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Abstract—As electric bicycle use grows, indoor charging-
related fires have surged, posing serious risks to life and
property. Therefore, a real-time and accurate method for
detecting electric bicycles in elevators is of great research
significance. Addressing complex equipment issues and elevated
false positive rates in existing detection methods, this paper
proposes an electric bicycle detection algorithm for elevators
based on an improved YOLOvS using a State Space Model
(SSM). First, lightweight GhostConv replaces the standard
convolution to reduce the number of parameters. Second, the
SSM-Conv module is introduced to replace the C3 structure,
leveraging the context modeling of the Mamba block to enhance
feature extraction capabilities. Finally, a 2D selective scan-
based SS2D-Fusion module is designed for feature fusion and
integrated into the Neck part, aiming at improving feature
fusion capabilities through cross-layer information interaction
and enhanced context modeling. Additionally, we incorporate a
sample-difficulty-aware SlideLoss into the training framework
to dynamically balance the loss contributions between hard
and regular samples. Experimental results demonstrate that the
improved YOLOvV5n model achieves a 1.6% increase in mAP(.5
and a 6.9% increase in mAP0.5:0.95 compared to the original
model, while reducing the number of parameters by 14.7%.
Consequently, the proposed model enhances detection accuracy
and reduces the parameter count, making it well-suited for edge
computing devices. It effectively improves both the accuracy and
real-time performance of electric bicycle detection in elevators.

Index Terms—electric bicycle detection, YOLOVS, state space
model, GhostConv, feature fusion

1. INTRODUCTION

ITH the rapid pace of urbanization, urban traffic
pressure has increased globally. As a result, electric
bicycles have become increasingly popular due to their
convenience and cost-effectiveness, reaching hundreds of
millions of units worldwide. However, this widespread use
has also introduced many safety hazards. Collectively, illegal
modifications to batteries or motors, substandard charging
equipment, and charging indoors or in hallways increase the
risk of fire, thereby constituting a serious threat to life and
property. To reduce system complexity and false positives,
we propose a lightweight elevator detector that augments
YOLOv5n with state space modeling (SSM).
According to Chinese statistics, over 21,000 reported elec-
tric bicycle fires nationwide in 2023—an increase of 17.4%
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compared to 2022. In 2022, there were 18,000 incidents,
representing a 23.4% rise over 2021. In New York City,
more than 60 incidents of electric bicycle fires were reported
in the first half of 2024, resulting in five deaths. Electric
bicycle fires caused 18 deaths in New York City in 2023,
contributing to 106 fire-related fatalities. Traditional electric
bicycle detection methods in elevators, such as warning signs,
public awareness campaigns, and manual video surveillance,
suffer from low detection efficiency and high labor costs.
In response, researchers have adopted deep learning-based
object detection algorithms for detecting electric bicycles
in elevators, primarily using Convolutional Neural Networks
(CNN) like the YOLO (You Only Look Once) series [1].

Wang et al. developed an innovative electric bicycle
detection system, which integrates image recognition with
elevator control systems to identify electric bicycles within
elevator cabins. Zhou et al. proposed an electric bicycle
detection method based on the YOLOv3 algorithm [2],
combining interior and exterior cameras with ground sensors.
This method achieved high detection accuracy but required
expensive and complex equipment. Yang et al. introduced
an improved YOLOv3-based detection algorithm for elec-
tric bicycles in elevators, enhancing detection accuracy by
replacing the backbone network and incorporating atten-
tion modules [3]. However, the model still had a large
parameter count. He et al. proposed an improved YOLOv5n
model incorporating GhostNet, attention mechanisms, and
a weighted bidirectional feature pyramid network (BiFPN)
[4]. While this model reduced the number of parameters,
its accuracy required further improvement. Other works,
such as [5]-[7], have explored YOLO-based modifications
for different scenarios; however, their approaches are not
directly applicable to elevator environments. Although CNNs
primarily capture image features through local convolution
operations, even with increased layers and pooling operations
to expand the receptive field, capturing global information re-
mains challenging. Consequently, the aforementioned models
face issues of a large number of parameters or inadequate
accuracy.

