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Abstract—To address the performance degradation in
multi-view multi-label learning caused by missing views,
missing labels, and label noise, this paper proposes a
two-stage information-driven multi-view multi-label learning
framework tailored for incomplete data and noisy labels.
Inspired by information theory, the proposed method introduces
task-relevance constraints and information compression
mechanisms to effectively extract task-relevant information
from incomplete and noisy data while suppressing irrelevant
information. Specifically, in the first stage, multiple view-specific
encoders are trained to extract discriminative representations
from each view, focusing on task-relevant features. A label
confidence mechanism is incorporated to identify and mitigate
the adverse impact of label noise during training. In the
second stage, the hidden representations obtained from the first
stage are integrated through a fusion alignment mechanism
and an autoencoder-based architecture. Additionally, a
graph regularization term based on a label co-occurrence
graph is introduced to enhance the modeling of structural
correlations among labels and improve classifier accuracy
for final prediction. Experimental results on fifteen public
datasets demonstrate that the proposed method outperforms
state-of-the-art approaches across various evaluation metrics,
particularly under scenarios involving incomplete data and
label noise. The method effectively mitigates performance
degradation caused by data incompleteness and noisy labels,
resulting in enhanced prediction accuracy and stability in
multi-label learning, which is consistent with theoretical
expectations.

Index Terms—deep learning, multi-view learning, multi-label
learning, label noise

I. INTRODUCTION

MULTI-VIEW data arises when an entity is observed
from different perspectives, each providing distinct

yet potentially complementary information. Such data often
captures both shared and view-specific features of the same
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instance. In addition, a single object or image typically
conveys rich semantic content, leading to the association
of multiple labels [1]. For instance, a landscape photograph
might be represented using descriptors such as SIFT, Gist,
and HSV, and annotated with labels like “sea,” “clouds,” and
“fish” [2].

To make better use of multi-view multi-label data, the
concept of Multi-view Multi-label Classification (MvMLC)
has been introduced, leading to the development of
several techniques based on assumptions of view and
label completion over the past few years [3]. However,
it has been increasingly recognized by researchers that,
in practical scenarios, multi-view multi-label data is often
incomplete due to uncertainties during data collection and
manual labeling processes. The absence of certain views
or labels poses significant challenges for MvMLC tasks,
thereby highlighting the pressing need and importance of
studying incomplete Multi-view Multi-label Classification
(iMvMLC) [4].

In the context of iMvMLC, traditional approaches such
as iMvWL [5] proposed by Tan et al. and NAIML [6]
developed by Li et al. have been explored. iMvWL integrates
multi-view features and multi-label information into a
discriminative shared space simultaneously. On the other
hand, NAIML successfully leverages the consistency among
multi-view data and the structural relationships between
multi-labels. Despite their achievements, these methods
still face notable limitations. For instance, both traditional
techniques rely on shallow machine learning models, which
are unable to capture deep discriminative patterns within the
data and exhibit low computational efficiency. Additionally,
matrix factorization-based methods like iMvWL encounter
difficulties when dealing with new test samples during
prediction using trained models [7].

Recent developments in deep neural networks (DNNs),
such as MTD [8] and RANK [9] proposed by Liu et al.,
have shown remarkable advantages in this area. Compared
to traditional matrix factorization techniques, DNNs are
superior at capturing high-level semantic information and
better suited for addressing complex challenges in iMvMLC.

Specifically designed DNN architectures for iMvMLC
tasks have seen the widespread adoption of autoencoders,
while contrastive learning has emerged as an effective
strategy for performance improvement [10]. However,
existing iMvMLC methods have failed to fully exploit
the core principles of contrastive learning—particularly the
extraction of task-relevant information through maximizing
cross-view mutual information (MI) [11]. This limitation
restricts their ability to fully utilize valuable information.
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Fig. 1. The Main Framework of TIMMLIN

Moreover, label noise is common in practical applications,
especially in optical domains. For example, in remote
sensing imagery or medical optical imaging, high image
complexity and ambiguous semantic boundaries often
lead to annotation biases or inconsistencies during expert
labeling, resulting in incorrect tags. Such label noise
can corrupt supervisory signals, impair the learning of
critical discriminative features, and ultimately degrade
classification performance [12]. Despite this, most current
methods still assume label accuracy when dealing with
incomplete multi-view multi-label data, neglecting the
practical challenges posed by label noise.

To tackle these issues, inspired by information-driven
theory and contrastive learning analysis, this paper introduces
an Information-Driven Network for Incomplete Data
Classification with Label Noise (IDLCLN), as shown in
Fig. 1. By considering both data incompleteness and the
presence of noisy positive labels, our training process
focuses not only on classification performance but also on
representation quality. Accordingly, we design a two-phase
network architecture for IDLCLN: Phase 1: A Noise-aware
Enhanced Representation Generation Network. Phase 2: An
Incomplete Multi-view Classification Network with Mutual
Prediction Capabilities.

Unlike existing approaches, our model aims to integrate
task-relevant information compression with mutual
information extraction to address IDLCLN challenges.
Our main contributions are summarized as follows:

1. A novel DNN framework developed from an
information-driven perspective to solve IDLCLN problems.
This work highlights the potential of information-driven

theory in tackling IDLCLN challenges.
2. An innovative information-driven framework

that balances cross-view mutual information and
view-specific information. Specifically, our method not
only extracts task-relevant features from individual
views but also integrates shared and complementary
information across views within a unified architecture. The
framework effectively addresses pervasive label noise in
real-world scenarios through confidence mechanisms and
graph-structured constraints, suppressing noise interference
while enhancing model robustness and expressiveness under
non-ideal data conditions.

II. RELATED WORKS

A. Information-Driven Theory

Information-driven theory offers a principled and unified
framework for representation learning by emphasizing
the suppression of redundant features while preserving
discriminative information. This enables the extraction of
more distinctive and informative representations. The central
principle involves enhancing task-relevant information and
suppressing irrelevant signals within the input data—a
strategy that has demonstrated effectiveness in single-view
scenarios [13]. More recently, efforts have been made to
extend this framework to multi-view learning, with the
aim of addressing challenges such as view incompleteness.
However, current approaches often fail to fully exploit
both the shared and view-specific information across
multiple perspectives, which constrains their generalization
performance in complex, real-world settings.
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B. Application of Information Theory in Contrastive
Learning

In the field of contrastive learning, numerous researchers
have pursued theoretical insights into its underlying
mechanisms. Oord et al. [14] demonstrated that the widely
adopted Noise-Contrastive Estimation (NCE) [15] loss serves
as a lower bound to the mutual information (MI) between
different views, thereby leading to its reinterpretation as
the InfoNCE loss. This theoretical insight suggests that
the performance improvements achieved through contrastive
learning are primarily attributed to the maximization of
cross-view mutual information.

