C. Ablation Experiment

To assess the functions and indispensability of the
EMSConv, MSFM, HAFB, and LASH modules, a series of
ablation experiments were carried out in this study. Using
YOLOv11l as the baseline model, each module was
incrementally added or removed. Comparative tests were
then performed within the task of breast ultrasound image
segmentation. The evaluation indicators encompass
mAP@50, mAP@50-95, GFLOPs, and the quantity of
parameters. The detailed results are presented in TABLE III.
The experimental findings demonstrate that each module
effectively enhances the model's performance in diverse
aspects. Upon the introduction of EMSConv, the model's
capacity for multi-scale feature representation was notably
enhanced. Specifically, the mAP@50 increased from 0.810
to 0.827, thereby validating its superiority in scale perception.
With an efficient semantic fusion mechanism, MSFM
improves the quality of feature fusion while maintaining low
computational cost. This enables the model to approximate
the performance of the full-fledged structure even under a
lightweight configuration. The HAFB module bolsters the
model's comprehension of contextual information and
boundary details. Evidently, the mAP@50-95 has been
elevated from 0.553 to 0.574. This module is especially
conducive to the segmentation of lesions characterized by
ambiguous morphologies and intricate boundaries. LASH
optimizes the mask generation path. It demonstrates excellent
performance in terms of detail preservation and edge
transition, and moreover, does not introduce an increase in
inference latency.

Further analysis reveals that the absence or isolated
utilization of individual modules imposes inherent
limitations. Specifically, when the LASH module is removed
from YOLO-MAFS, the model demonstrates moderately
enhanced performance on certain local metrics; however, the
overall parameter count increases substantially, leading to a
marked decline in efficiency. When the EMSConv module is
excluded, although the mAP@50-95 improves slightly from
0.553 to 0.567, the overall detection accuracy remains
inferior to that of the complete model. Integrating EMSConv
and MSFM into the baseline model confers distinct
advantages in scale adaptation and feature fusion, yet the lack
of a boundary refinement mechanism frequently results in
edge misalignment or contour distortion. When only the
HAFB module is added, improvements in edge extraction

and local feature integration are observed; nevertheless, the
model’s parameter count and computational complexity rise
significantly. Furthermore, feature redundancy tends to
induce over-segmentation or artifacts, rendering the overall
performance suboptimal.

In summary, individual modules typically optimize only
specific aspects, making it difficult to simultaneously balance
detection accuracy, edge details, and computational
efficiency. In  contrast, YOLO-MAFS  achieves
multi-dimensional collaborative optimization through the
integration of multiple modules. While maintaining a
reasonable number of parameters and GFLOPs, it delivers
outstanding performance with a mAP@50 of 0.852 and a
mAP@50-95 of 0.578, which strongly validates the necessity
and effectiveness of the multi-module collaborative design.

D. Generalization Experiments

To comprehensively evaluate the generalization capability
of the proposed YOLO-MAFS model across different data
distributions, we conducted experiments not only on the
BUS-BRA dataset for training and validation, but also on the
BUSI dataset as a cross-domain evaluation. These
experiments provide strong evidence of the model’s ability to
handle diverse data sources in real-world applications.

The experimental results on the BUSI dataset [24] are
presented in Fig.11 and Fig.12. Compared with the baseline
model, YOLO-MAFS achieved an improvement in
mAP@50, increasing from 0.797 to 0.815, which represents a
1.8 percentage point gain.
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Fig.11. The validation findings of the YOLOvV1 1n-seg model
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Fig.12. The validation findings of the YOLO-MAFS model
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Fig.13. Visual comparison of segmentation results on the BUSI dataset

Furthermore, to further highlight the advantages of
YOLO-MAFS, we compared its segmentation results with
those of the baseline model (Fig. 13). Visualizations reveal
that YOLO-MAFS delivers higher confidence, more precise
boundary localization, and fewer missed or false detections in
breast tumor ultrasound image segmentation. These
outcomes validate YOLO-MAFS’s robust performance and
cross-dataset stability, underscoring its potential for
real-world application.
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Fig.14. Visual comparison of segmentation results
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E. Model Evaluation

To comprehensively evaluate the performance of the
YOLO-MAFS model, this study conducts comparative
experiments against same-scale models such as
YOLOvllin-seg, YOLOv8n-seg, and YOLOv5n-seg,
assessing its overall effectiveness in segmentation tasks.