Compared to CNNs, Transformer [8] models can capture
global dependencies in images at different levels, enabling
a better understanding of the global contextual information
in images. Therefore, transformers, such as the DETR series
[9]-[12], have been introduced into object detection. These
models leverage the powerful global modeling capabilities
of the self-attention mechanism to overcome the limita-
tions of small receptive fields in CNNs [13]-[16]. However,
Transformer-based object detectors face practical limitations:
images are converted into long token sequences, and self-
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attention exhibits O(n?) complexity in sequence length, mak-
ing inference slow—particularly for high-resolution inputs.
To address this, researchers have proposed various optimized
models such as MobileViT [13], EdgeViT [14], and Effi-
cientFormer [15]. Despite the significantly improved detection
accuracy of Transformer models and their variants compared
to CNN models, their large parameter sizes and slower
detection speeds pose difficulties in meeting the requirements
for detecting electric bicycles inside elevators.

Recently, a novel sequence modeling method based on State
Space Models (SSM) has emerged, which has been used for
text, signal, and other sequence modeling tasks. The Mamba
model [17] is an architecture based on a selective state space
model, which retains the long-range modeling capability of
the transformer architecture while having linear complexity.
Researchers have successfully introduced the Mamba archi-
tecture into the vision domain, achieving numerous research
results [18]. Inspired by this, this study introduces the state
space model into the YOLOVS series, which is the most widely
used edge object detection model, and utilizes the Mamba
architecture to seek a balance between detection performance
and speed.

We propose an enhanced YOLOv5n algorithm specifically
designed for detecting electric bicycles in elevators. This
method replaces the original convolutional blocks in the
Backbone with Ghostconv [19], and designs the SSM-Conv
module and SS2D-Fusion module based on SSM, thereby
combining the state space model with the YOLOv5n algorithm
for electric bicycle detection in elevators. Meanwhile, we
introduce the SlideLoss function, which dynamically adjusts
sample weights to improve the model’s focus on hard samples.
Through ablation experiments and comparative experiments,
the improved model is compared with the YOLOv5n model and
other object detection models, including MobileNet v2+SSD
[20], [21], YOLOv3-tiny [22], and YOLOV9-T [23]. We com-
pute and compare mAP0.5, mAP0.5:0.95, parameter counts,
and computational complexity across multiple models.

II. ImprovED YOLOVSN MoODEL BASED ON STATE SPACE

The YOLOVS architecture consists of three main compo-
nents: the Backbone, the Neck, and the Head. The Backbone
layer extracts hierarchical features from the input image, the
Neck layer fuses the features extracted by the Backbone, and
the Head layer predicts the position and class probabilities of
the target based on the fused multi-scale feature maps.

YOLOVS comprises five size-based variants (n, s, m, I, x).
Larger variants employ higher depth/width multipliers and
typically achieve better detection accuracy, but require longer
training time and a higher parameter count. This study focuses
on the detection of electric bicycles in elevators and selects
the YOLOv5n model as the baseline model, considering the
computational constraints of edge devices. While ensuring
similar parameters and computation volumes, a state space
model is introduced to improve detection accuracy and meet
the requirements for accurate detection of electric bicycles.
The architecture of the improved YOLOv5n model is shown
in Figure 1.

Compared with the YOLOvS model, the improved model
mainly includes the following aspects:

1) Inthe Backbone, the lightweight convolution GhostConv

is introduced to replace the standard convolution. Ghost-

Conv generates feature maps via cheap linear operations,
reducing parameters and computation while preserving
accuracy. Additionally, the newly designed SSM-Conv
module replaces the original C3 structure, leveraging
the context modeling of the Mamba block to enhance
the feature extraction capability of the Backbone.

2) In the Neck, the original feature pyramid structure
is replaced with the SS2D-Fusion module, which is
based on 2D Selective Scanning (SS2D) [18]. This
module enhances feature fusion capability and detection
accuracy by more effectively fusing multi-scale features
through cross-layer information interaction and context
modeling.