Building upon this foundation, Tsai et al. [16] provided
further theoretical justification from an information-theoretic
perspective. Within the multi-view learning framework,
non-overlapping information across views is typically
regarded as noise or redundancy. Consequently, increasing
mutual information between views facilitates the extraction
of more discriminative and task-relevant features. However,
in practical applications, multi-view data is not always
derived through data augmentations or consistent
transformations, which may undermine the validity of
this assumption. Therefore, it is essential to not only
enhance inter-view information sharing but also preserve
the semantic integrity of the original inputs. This highlights
the necessity

III. METHOD

This section provides a systematic description of
the proposed model, which consists of two sequential
phases: Phase 1: A Noise-Aware Enhanced Representation
Generation Network, and Phase 2: An Incomplete
Multi-View Classification Network with Mutual Prediction
Capabilities. Before delving into the technical details, we
first formalize the problem definition and introduce the
necessary notations to ensure clarity.

A. Problem Definition

We formally define the IDLCLN task as follows: A given
dataset with m views and n samples is denoted as: {V (k) ∈
Rn×d(k)}mk=1, where d(k) is the feature dimension of the k-th
view. We define Y ∈ {0, 1}n×l as the label matrix, where l
is the number of categories. Yi,j = 1 indicates that the i-th
sample is marked with the j-th category, otherwise Yi,j = 0.
Considering the compatibility for missing views and missing
labels, we define two key prior matrices, the missing-view
indicator MV ∈ {0, 1}n×m and the missing-label indicator
ML ∈ {0, 1}n×l. Taking the i-th sample as an example,
Mi,j

V = 1 means its j-th view is available, otherwise
Mi,j

V = 0. Mi,j
L = 0 indicates that we are not sure whether

the i-th sample has the j-th label, otherwise Mi,j
L = 1. For

simplicity, we fill random values for the missing views in the
original data and set ‘0’ for unknown labels. Our objective is
to train a neural network model on data with missing values
and noise, enabling it to perform multi-label classification on
samples with incomplete data and label noise. In addition,
our representative notations are summarized in Table I.

TABLE I
NOTATIONS

Notation Description

n,m, l number of samples, views, and categories, respectively
d
(k)
v , d

(k)
x , d

(k)
z different dimensions

v(k) ∈ Rd
(k)
v the original instance from k-th view

x(k) ∈ Rd
(k)
x first-stage representation

z(k) ∈ Rd
(k)
z second-stage representation

y ∈ {0, 1}l label
V (k), X(k), Z(k) data matrices

X̃(u,k) ∈ Rn×d
(u)
x reconstruction of X(u) from Z(k)

Y ∈ {0, 1}n×l label matrix
Ỹ (k), Ỹ ∈ [0, 1]n×l prediction of Y
MV ∈ {0, 1}n×m missing-view indicator matrix
ML ∈ {0, 1}n×l missing-label indicator matrix

Dencoder, Ddecoder encoder and decoder, respectively
FC , F classifier

B. First Stage: A Noise-Aware Enhanced Representation
Generation Network

Numerous studies have emphasized that high-quality
representations should ideally retain substantial task-relevant
information while filtering out task-irrelevant components
essentially aligning with the notion of a minimal sufficient
statistic. In the context of IDLCLN tasks, raw input data v(k)

typically carries a significant amount of irrelevant content,
which may hinder the performance of the downstream
classification model.

To mitigate this problem, drawing inspiration from
information-theoretic principles, we propose to derive a more
refined and task-relevant representation x(k) that adheres
to the Information-Driven principle, thereby serving as a
replacement for the original low-purity instance v(k):

min
x(k)

−I(x(k); y) + β(k)I(x(k); v(k)), (1)

where β(k) > 0 serves as a tunable parameter. The
term I(x(k); y) represents the MI between the transformed
representation x(k) and the corresponding label y, which
can be practically estimated via minimizing the standard
cross-entropy loss. On the other hand, I(x(k); v(k)) measures
the MI between x(k) and the original input v(k), acting
as a regularization term that penalizes the retention of
task-irrelevant information in x(k).

Directly optimizing this objective is generally intractable
due to the complexity of mutual information estimation.
To address this issue, we adopt a variational approximation
strategy inspired by [17], which enables us to derive the
following tractable upper bound:

I(x(k); v(k)) ≤ Ep(x(k),v(k))

[
log

p(x(k)|v(k))
q(x(k))

]
, (2)

where E represents expectation, and q(x(k))
represents an approximate distribution to the marginal
distribution p(x(k)). Focusing on this upper bound,
we can arbitrarily set q(x(k)) = N (x(k)|0, I) and
p(x(k)|v(k)) = N (x(k)|µ(k),Σ(k)) for computational
expedience, where both mean µ(k) ∈ Rd(k)

x and diagonal
covariance Σ(k) ∈ Rd(k)

x ×d(k)
x are correlated with v(k).

Specifically, we utilize a special MLP D(k) to derive µ(k)

and Σ(k). When the input of D(k) is the data matrix
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V(k) ∈ Rn×d(k)
x , we let two new symbols represent its

output, namely U(k) ∈ Rn×d(k)
x and S(k) ∈ Rn×d(k)

x . So
X(k) = U(k) + ϵ ⊙ S(k), where ϵ ∈ Rn×d(k)

x is a standard
Gaussian distribution matrix, and ⊙ denotes the Hadamard
product.

By substituting the two Gaussians p(x(k)|v(k)) and
q(x(k)) into formula (2), decomposing them into multiple
one-dimensional Gaussians, and approximating the marginal
distribution p(v(k)) using an empirical distribution, formula
(2) can be transformed into the equivalent problem

min 1
2nd

x(k)

∑n
i=1

∑d
x(k)

j=1

(
− log

(
S
(k)
i,j

)2

+
(
U

(k)
i,j

)2

+(
S
(k)
i,j

)2

− 1
)
.