As shown in Fig.14, the segmentation outcomes of diverse
models for different types of defects are depicted. The
experimental findings demonstrate that, in comparison to the
existing benchmark models, the YOLO-MAFS model
exhibits superiority in terms of the segmentation accuracy of
various defect regions, the capacity to identify boundary
contours, and the detection performance of minute targets.
Meanwhile, the model still maintains high stability and
robustness when dealing with complex backgrounds and
diverse defect morphologies, demonstrating excellent
generalization  ability. These advantageous features
comprehensively attest to the application potential and
practical significance of the YOLO-MAFS model within the
realm of medical image segmentation tasks.

IV. DISCUSSION

Although the proposed model has achieved significant
performance improvements in the task of breast cancer
ultrasound image segmentation, particularly showcasing
robust resilience and adaptability when handling lesions with
ambiguous boundaries and intricate morphologies, certain
inaccuracies still persist in the actual segmentation outcomes.

The root cause of the problem lies in the fact that, despite
the introduction of the HAFB module to enhance boundary
and context modeling, it still lacks sufficient discriminative
power for fine-grained structures and ambiguous boundaries.
This is particularly evident when the boundary features of
benign and malignant lesions are highly similar, leading to
segmentation deviations.

Therefore, future research will focus on further refining
feature extraction mechanisms and enhancing boundary
perception  capabilities, while actively  exploring
uncertainty-aware learning methods to more accurately
model ambiguous regions that are prone to diagnostic
confusion. These targeted enhancements aim to mitigate the
issues of missed detections and false positives arising from
boundary inaccuracies in medical image segmentation tasks.
By addressing such critical challenges, the overarching goal
is to substantially improve the model’s reliability and elevate
its practical effectiveness in real-world clinical applications.
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V. CONCLUSION

In this study, an innovative model named YOLO-MAFS is
proposed for the segmentation task of breast cancer
ultrasound images. The model is designed to accurately
detect and segment lesions of varying scales with high quality,
thereby  providing  solid  technical  support for
medical-assisted diagnosis. Based on the architecture of
YOLOv11, the model has undergone systematic optimization
and improvement. Firstly, the Efficient Multi-scale
Convolution Module (EMSConv) is incorporated to replace
the original C3k2 structure, which enhances the model's
multi-scale feature modeling capability. Meanwhile, it
effectively reduces the number of parameters and
computational burden, thereby improving the model's
adaptability to lesions of different sizes. Secondly, a
lightweight multi-scale feature fusion module (MSFM) is
developed, which adopts Ghost-Shuffle Convolution
(GSConv) to achieve efficient semantic fusion. This method
can significantly reduce computational complexity while
ensuring segmentation accuracy. To strengthen the boundary
modeling ability, a Hierarchical Attention Fusion Block
(HAFB) is introduced. By integrating local and global
attention mechanisms with RepConv, the model's ability to
perceive the edges and context of complex lesions is
effectively enhanced. Finally, a lightweight asymmetric
segmentation head (LASH) is developed. Considering the
differences between detection, classification, and mask
prediction tasks, an asymmetric branch structure is designed.
This structure optimizes the mask generation pathway and
improves the representation of segmentation details.

Extensive experimental validation confirms the superior
performance of YOLO-MAFS, which achieves significant
improvements of 4.2% in mAP@50 and 2.5% in
mAP@50-95 compared to YOLOv11. The ablation studies
demonstrate that each carefully designed module contributes
independently and synergistically to enhance three critical
capabilities: multi-scale feature perception, precise boundary
modeling, and efficient semantic fusion. Comprehensive
generalization experiments validate the robustness of the
YOLO-MAFS model across diverse clinical scenarios.
Notably, YOLO-MAFS maintains low computational
complexity while delivering more accurate breast lesion
segmentation than other models of similar scale, effectively
reducing both false positives and missed detections. These
results underscore its strong generalization ability and
substantial clinical potential for breast cancer diagnosis.

Despite these advancements, the model still faces
challenges when dealing with lesions that have ambiguous
boundaries or complex structures. Future research will focus
on developing more refined boundary supervision techniques,
enhanced multi-scale attention mechanisms, and optimized
mask prediction strategies to further improve the
segmentation accuracy and stability for clinically difficult
cases.
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