The improved YOLO model enhances the feature extraction
and fusion capabilities of the original network by introducing
a state space model in both the Backbone and Neck parts of
YOLOVS.

A. Mamba Block

The state space x of a Linear Time-Invariant (LTT) system
can be represented by Equation (1). The Structured State Space
for Sequence Modeling (S4) discretizes these equations using
a Zero-Order Hold (ZOH) into Equations (2).

x(t+1) = Ax(z) + Bu(¢) |
y(t) = Cx(t) + Du(r) 1
X[k + 1] = Agx[k] + Byu[k] )
ylk] = Cax[k] + Dgu[k]

Where x[k], u[k], and y[k] are the state, input, and output
at discrete time step k, respectively; Ay, By, Cy4, Dy are the
discretized matrices.

In the S4 model, these discretized matrices A4, By, C4, and
D, are treated as learnable parameters, enabling modeling of
long sequences through machine learning.

The structure of the Mamba block is shown in Figure 2.
Similar to the Gated MLP [24]-[26], the Mamba block adds
convolutional layers and Selective State Space Models (S6)
to the main branch, where o represents the SILU activation
function. Unlike the fixed parameters in the Structured State
Space for Sequence Modeling (S4) [27], some parameters in
Mamba’s S6 block can be dynamically adjusted. Depending
on the input, the S6 calculates the input matrix, output matrix,
and discretization interval of the state equations through
Equations (3) to (5), thereby eliminating the LTI constraints
and enabling content-dependent inference and efficient long-
sequence modeling.

sp(x) = Lineary (x) 3)
sc(x) = Lineary (x) 4)
sa(x) = Broadcastp (Linear (x)) (5)

where Lineary (x) denotes a linear transformation applied
to the input x using a weight matrix of size N X dinput
with dinpu Tepresents the dimension of the input features.
Linear| (x) refers to a linear transformation with a weight
matrix of size 1 X dinpu, Which produces a single output
that is subsequently broadcast to align with the dimensions
required for subsequent operations. The function Broadcast
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D(-) represents the process of expanding the single output
into a tensor of size D by repeating the values across the new
dimensions, thereby enabling element-wise operations with
other tensors.

B. SSM-Conv Block

In order to enhance the feature extraction capability of
the Backbone, this study designs the SSM-Conv module,
whose structure is shown in Figure 3. Inspired by the Inverted
Residual Block in MobileNetV?2 and the Meta Mobile Block,
this module adopts an inverted dual-branch structure. The
main branch, after pointwise convolution, splits the input
by channels and captures global context through Mamba
blocks that share weights; the other branch employs depthwise
convolution to further enhance local perception and enhance
semantic feature extraction of the SSM-Conv module.

Initially, the number of channels of the input features is
expanded from C to h. via pointwise convolution. In the
main branch, the expanded input is divided into four equal
parts, each with /4 channels, and each part is sequentially
processed by Mamba blocks. In the alternate branch, the output

Fig. 3: Structure of the SSM-Conv module

from the pointwise convolution passes through depthwise
convolution. The feature maps produced by both branches are
then concatenated channel-wise and subsequently processed
through another pointwise convolution to restore the channel
count to the original C.

In Figure 3, *Chunk’ denotes the chunking operation, and
’Concat’ denotes the concatenation operation. The Mamba
block first reshapes the data into the shape (B,H x W,C)
before feeding it into the Mamba block. The architecture
employs parallel processing with Mamba blocks, meaning that
the chunks created after splitting are processed by the same
Mamba block. This approach ensures that the total number
of channels remains unchanged while reducing the number of
parameters. Algorithm 1 outlines the process of the SSM-Conv
module.
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Algorithm 1: SSM-Conv Operation
Input: Input feature map X with shape (B, C, H, W)
Output: Output feature map Y
X' « Pointwise Conv(X) ; // Expand channels
to he