To enhance the robustness of the model against label
noise, especially for noise present in positive labels,
a representation-aware label confidence mechanism is
proposed. Specifically, a lightweight MLP module Φ

(k)
conf

is designed to take the view-specific representation x(k)

as input and generate a label confidence matrix C(k) ∈
[0, 1]n×l:

C(k) = σ
(
Φ

(k)
conf

(
x(k)

))
, (3)

where σ(·) represents the sigmoid activation function.
The generated confidence weights are embedded into the
cross-entropy loss as dynamic weights for each label, which
helps reduce the impact of unreliable labels during model
training. Furthermore, by integrating the missing-view and
missing-label indicator matrices, MV and ML, the loss
function excludes the negative effects of unavailable views
and labels. The final form of the revised supervised loss is
given by:

L(k)
ID =

1

nl

n∑
i=1

l∑
j=1

M i,j
V M i,j

L · C(k)
i,j ·

[
(1− Yi,j)

log(1− Ỹ
(k)
i,j ) + Yi,j log(Ỹ

(k)
i,j )

]
,

(4)

where Ỹ (k) is the output of module F
(k)
C . Accordingly, the

overall loss function for the first stage becomes:

L(k)
stage-1 = L(k)

ID +
β(k)

2ndx(k)

n∑
i=1

d
x(k)∑
j=1

M i,k
V ·

(
− log

(
Σ

(k)
i,j

)2

+
(
µ
(k)
i,j

)2

+
(
Σ

(k)
i,j

)2

− 1
)
.

(5)

The first component represents the cross-entropy loss,
which facilitates the extraction of information relevant to
the target task and aligns with −I(x(k); y). The second
component serves as a compression constraint, encouraging
the representation to retain less redundant information, and
corresponds to I(x(k); v(k)).

Clearly, the training in the first stage actually involves
separately utilizing data from each view to predict the label.
As shown in Figure 1, the raw data V (k) directly pass through
the two MLPs D(k) and F

(k)
C to predict the label Y in

the first stage. F
(k)
C is used solely for training F

(k)
C and

will be discarded after training. After the first-stage training,
we obtain several MLPs {F (k)

C }mk=1 that can enhance the
concentration of task-relevant information.

C. Second Stage: An Incomplete Multi-View Classification
Network with Mutual Prediction Capabilities

To more effectively utilize informative signals, contrastive
learning is often employed through optimization of the
original InfoNCE loss. However, this approach may
inadvertently separate positive sample pairs. Although
supervised contrastive learning offers improved performance,
its direct application to iMvMLC tasks is hindered by
incomplete label annotations. Motivated by the ideas
in [18], we design an autoencoder-based mutual information
extraction framework capable of facilitating cross-view
prediction.

Motivated by previous studies, we aim to enhance
cross-view MI in multi-view learning while retaining
essential original semantics, guided by principles from
information theory:

max
z(k), k=1,...,m

1

m(m− 1)

m∑
k=1

m∑
u̸=k

I(z(k);x(u))

+
λ

m

m∑
k=1

I(z(k);x(k)),

(6)

where λ > 0 is a combination factor, and z(k) is the
second-stage representation. According to MI, we have
I(z(k);x(u)) = H(x(u)) − H(x(u) | z(k)), where H(x(u))
represents the entropy and H(x(u) | z(k)) represents the
conditional entropy. Since the m trained MLPs {F (k)

C }mk=1

are fixed in the second stage, we can ignore H(x(u)). So
our goal is to maximize −H(x(u) | z(k)). By employing
variational approximation, we have:

−H(x(u) | z(k)) ≥ Ep(x(u),z(k))

[
log q(x(u) | z(k))

]
. (7)

Similarly, we can also set q(x(u) | z(k)) = N (x(u) |
µ(u,k), σI), with a fixed σ ∈ R, and the mean µ(u,k) ∈
Rd(u)

x is dependent on z(k). In this case, maximizing
Ep(x(u),z(k))

[
log q(x(u) | z(k))

]
is equivalent to minimizing

Ep(x(u),z(k))

[
∥x(u) − µ(u,k)∥22

]
. In our work, we employ

a decoder Ddecoder to generate µ(u,k), i.e., µ(u,k) =

D
(u)
decoder(z

(k)), and denote the reconstructed sample as
x̃(u,k) = D

(u)
decoder(z

(k)). With the same treatment applied
to I(z(k);x(k)), by introducing MV , we can obtain
the following information-theoretic loss for incomplete
multi-view learning:

LCL =
1

nm(m− 1)

n∑
i=1

m∑
k=1

m∑
u ̸=k

M i,u
V M i,k

V

d
(u)
x∥∥∥x(u)

i − x̃
(u,k)
i

∥∥∥2
2
+

λ

nm

n∑
i=1

m∑
k=1

M i,k
V

d
(k)
x∥∥∥x(k)

i − x̃
(k,k)
i

∥∥∥2
2
= LCL1 + λLCL2,

(8)

where LCL1 denotes the first component, aimed at enhancing
cross-view MI, and λLCL2 indicates the second component,
which helps retain the original information. It is worth noting
that minimizing the loss in Equation (6) further strengthens
cross-view MI in the second stage network, functioning
similarly to contrastive learning, yet differing from InfoNCE
by not relying on instance-level discrimination.
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Now we are discussing the structure of the new
autoencoder network in this stage. Each encoder D

(k)
encoder

comprises two parts. The first part is a view-specific module
D

(k)
1 mapping X(k) to a joint semantic space and the second

part is a shared module D2. Therefore, D(k)
encoder(X

(k)) =

D2

(
D

(k)
1 (X(k))

)
, where D

(k)
1 and D2 are both MLPs.

Furthermore, we utilize one specific decoder D
(u)
decoder

in conjunction with different representations Z(k)m

k=1 to
reconstruct specific X(u), so that X̃(u,k) = D

(u)
decoder(Z

(k)).
In this way, we use the same set of decoders and part of the
same encoder D2 to implicitly align the representations.