{X], X}, X}, X} < Chunk(X",4) ; // Split
into 4 parts
fori=1 1t 4do
X/ < Layernorm(X/); // Layer

normalization
Y; < Mamba block(X/);
Z «— DWconv(X') ;
convolution
Y « Concat(Yy,Y>,Y3,Y4,Z); // Concatenate
along channel dimension
return Y

// Depthwise

C. SS2D-Fusion Module

In the process of image feature extraction, shallow features
contain low-dimensional texture details and the positions
of smaller objects, whereas deep features capture high-
dimensional information and the positions of larger objects.
By integrating high-level semantic features with low-level
detailed features through feature fusion, the resulting feature
maps retain both high-level semantic insights and low-level
spatial details. This cross-scale information fusion enhances
the robustness and accuracy of the detector.

Feature Pyramid Networks (FPN) offer an effective ar-
chitecture for merging multi-scale features via cross-scale
connections and information exchange, thus enhancing the
detection accuracy for objects with varying sizes. However,
traditional FPNs are not only structurally complex but also
facilitate information interaction between non-adjacent layers
(such as Level-1 and Level-3) only indirectly through multiple
inter-layer fusions, potentially leading to information loss.
To overcome this limitation, we introduce the SS2D-Fusion
module, which leverages compressed hidden states extracted
along image block scan paths to gain contextual knowledge
and achieve more efficient fusion.

The structure of the SS2D-Fusion module is depicted in
Figure 4. To facilitate fusion, feature maps from various
levels are resized to a uniform dimension using upsampling
and downsampling techniques. Specifically, nearest-neighbor
interpolation enlarges the feature maps from Level-1 to match
the size of those from Level-2. Conversely, feature maps from
Level-3 are reduced to Level-2 dimensions using average
pooling. After resizing, all feature maps are concatenated along
the channel dimension and then processed by the SS2D-Fusion
module.

In the S6 block of SS2D, the substantial increase in
parameters primarily results from the expanded number of
channels. To mitigate this, pointwise convolutions are em-
ployed to compress the channel count. Initially, the fused
output undergoes a pointwise convolution that reduces the
channel count to one-fourth of its original size, followed
by layer normalization and SS2D processing. Subsequently,
the channels are restored to their original number through
another pointwise convolution. The SS2D operation is shown
in Figure 5, consisting of scan expansion, S6 block feature

extraction, and scan merging. The scan expansion operation
projects and chunks the feature map, expanding it through
four scanning methods: from top-left to bottom-right, bottom-
right to top-left, top-right to bottom-left, and bottom-left to
top-right. The resulting scan sequences are processed by the
S6 for feature extraction. Finally, the scan merging operation
produces a new feature map of the same size as the original.
A shortcut connection is used to enhance the retention and
transmission of feature information. The feature map processed
by SS2D is enhanced for local perception through a depthwise
convolution block. The fused feature map is split by channels
and restored to its original size through max pooling.

D. Loss function

In the scenario of electric bicycle detection inside elevators,
the target detection task faces significant challenges due to
complex factors such as object occlusion, drastic lighting
changes, and multiple perspectives. Since these challenging
samples account for an extremely low proportion in the
dataset, traditional training methods struggle to enable the
model to fully capture their features, resulting in limited
detection performance of the model in complex scenarios. To
address this, this paper introduces the SlideLoss [23] function,
formulated as follows:

1 ifx<u-0.1,
el H

fx) = ifu—0.1<x<pu, (6)

e ifx >

SlideLoss uses the average IoU of the bounding boxes
as the threshold u, treating samples with values less than
M as negative samples and those greater than yp as positive
samples. It assigns higher weights to hard samples through a
weighting function. Dynamic reweighting and adaptive feature
learning improve the model’s characterization of hard cases
and enhance detection robustness in complex scenes.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments were conducted on Ubuntu, using PyTorch
2.3.0 and CUDA 12.2. The hyperparameters for the experi-
ments were set as follows: a batch size of 16 and an input
image size of 640x640. The dataset was divided into training,
validation, and test sets ina 7 : 1.5 : 1.5 split.

The experimental dataset is a mixture of images collected
from the internet and publicly available elevator surveillance
datasets, totaling 7,000 images. The original dataset is catego-
rized into three classes: people, electric bicycles, and bicycles.
Allimages are captured in real elevator environments, covering
various scenarios at different times, lighting conditions, and
elevator settings, aiming to provide diverse training samples
to enhance the model’s generalization capability.

A. Evaluation Metrics

During experiments, we evaluate the model’s computational
cost using two key metrics: one is FLOPs, which measure the
number of floating-point operations performed in one forward
pass of the model, reflecting its computational complexity;
the other is the total amount of model parameters. To provide
a comprehensive assessment of the model’s inference perfor-
mance, we also consider several critical metrics: precision,
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recall, and Mean Average Precision (mAP) at mAP0.5 and
mAP0.5:0.95. These metrics are essential for evaluating the
model’s detection precision and its stability across different
decision thresholds. The performance metrics mentioned are
calculated using the following formulas:

. TP
Precision = — @)
TP+ FP
TP
R =—
ecall TP+ FN 3

Here, TP (True Positives) means the number of samples
correctly predicted as positive, and FP (False Positives) means
the number of samples incorrectly predicted as positive. A
detection counts as TP if it matches a ground-truth object of the
same class with IoU > the threshold; unmatched predictions
are FP, and unmatched ground truths are FN.

N
1

APO.5 = — AP;|1ou= 9

m N ;:1 [10U=0.50 &)

N
1
mAP0.5:0.95 = Z

i=1

T
1
- Zl: AP; (IoU,) (10)
=
Where AP refers to:
100

1
AP = dr ~ — 3
_/0 p(rydr 101 ;)fgc%oop(r)

The p(7) is the precision value at a specific recall level 7 and
IoU refers to:

(1)

Area of Intersection

IoU = (12)

Area of Union

B. Ablation Study

To evaluate the effectiveness of the proposed SSM-Conv and
SS2D-Fusion modules, we conducted ablation experiments
using YOLOvV5n as the baseline model, under the same random
seed and hyperparameter settings. The experimental results are
presented in Table .

Experiment 1 employs the baseline YOLOv5n model.
Experiment 2 replaces the C3 layers of YOLOv5n with SSM-
Conv and substitutes the Backbone convolutional layers with
GhostConv. Experiment 3 extends Experiment 2 by integrating
an SS2D-Fusion module into the neck architecture. Experi-
ment 4 further refines Experiment 3 by adopting SlideLoss as
the loss function to enhance learning capabilities for complex
samples. The results indicate that incorporating SSM-Conv in
the Backbone part leads to a certain improvement in the detec-
tion accuracy of YOLOv5n while reducing GFLOPs, making
it more advantageous in resource-constrained edge computing
environments. In Experiment 3, the SS2D-Fusion module is
introduced for feature fusion. Due to the simpler structure
of the SS2D-Fusion module compared to the FPN+PAN
module in YOLOv5n, the number of parameters is reduced
by 16.2%, while the mAPO.5 increases by 1.6% and the
mAPO0.5:0.95 increases by 5.7%. With similar computational
costs, the improved model has fewer parameters yet higher
accuracy, achieving a better balance between parameter count
and detection accuracy in specific application scenarios.
Experiment 4 further integrates SlideLoss as the loss function,
which adjusts model weights to enhance learning capabilities
for complex samples. This results in improved robustness in
complex environments, with mAP0.5:0.95 increasing by an
additional 1.2%.

To validate the practical effectiveness of the improved
model, this study performs electric bicycle detection across
various scenarios, including changes in lighting conditions,
complex backgrounds, and different viewpoints, to assess the
robustness of the model.

As shown in Figure 6, the improved model can accurately
detect targets in various environments, meeting the require-
ments of electric bicycle alarm systems in elevators.