It is important to note that our approach reduces
the mutual information (MI) between x(k) and v(k)

during the first stage, while increasing the MI between
z(k) and x(k) in the second stage. Although this may
appear contradictory at first glance, we provide the
following rationale to justify its effectiveness. Within the
autoencoder framework, z(k) is intended to retain as
much informative content from x(k) as possible; therefore,
the informativeness and purity of x(k) are of critical
importance. When the original instance v(k) contains
substantial noise or redundancy, it becomes necessary to first
extract task-relevant information—effectively implementing
an initial compression step—before attempting to preserve
and reconstruct meaningful features. As a result, the
model focuses on reconstructing x(k) rather than the
noisier v(k), thereby improving the overall quality of the
learned representations. This mechanism proves especially
advantageous when the integrity of v(k) is compromised.

Final Prediction and Overall Objective Loss After
acquiring the informative representations {Z(k)}mk=1 from
each view, the next step is to integrate them for final
prediction. Due to view incompleteness, direct concatenation
is infeasible. Although a naive strategy such as simple
averaging can be employed, it fails to consider the differing
significance among views. Therefore, we utilize a widely
adopted fusion approach designed specifically for scenarios
with missing views, formulated as:

Z̄i,· =
m∑

k=1

w(k) ·
Z

(k)
i,· ·Mi,k

V∑m
r=1 M

i,r
V

, (9)

which is a weighted average of the Z
(k)
i,· . {w(k)}mk=1 are

learnable weights that have been processed through softmax.
For the final classifier F , we employ MLPs. And we utilize
the cross-entropy loss function, which is shown as follows:

LCE =
1

nl

n∑
i=1

l∑
j=1

Mi,j
L

[
(1−Yi,j) log(1− Ỹ∗

i,j)

+ Yi,j log(Ỹ
∗
i,j)

] (10)

where the final prediction Ỹ = F ∈ [0, 1]n×l is learnable
weights that have been processed through softmax. To
further enhance the model’s capability in modeling label
correlations and suppress the propagation of label noise, we
introduce a label co-occurrence graph regularization term.
Specifically, we define a label graph ML ∈ Rl×l based on the
co-occurrence statistics of labels in the training data. Given
the predicted label distribution Ỹ, we encourage semantically

related labels to have similar predictions via the following
graph smoothness regularization:

Lgraph = Tr

(
Ỹ∗L

(
Ỹ∗

)⊤
)
, (11)

where L = D − GL is the Laplacian matrix of the label
graph. By combining (6) , (8) and (9) through a parameter
α, we can obtain the final objective loss for the network in
the second stage:

LSCL = LCE + αLCL1 + γLCL2 + λGLgraph, (12)

where λG is a regularization coefficient that balances the
contribution of label structure information.

Algorithm 1 Training Process

Input: Incomplete multi-view data {V(k)}mk=1, indicator
matrices MV ,ML, multi-label matrix Y, batch size B,
parameters {β(k)}mk=1, α, γ
Output: The trained model

Stage 1: Initialize {D(k),F
(k)
C }mk=1

for k = 1 to m do
while not converged do

Compute X(k) = D(k)(V(k))

Ỹ = F
(k)
C (X(k)), L(k)

ID

Update D(k),F
(k)
C

end while
end for
Save {D(k)}mk=1

Stage 2: Initialize {D(k)
1 }mk=1, D2, {D(k)

decoder}mk=1,
classifier F, weights {w(k)}mk=1

while not converged do
for k = 1 to m do

Compute Z(k) = D2(D
(k)
1 (D(k)(V(k))))

end for
for u = 1 to m do

for k = 1 to m do
Compute X̃(u,k) = D

(u)
decoder(Z

(k))
end for

end for
Compute Z̄, Ỹ = F(Z̄), LSCL

Update parameters
end while
Save final model components

IV. EXPERIMENTS

This section presents a systematic evaluation of the
effectiveness and performance of the proposed TIMMLIN
model, conducted through extensive experiments on fifteen
publicly available datasets.

TABLE II
STASTICS OF THE EXPERIMENT DATA SET.

Dataset #View #Label #Sample #Label/#Sample

Corel5k 6 260 4999 3.40
ESPGame 6 268 20770 4.69
Iaprtc12 6 291 19627 5.72
Pascal07 6 20 9963 1.47
MirFlickr 6 38 25000 4.72
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TABLE III
AVERAGE PRECISION UNDER DIFFERENT NOISE LEVELS ON FIFTEEN DATASETS

Dataset Noise Level AIM DMVMLC LMVCAT MTD RANK iMvWL VCMN TIMMLIN

Corel5k
30%Sample 0.388± 0.013 0.335± 0.008 0.359± 0.012 0.392± 0.005 0.396± 0.004 0.252± 0.008 0.382± 0.008 0.435± 0.008
50%Sample 0.385± 0.005 0.332± 0.009 0.355± 0.011 0.391± 0.001 0.394± 0.008 0.250± 0.011 0.381± 0.006 0.430± 0.010
70%Sample 0.381± 0.005 0.330± 0.001 0.354± 0.003 0.388± 0.002 0.395± 0.007 0.249± 0.007 0.381± 0.004 0.429± 0.002

ESPGame
30%Sample 0.299± 0.002 0.292± 0.003 0.283± 0.009 0.298± 0.003 0.310± 0.014 0.221± 0.003 0.299± 0.005 0.323± 0.011
50%Sample 0.297± 0.001 0.291± 0.002 0.281± 0.011 0.297± 0.009 0.307± 0.008 0.219± 0.014 0.299± 0.009 0.321± 0.002
70%Sample 0.294± 0.012 0.290± 0.013 0.278± 0.007 0.296± 0.013 0.304± 0.004 0.217± 0.008 0.298± 0.008 0.320± 0.007

Iaprtc12
30%Sample 0.319± 0.009 0.317± 0.002 0.303± 0.011 0.320± 0.010 0.336± 0.008 0.214± 0.014 0.320± 0.013 0.363± 0.006
50%Sample 0.320± 0.010 0.315± 0.005 0.302± 0.012 0.320± 0.012 0.337± 0.004 0.214± 0.007 0.318± 0.008 0.362± 0.001
70%Sample 0.320± 0.010 0.315± 0.006 0.301± 0.010 0.321± 0.012 0.337± 0.008 0.210± 0.009 0.319± 0.014 0.361± 0.001

MirFlickr
30%Sample 0.591± 0.004 0.586± 0.005 0.581± 0.005 0.601± 0.007 0.595± 0.006 0.473± 0.011 0.607± 0.015 0.620± 0.015
50%Sample 0.586± 0.011 0.586± 0.011 0.580± 0.005 0.599± 0.013 0.594± 0.014 0.471± 0.013 0.606± 0.014 0.616± 0.002
70%Sample 0.588± 0.009 0.584± 0.006 0.581± 0.015 0.598± 0.004 0.594± 0.005 0.439± 0.001 0.606± 0.002 0.614± 0.007