Figure 7 presents the confusion matrix of the improved
YOLOvV5n model, which evaluates the model’s classifica-
tion performance across different categories. The diagonal
elements of the confusion matrix indicate the proportion of
correct classifications for each category, while the off-diagonal
elements represent the proportion of misclassifications. As
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TABLE I: Results of Ablation Study

Experiment SSM-Conv ~ SS2D-Fusion  SlideLoss  Precision  Recall mAP0.5 mAP0.5:0.95 Parameters GFLOPs
1 X X X 0.891 0.909 0.953 0.694 1.76M 4.1
2 v X X 0.919 0.896 0.958 0.705 1.79M 3.8
3 v v X 0.953 0.922 0.969 0.751 1.50M 4.8
4 v v v 0.937 0.940 0.969 0.763 1.50M 4.8
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shown in the figure, the correct classification rates for bicycles,
person class, and electric bicycles are 0.93, 0.93, and 0.91,
respectively. Although the model exhibits some instances
of false detection, its overall performance across various
categories remains relatively higher.

Figure 8 shows the precision-recall curve for the enhanced
YOLOVS model. The results illustrate that the model achieves
high precision and recall rates across various object categories.
Notably, the ’electric-bicycle’ category records the highest
precision at 0.980, followed by "person’ at 0.969, and *bicycle’

Fig. 8: Precision-Recall Curve

at 0.959. The average precision across all categories stands
at 0.969, demonstrating that the model consistently maintains
high recognition accuracy across most detection tasks. Re-
markably, the precision remains high even near a recall rate
of 1, suggesting a low false positive rate when the model
detects nearly all positive samples. This combination of high
precision and recall underscores the model’s robustness and
suitability for precise detection of electric bicycles in elevator
environments.

Through systematic structural modifications, the proposed
methodology enhances the model’s ability to prioritize glob-
ally representative features over localized cues. Class activa-
tion maps (CAM) provide a visual interpretation mechanism
by aggregating spatial features across feature maps, enabling
qualitative analysis of the model’s attention distribution. We
performed CAM-based visualization to validate the enhanced
global feature perception capability of the refined model for
electric bicycle detection in complex elevator cabin environ-
ments. As illustrated in Figure 9, while the baseline model pre-
dominantly focuses on local patterns corresponding to partial
contours, the enhanced architecture exhibits hierarchical shape
perception extending from local to global receptive fields. This
improvement enables robust recognition through multi-scale
contextual integration, effectively integrating both regional
attributes and global spatial relationships. Consequently, the
model maintains detection accuracy under severe occlusion
and illumination variations.

To further evaluate robustness to lighting shifts, blur, and
sensor-induced noise in elevator scenes, we constructed three
synthetic-perturbation test sets—Blur, Brightness, and Gaus-
sian Noise. Each setis divided into five severity levels arranged
from mild to severe, and none of the test images are involved
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in model training or fine-tuning, thereby allowing a strict
zero-shot generalization test. The perturbation parameters are
as follows:

1) Blur: Gaussian blur with kernel sizes 3 x3,5%x 5,9 x9,
11 x 11, and 15 x 15;

2) Brightness: simultaneous brightness—contrast adjust-
ments of +15%, +30%, +45%, +60%, and +75%;

3) Gaussian Noise: additive zero-mean Gaussian noise
N(0,0%) on images, with five severity ranges for
o:[0.02,0.04], [0.04,0.08], [0.08,0.12], [0.12,0.16],
and [0.16,0.20].

Table II shows that our improved model consistently
outperforms the YOLOvV5n baseline under fifteen corruption
settings. Across all fifteen settings, our model achieves higher
mAP scores, indicating improved robustness under all tested
perturbation scenarios.

1) Blur: Across all five levels of Gaussian blur, our model
exhibits consistent robustness, achieving an average
mAPO0.5:0.95 of 0.734, which reflects an absolute
improvement of 0.11 over the baseline. Notably, this
advantage becomes increasingly significant as degra-
dation intensifies. At Level 5, corresponding to the
largest blur kernel size of 15 X 15, the proposed detector
surpasses the baseline by a margin of 0.140 in terms of
mAPO0.5:0.95 (0.712 vs. 0.572), demonstrating superior
resilience to detail loss and spatial smoothing. The
consistent performance gap under progressively severe
blur conditions indicates that the global contextual
representations introduced by SSM-Conv effectively
mitigate the degradation of local textures, while the
cross-scale aggregation achieved through SS2D-Fusion
compensates for semantic dilution caused by blurring.
As a result, the proposed model retains its discrimina-
tive capacity even when structural details are heavily
obscured.

2) Brightness: Even under the most extreme +75% ad-
justment (Level 5), the model achieves improvements
of 0.093 mAPO0.5 and 0.089 mAP0.5:0.95 over the
baseline, respectively. The consistent performance gap
observed across severity levels 1 through 4 indicates that
our model’s illumination robustness is effective across

a broad spectrum of operating conditions, rather than
being restricted to a single brightness setting.

3) Gaussian Noise: Among the three corruption types,
Gaussian noise induces the largest absolute performance
drop. At the lowest perturbation level (Lvl, (o €
[0.02,0.04]), the proposed model outperforms the base-
line by 0.088 mAP0.5:0.95. When the standard deviation
doubles (Lv2, (o € [0.04,0.08]), the performance
gap widens substantially to 0.201 mAP0.5:0.95, repre-
senting a 34.7% relative improvement. Even under the
most challenging conditions (Lv 5, (o € [0.16,0.20]),
where baseline detectors experience severe degradation,
our model maintains a 0.047 advantage, confirming
its ability to preserve discriminative signals while the
baseline becomes nearly overwhelmed by noise. The
precision and recall exhibit a similar trend: at Gaussian
Noise Level 3 ((o € [0.08,0.12]), the improved model
achieves a recall of 0.806 compared to the baseline’s
0.681, indicating that the baseline suffers significant
degradation under moderate noise while our model
maintains high robustness. This robustness can be
attributed to the global context captured by SSM-Conv,
which provides long-range redundancy beneficial for
denoising, as well as SlideLoss, which emphasizes rare
and challenging noisy samples during training, thereby
enabling the network to learn noise-resistant features.

Overall, the proposed detector consistently outperforms
the YOLOv5n baseline, with mAP0.5:0.95 improving by
4.7%—-20.1% and mAPO.5 increasing by 1.7%—17.1%. These
improvements across all perturbation settings confirm the ef-
fectiveness of our proposed components. SSM-Conv provides
global context modeling, while SS2D-Fusion enables cross-
scale feature aggregation. Additionally, SlideLoss introduces
difficulty-aware re-weighting. These elements significantly
enhance the detector’s robustness against blur, severe illumina-
tion variation, and sensor noise, which are common distortions
in confined elevator cabins.

C. Comparative Experiments

To validate the superiority of the improved model, compar-
isons were made with six commonly used target detection
models on edge devices, including MobileNet v2+SSD,
YOLOV3-Tiny, YOLOv4-Tiny, YOLOvV7-Tiny, YOLOv8&n, and
YOLOVO-T. The experimental results are presented in Table II1.

According to the experimental results, the improved
YOLOv5n model, which incorporates a state space ap-
proach, achieved superior performance in two key metrics:
mAPO0.5 and mAPO0.5:0.95, reaching 0.969 and 0.763, respec-
tively. When compared to MobileNet v2+SSD, YOLOv3-
tiny, YOLOv4-tiny, and YOLOvV7-tiny, the improvements in
mAPO.5 were 6.9%, 2%, 2.8%, and 0.1%, respectively; for
mAPO0.5:0.95, the improvements were 7.6%, 6.0%, 31.4%, and
5.7%, respectively. The YOLOv8n and YOLOV9-T models,
which use an anchor-free decoupled head for direct bounding
box prediction, show similar mAPQ.5 scores to our model but
have higher mAP0.5:0.95 scores. However, both models have
a significantly higher number of parameters and GFLOPs than
our improved model. Featuring a low number of parameters
and GFLOPs, our model contains only 1.5M parameters, which
is 55.8%, 50%, 75%, 75.8%, 53.1%, and 43.6% lower than the
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TABLE II: Robustness evaluation under synthetic perturbations.