Pascal07
30%Sample 0.547± 0.008 0.529± 0.012 0.519± 0.003 0.547± 0.011 0.551± 0.015 0.458± 0.013 0.554± 0.012 0.579± 0.009
50%Sample 0.545± 0.006 0.525± 0.013 0.516± 0.005 0.547± 0.008 0.545± 0.007 0.455± 0.007 0.548± 0.003 0.578± 0.013
70%Sample 0.540± 0.012 0.522± 0.010 0.508± 0.006 0.546± 0.010 0.545± 0.006 0.452± 0.009 0.544± 0.010 0.577± 0.004

TABLE IV
HAMMING LOSS UNDER DIFFERENT NOISE LEVELS ON FIFTEEN DATASETS

Dataset Noise Level AIM DMVMLC LMVCAT MTD RANK iMvWL VCMN TIMMLIN

Corel5k
30%Sample 0.987± 0.005 0.987± 0.002 0.986± 0.002 0.987± 0.004 0.987± 0.003 0.978± 0.008 0.987± 0.008 0.988± 0.005
50%Sample 0.987± 0.004 0.987± 0.006 0.986± 0.014 0.987± 0.014 0.987± 0.011 0.978± 0.012 0.987± 0.003 0.988± 0.001
70%Sample 0.987± 0.004 0.987± 0.003 0.986± 0.009 0.987± 0.008 0.987± 0.009 0.978± 0.008 0.987± 0.008 0.988± 0.001

ESPGame
30%Sample 0.982± 0.005 0.982± 0.012 0.981± 0.001 0.983± 0.015 0.982± 0.014 0.970± 0.010 0.982± 0.002 0.983± 0.002
50%Sample 0.982± 0.012 0.982± 0.011 0.981± 0.006 0.983± 0.012 0.982± 0.001 0.970± 0.011 0.981± 0.008 0.983± 0.014
70%Sample 0.982± 0.009 0.982± 0.006 0.981± 0.013 0.983± 0.015 0.982± 0.013 0.970± 0.009 0.981± 0.014 0.983± 0.001

Iaprtc12
30%Sample 0.980± 0.008 0.980± 0.007 0.979± 0.003 0.981± 0.009 0.980± 0.014 0.966± 0.004 0.980± 0.007 0.981± 0.005
50%Sample 0.980± 0.002 0.980± 0.004 0.979± 0.010 0.981± 0.004 0.980± 0.009 0.966± 0.005 0.980± 0.011 0.981± 0.003
70%Sample 0.980± 0.001 0.980± 0.007 0.979± 0.004 0.981± 0.006 0.980± 0.007 0.966± 0.002 0.980± 0.007 0.981± 0.001

MirFlickr
30%Sample 0.888± 0.009 0.888± 0.008 0.880± 0.015 0.890± 0.002 0.890± 0.005 0.830± 0.011 0.890± 0.014 0.894± 0.011
50%Sample 0.889± 0.009 0.888± 0.013 0.880± 0.008 0.890± 0.011 0.890± 0.013 0.830± 0.005 0.890± 0.008 0.894± 0.011
70%Sample 0.888± 0.007 0.888± 0.005 0.881± 0.004 0.890± 0.002 0.890± 0.015 0.830± 0.013 0.880± 0.009 0.894± 0.013

Pascal07
30%Sample 0.930± 0.004 0.928± 0.002 0.919± 0.009 0.930± 0.013 0.932± 0.008 0.880± 0.003 0.930± 0.010 0.933± 0.005
50%Sample 0.930± 0.003 0.927± 0.015 0.917± 0.006 0.930± 0.009 0.932± 0.009 0.880± 0.012 0.930± 0.009 0.933± 0.009
70%Sample 0.930± 0.002 0.927± 0.006 0.920± 0.005 0.930± 0.002 0.932± 0.002 0.880± 0.006 0.930± 0.007 0.933± 0.005

TABLE V
RANKING LOSS UNDER DIFFERENT NOISE LEVELS ON FIFTEEN DATASETS

Dataset Noise Level AIM DMVMLC LMVCAT MTD RANK iMvWL VCMN TIMMLIN

Corel5k
30%Sample 0.888± 0.003 0.871± 0.008 0.863± 0.003 0.877± 0.009 0.887± 0.011 0.861± 0.007 0.887± 0.009 0.913± 0.013
50%Sample 0.887± 0.010 0.869± 0.013 0.863± 0.014 0.877± 0.010 0.886± 0.012 0.861± 0.006 0.887± 0.008 0.914± 0.002
70%Sample 0.888± 0.013 0.872± 0.009 0.863± 0.015 0.878± 0.010 0.886± 0.007 0.861± 0.004 0.887± 0.012 0.915± 0.003

ESPGame
30%Sample 0.839± 0.008 0.841± 0.006 0.820± 0.007 0.831± 0.003 0.845± 0.009 0.803± 0.005 0.837± 0.010 0.857± 0.012
50%Sample 0.839± 0.015 0.840± 0.011 0.818± 0.002 0.831± 0.006 0.842± 0.005 0.803± 0.002 0.836± 0.006 0.857± 0.015
70%Sample 0.839± 0.008 0.840± 0.004 0.818± 0.013 0.830± 0.013 0.842± 0.010 0.803± 0.012 0.836± 0.004 0.857± 0.001

Iaprtc12
30%Sample 0.877± 0.009 0.875± 0.015 0.858± 0.011 0.868± 0.010 0.882± 0.006 0.829± 0.007 0.876± 0.005 0.897± 0.009
50%Sample 0.878± 0.009 0.876± 0.007 0.860± 0.002 0.868± 0.004 0.883± 0.005 0.828± 0.004 0.875± 0.001 0.897± 0.013
70%Sample 0.877± 0.005 0.876± 0.014 0.860± 0.014 0.868± 0.011 0.883± 0.015 0.828± 0.014 0.874± 0.002 0.897± 0.014