. YOLOvV5n Baseline Improved Model (Ours)
Perturbation Level
P R mAPO0.5 mAP0.5:0.95 P R mAPO.5 mAP0.5:0.95
1 0.919 0.889 0.945 0.684 0.944 0937 0.968 0.764
2 0.932 0.863 0.924 0.666 0.939 0918 0.962 0.753
Blur 3 0.909 0.793 0.873 0.603 0.928 0.876 0.943 0.725
4 0.922 0.775 0.870 0.601 0.929 0.863 0.936 0.716
5 0912 0.744 0.844 0.572 0.926 0.867 0.926 0.712
1 0.910 0.888 0.949 0.684 0.945 0.924 0.966 0.757
2 0.878 0.861 0.927 0.646 0.922 0905 0.953 0.729
Brightness 3 0.842 0.808 0.870 0.584 0917 0.814 0.899 0.661
4 0.829 0.668 0.758 0.496 0.877 0.742 0.824 0.588
5 0.818 0.537 0.637 0.413 0.866 0.598 0.706 0.502
1 0.885 0.869 0.941 0.671 0.950 0912 0.967 0.759
2 0.839 0.762 0.875 0.580 0.925 0.900 0.959 0.781
Gaussian Noise 3 0.695 0.681 0.726 0.431 0.850 0.806 0.897 0.631
4 0.604 0.547 0.562 0.293 0.743 0.609 0.717 0.450
5 0.530 0.387 0.403 0.186 0.599 0.357 0434 0.233

TABLE III: Results of comparative experiments

Model mAPO.5 mAP0.5:0.95 Parameters GFLOPs
MobileNet v2+SSD  0.900 0.687 3.4M 0.3
YOLOV3-tiny 0.949 0.703 3.0M 5.5
YOLOv4-tiny 0.941 0.449 6.0M 6.9
YOLOV7-tiny 0.968 0.706 6.2M 13.8
YOLOvV8n 0.970 0.792 3.2M 8.7
YOLOVY-T 0.964 0.812 2.66M 11.0
Ours 0.969 0.763 1.5M 4.8

other models, respectively. Our model requires 4.8 GFLOPs
per inference, showing reductions of 12.7%, 30.4%, 65.2%,
44.8%, and 56.4% compared to the five baseline models, ex-
cept MobileNet  v2+SSD. Although the MobileNet v2+SSD
model has a lower GFLOPs value due to its simpler structure, it
significantly lags behind our model in mAP0.5, mAP0.5:0.95,
and parameter count.

By integrating the SSM-Conv module and SS2D-Fusion
module, the improved YOLOv5n model outperforms most
other models at different IoU thresholds, markedly enhancing
detection accuracy while maintaining low parameter and com-
putational complexity. This indicates that the model is more
precise in locating targets and more reliable in classification.
Therefore, the proposed model better meets the requirements
of edge computing environments in the specific application
scenario of electric bicycle detection in elevators.

IV. CoNcLusIiON

This paper proposes an improved algorithm based on the
state space model for detecting electric bicycles in elevators.
By replacing the original convolution blocks with GhostConv
in the Backbone, designing the SSM-Conv module, integrating
the SS2D-Fusion module in the neck, and applying the
SlideLoss function, we have enhanced the YOLOv5n model
and applied it to a specific scenario.

Experimental results show that the improved YOLOv5n
model significantly outperforms the YOLOv3-tiny and
YOLOv4-tiny models with comparable computational cost in
terms of prediction accuracy. Furthermore, our model achieves

an mAPO.5 close to that of the best model, YOLOv8n, but
with lower computational and parameter requirements. By
designing the SSM-Conv module and SS2D-Fusion module,
the improved model achieves good accuracy with fewer
parameters, which is suitable for deployment on resource-
constrained edge devices. The findings of this study provide
support for effectively preventing safety incidents such as fires
involving electric bicycles inside elevators. This ensures the
safety of residents’ lives and property, and reduces operational
costs, providing significant practical benefits and application
value for public safety.
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