MirFlickr
30%Sample 0.868± 0.005 0.867± 0.002 0.858± 0.010 0.872± 0.014 0.871± 0.010 0.799± 0.002 0.874± 0.008 0.884± 0.003
50%Sample 0.870± 0.014 0.867± 0.014 0.858± 0.012 0.872± 0.009 0.871± 0.010 0.799± 0.008 0.874± 0.004 0.885± 0.012
70%Sample 0.868± 0.003 0.866± 0.009 0.860± 0.008 0.872± 0.014 0.871± 0.005 0.799± 0.008 0.875± 0.011 0.885± 0.007

Pascal07
30%Sample 0.822± 0.015 0.801± 0.007 0.800± 0.012 0.827± 0.007 0.824± 0.009 0.732± 0.009 0.830± 0.014 0.845± 0.008
50%Sample 0.830± 0.014 0.800± 0.012 0.804± 0.013 0.828± 0.014 0.827± 0.003 0.731± 0.002 0.830± 0.009 0.845± 0.014
70%Sample 0.827± 0.006 0.804± 0.010 0.807± 0.014 0.828± 0.008 0.830± 0.005 0.731± 0.010 0.830± 0.010 0.844± 0.005
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TABLE VI
AUC UNDER DIFFERENT NOISE LEVELS ON FIFTEEN DATASETS

Dataset Noise Level AIM DMVMLC LMVCAT MTD RANK iMvWL VCMN TIMMLIN

Corel5k
30%Sample 0.890± 0.003 0.874± 0.013 0.866± 0.011 0.881± 0.003 0.890± 0.010 0.863± 0.005 0.890± 0.014 0.918± 0.008
50%Sample 0.890± 0.008 0.873± 0.006 0.866± 0.001 0.881± 0.014 0.889± 0.001 0.863± 0.004 0.890± 0.014 0.915± 0.006
70%Sample 0.890± 0.002 0.872± 0.013 0.866± 0.001 0.881± 0.006 0.890± 0.015 0.863± 0.013 0.888± 0.009 0.916± 0.005

ESPGame
30%Sample 0.844± 0.008 0.846± 0.002 0.825± 0.003 0.836± 0.002 0.849± 0.004 0.810± 0.008 0.842± 0.007 0.862± 0.006
50%Sample 0.844± 0.014 0.844± 0.010 0.823± 0.007 0.836± 0.012 0.848± 0.013 0.810± 0.010 0.842± 0.012 0.862± 0.015
70%Sample 0.844± 0.005 0.844± 0.007 0.823± 0.004 0.836± 0.004 0.847± 0.013 0.810± 0.011 0.842± 0.009 0.861± 0.014

Iaprtc12
30%Sample 0.879± 0.014 0.874± 0.002 0.860± 0.009 0.870± 0.007 0.882± 0.004 0.831± 0.002 0.876± 0.002 0.897± 0.006
50%Sample 0.879± 0.013 0.874± 0.007 0.860± 0.007 0.870± 0.012 0.883± 0.012 0.831± 0.012 0.875± 0.013 0.896± 0.004
70%Sample 0.878± 0.012 0.876± 0.002 0.860± 0.014 0.870± 0.011 0.883± 0.005 0.831± 0.008 0.874± 0.003 0.868± 0.012

MirFlickr
30%Sample 0.856± 0.008 0.833± 0.007 0.845± 0.008 0.858± 0.010 0.857± 0.014 0.784± 0.004 0.862± 0.011 0.871± 0.008
50%Sample 0.857± 0.011 0.837± 0.013 0.843± 0.011 0.858± 0.012 0.858± 0.012 0.784± 0.005 0.860± 0.013 0.869± 0.002
70%Sample 0.858± 0.013 0.836± 0.011 0.849± 0.010 0.860± 0.010 0.858± 0.001 0.784± 0.001 0.860± 0.005 0.894± 0.003

Pascal07
30%Sample 0.844± 0.009 0.839± 0.009 0.825± 0.008 0.847± 0.004 0.846± 0.008 0.764± 0.005 0.851± 0.004 0.867± 0.007
50%Sample 0.852± 0.008 0.840± 0.007 0.839± 0.006 0.848± 0.011 0.848± 0.008 0.763± 0.003 0.850± 0.005 0.866± 0.007
70%Sample 0.850± 0.011 0.840± 0.013 0.840± 0.010 0.848± 0.008 0.848± 0.002 0.763± 0.003 0.850± 0.007 0.866± 0.008

TABLE VII
ONE ERROR UNDER DIFFERENT NOISE LEVELS ON FIFTEEN DATASETS

Dataset Noise Level AIM DMVMLC LMVCAT MTD RANK iMvWL VCMN TIMMLIN

Corel5k
30%Sample 0.462± 0.007 0.398± 0.006 0.428± 0.006 0.473± 0.009 0.478± 0.013 0.308± 0.001 0.460± 0.015 0.501± 0.005
50%Sample 0.460± 0.010 0.396± 0.001 0.428± 0.008 0.461± 0.012 0.472± 0.007 0.305± 0.003 0.463± 0.014 0.497± 0.004
70%Sample 0.462± 0.014 0.398± 0.004 0.422± 0.005 0.467± 0.003 0.474± 0.005 0.302± 0.013 0.463± 0.004 0.495± 0.007

ESPGame
30%Sample 0.433± 0.010 0.420± 0.004 0.421± 0.012 0.436± 0.003 0.455± 0.011 0.340± 0.003 0.442± 0.014 0.468± 0.010
50%Sample 0.428± 0.010 0.421± 0.008 0.414± 0.011 0.438± 0.006 0.451± 0.014 0.343± 0.012 0.449± 0.009 0.467± 0.012
70%Sample 0.423± 0.010 0.416± 0.012 0.409± 0.013 0.433± 0.005 0.452± 0.005 0.345± 0.003 0.451± 0.002 0.467± 0.002

Iaprtc12
30%Sample 0.451± 0.010 0.449± 0.007 0.428± 0.004 0.455± 0.011 0.474± 0.003 0.355± 0.007 0.454± 0.001 0.497± 0.007
50%Sample 0.449± 0.010 0.443± 0.001 0.419± 0.002 0.453± 0.004 0.475± 0.012 0.358± 0.002 0.455± 0.002 0.495± 0.002
70%Sample 0.449± 0.010 0.449± 0.005 0.436± 0.015 0.456± 0.012 0.474± 0.001 0.353± 0.014 0.458± 0.007 0.497± 0.010

MirFlickr
30%Sample 0.633± 0.012 0.629± 0.013 0.628± 0.005 0.644± 0.013 0.645± 0.012 0.507± 0.007 0.656± 0.001 0.668± 0.007
50%Sample 0.641± 0.009 0.627± 0.005 0.626± 0.006 0.647± 0.003 0.648± 0.006 0.505± 0.009 0.653± 0.002 0.667± 0.006
70%Sample 0.636± 0.001 0.630± 0.003 0.625± 0.013 0.649± 0.011 0.649± 0.011 0.505± 0.012 0.651± 0.013 0.668± 0.015

Pascal07
30%Sample 0.452± 0.001 0.450± 0.012 0.411± 0.001 0.454± 0.002 0.451± 0.004 0.370± 0.006 0.457± 0.013 0.499± 0.002
50%Sample 0.463± 0.005 0.445± 0.006 0.430± 0.002 0.454± 0.014 0.453± 0.011 0.373± 0.005 0.455± 0.012 0.496± 0.004
70%Sample 0.462± 0.004 0.450± 0.010 0.421± 0.005 0.454± 0.009 0.460± 0.012 0.373± 0.015 0.455± 0.011 0.498± 0.014

TABLE VIII
COVERAGE UNDER DIFFERENT NOISE LEVELS ON FIFTEEN DATASETS

Dataset Noise Level AIM DMVMLC LMVCAT MTD RANK iMvWL VCMN TIMMLIN

Corel5k
30%Sample 0.736± 0.007 0.703± 0.012 0.691± 0.008 0.719± 0.007 0.737± 0.014 0.693± 0.012 0.739± 0.006 0.803± 0.002
50%Sample 0.737± 0.005 0.700± 0.015 0.692± 0.004 0.720± 0.014 0.735± 0.009 0.693± 0.004 0.737± 0.004 0.802± 0.014
70%Sample 0.736± 0.003 0.699± 0.006 0.692± 0.014 0.719± 0.002 0.734± 0.012 0.688± 0.006 0.735± 0.010 0.802± 0.008

ESPGame
30%Sample 0.609± 0.009 0.619± 0.012 0.573± 0.010 0.586± 0.003 0.620± 0.002 0.541± 0.012 0.603± 0.008 0.648± 0.014
50%Sample 0.610± 0.011 0.616± 0.010 0.573± 0.011 0.586± 0.014 0.622± 0.014 0.540± 0.003 0.601± 0.007 0.646± 0.009
70%Sample 0.610± 0.004 0.619± 0.010 0.573± 0.005 0.587± 0.010 0.622± 0.012 0.543± 0.015 0.601± 0.014 0.645± 0.004

Iaprtc12
30%Sample 0.660± 0.014 0.661± 0.002 0.622± 0.012 0.630± 0.010 0.669± 0.011 0.555± 0.008 0.659± 0.006 0.705± 0.002
50%Sample 0.659± 0.003 0.660± 0.010 0.621± 0.005 0.629± 0.008 0.668± 0.009 0.553± 0.014 0.658± 0.008 0.704± 0.006
70%Sample 0.659± 0.014 0.659± 0.015 0.621± 0.009 0.629± 0.007 0.670± 0.012 0.550± 0.013 0.657± 0.012 0.702± 0.009

MirFlickr
30%Sample 0.666± 0.009 0.663± 0.005 0.628± 0.013 0.673± 0.003 0.667± 0.005 0.578± 0.001 0.677± 0.002 0.696± 0.007
50%Sample 0.665± 0.012 0.661± 0.001 0.628± 0.003 0.678± 0.015 0.668± 0.001 0.576± 0.010 0.675± 0.005 0.696± 0.001
70%Sample 0.663± 0.013 0.661± 0.009 0.627± 0.002 0.675± 0.013 0.666± 0.004 0.573± 0.011 0.676± 0.013 0.695± 0.006

Pascal07
30%Sample 0.775± 0.005 0.769± 0.013 0.753± 0.002 0.779± 0.004 0.776± 0.014 0.654± 0.012 0.782± 0.009 0.843± 0.004
50%Sample 0.773± 0.010 0.768± 0.008 0.751± 0.005 0.780± 0.004 0.776± 0.014 0.655± 0.010 0.780± 0.006 0.841± 0.013
70%Sample 0.771± 0.010 0.768± 0.013 0.751± 0.006 0.780± 0.006 0.775± 0.006 0.652± 0.015 0.779± 0.002 0.840± 0.006
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(a) Average precision (b) Hamming loss

(c) Ranking loss (d) AUC

(e) One error (f) Coverage

Fig. 2. CD Values on Fifteen Benchmark Datasets under Different Metrics.
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TABLE IX
WE CONDUCTED ABLATION EXPERIMENTS ON THE COREL5K DATASET USING THE PROPOSED TIMMLIN MODEL, UNDER THE SETTING WHERE 50%

OF THE DATA IS INCOMPLETE AND THREE POSITIVE LABELS ARE ADDED TO 50% OF THE SAMPLES.

Method Average precision Hamming loss Ranking loss AUC One error Coverage

Backbone 0.369 0.985 0.871 0.874 0.398 0.706
Backbone+ LCL 0.409 0.987 0.898 0.897 0.478 0.780
Backbone+ LID 0.388 0.987 0.888 0.890 0.462 0.736
Backbone+ LCL + LID 0.429 0.987 0.904 0.906 0.53 0.781
Backbone+ LCL + LID + Lgraph 0.435 0.988 0.913 0.918 0.501 0.803

TABLE X
AN OVERVIEW OF THE FRIEDMAN STATISTIC FF (K = 8, N = 15)

ALONG WITH ITS CRITICAL VALUE BASED ON SIX ASSESSMENT
METRICS.

Evaluation Metric FF Critical Value (0.05)

Average precision 31.7962963

2.104448

Hamming Loss 27.387037
Ranking Loss 28.688887

AUC 27.388889
One Error 31.937037
Coverage 28.087037

A. Experimental Settings

1) Dataset: We employed five classical multi-view
multi-label (MVML) datasets to validate our model: Corel5k
[19], ESPGame [20], Iaprtc12 [21], Pascal07 [22], and
MirFlickr [23]. These datasets encompass six distinct views
or feature representations: GIST, HSV, Hue, SIFT, RGB,
and LAB, with additional details summarized in Table II.
To simulate real-world scenarios involving incomplete data
and label noise, we randomly removed 50% of the data in
each view while ensuring that each sample retained at least
one available view. Subsequently, 70% of the samples were
randomly selected as the training set. Within the training
data, 50% of positive labels and 50% of negative labels in
each class were randomly masked or deleted to simulate
label incompleteness. Finally, 30%, 50%, and 70% of the
training samples were randomly selected and injected with
three incorrect positive labels to simulate label noise.

2) Evaluation Indicators: In our experiments, we evaluated
model performance using six widely adopted multi-label
classification metrics: Average Precision (AP), Hamming
Loss (HL), Ranking Loss (RL), adapted Area Under the
Curve (AUC), OneError (OE), and Coverage (COV). To
facilitate interpretation, we transformed the original OE and
COV by using 1-OE and 1-COV, respectively, so that higher
values consistently reflect superior model performance.

3) Implementation Details: All experiments were
conducted using PyTorch 1.10.1 and Python 3.9.18. The
computations were performed on a system equipped with an
NVIDIA RTX 3090 GPU and an Intel i7-12900K processor.
The model was trained using the SGD optimizer with an
initial learning rate of 0.1. Across all fifteen datasets, a
consistent batch size of 128 and a momentum coefficient of
0.9 were employed throughout the experiments.

B. Comparison Methods

To evaluate the effectiveness of our proposed model, we
selected seven representative comparison methods for the
experiments: AIM [24], DMVMLC [25], LMVCAT [26],

MTD, iMvWL, RANK, and VCMN [27]. The proposed
TIMMLIN model was compared with these baseline methods
across fifteen IDLCLN datasets.

At present, multi-view multi-label classification
approaches capable of addressing both incomplete data and
label noise simultaneously remain limited. Consequently,
we incorporated several relevant multi-label classification
methods as baseline models in our experimental evaluation.
Among these, AIM, DMVMLC, LMVCAT, MTD, and
VCMN are all applicable to IDLCLN tasks. Although
iMvWL is a multi-view multi-label classification method, it
is not designed to handle incomplete data in any form. To
ensure a fair comparison, we applied a simple imputation
strategy during evaluation: missing views were filled using
the mean of the available views, and unknown labels were
replaced with ‘0’.

C. Experimental Results and Analysis

To validate the effectiveness of our proposed method
under conditions of incomplete data and label noise,
we conducted comparative experiments against eight
state-of-the-art algorithms across fifteen distinct datasets.
Table III-VIII present the mean and standard deviation of
various evaluation metrics for each method.

In addition to the six evaluation metrics previously
introduced, we further employed the Nemenyi test to
perform pairwise comparisons among the algorithms. The
average rank differences are evaluated based on the Critical
Difference (CD), calculated as:

CD = qα

√
k(k + 1)

6n

where k denotes the number of algorithms, n represents
the number of datasets, and qα is the critical value. For the
Nemenyi test conducted at a significance level of α = 0.05,
the critical value is qα = 2.949, resulting in a critical
difference of CD = 2.711 (k = 8, n = 15).

If the average rank difference between two algorithms falls
below the CD threshold, there is no statistically significant
difference in their classification performance; otherwise, a
statistically significant difference exists. The CD diagrams
for each evaluation metric are illustrated in Fig. 2. In each
subfigure, a line connecting two algorithms indicates that
their average rank difference lies within the CD threshold.

As shown in Fig. 2, TIMMLIN demonstrates superior
performance compared to all other algorithms in terms of
AP, 1-HL, 1-RL, AUC, 1-OE, and 1-COV.

Based on the results presented in Table III-VIII and Fig.
2, the following conclusions can be drawn:

1. Compared with other methods, our proposed
information-theoretic approach achieves superior

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4593-4604

 
______________________________________________________________________________________ 



(a) Corel5k (b) Iaprtc12

(c) Corel5k (d) Iaprtc12

(e) Corel5k (f) Iaprtc12

Fig. 3. The AP values of α, β, and γ on the Corel5K and Iaprtc12 datasets.

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4593-4604

 
______________________________________________________________________________________ 



performance across all datasets and ranks first in all
evaluation metrics. This highlights the significant advantage
of applying information theory to address the IDLCLN task.

2. Across the fifteen datasets, the MTD, AIM, LMVCAT,
VCMN, RANK, and DMVMLC models consistently
outperform the iMvWL method. This superiority can
be primarily attributed to the strong feature extraction
capabilities offered by neural networks.

3. Among deep learning-based approaches, our
model—specifically designed to address both incomplete
data and noisy labels—demonstrates clear advantages in the
majority of cases. This further underscores the importance
of explicitly considering both data incompleteness and label
noise during the model design phase, as it significantly
contributes to improved overall performance.

D. Ablation Study

To validate the effectiveness of our proposed method, we
conducted ablation experiments on the Corel5k dataset under
the following settings: only 50% of instances were retained
for each view, 50% of the labels were missing, three positive
labels were assigned to 50% of the samples, and 70% of the
data was used for training. We evaluated the contribution of
each loss component by selectively removing parts of the
loss function, namely L(k)

ID, Lgraph, and LCL. The results,
along with the baseline using only the cross-entropy loss
Backbone, are summarized in Table IX.

Our main findings are as follows: (i) The inclusion of
each additional loss component consistently improved the
performance metrics; (ii) Among these components, LCL

yielded the most substantial improvement, underscoring its
critical role in effective feature extraction.

It is worth noting that our two-stage framework could,
in theory, be simplified into a one-stage model by applying
a shared parameter to each L(k)

ID in the first stage
and incorporating them into the second-stage loss LSCL.
However, as shown in Table IX, this simplification results
in a noticeable decline in performance.

We provide the following explanation: the use of a shared
parameter causes the model to disproportionately focus on
optimizing the view with the largest L(k)

ID, thereby leading
to insufficient information extraction from the remaining
views. For instance, if L(1)

ID is significantly larger than the
others, the model tends to prioritize optimizing this term,
at the expense of contributions from other views. Although
assigning separate parameters to each view could mitigate
this issue, it would considerably complicate the parameter
tuning process.

E. Parameter Analysis

In our proposed two-stage model, three parameters α, β,
and γ must be specified prior to training. To investigate
the model’s sensitivity to these parameters, we conducted
experiments on the Corel5k and Iaprtc12 datasets. In these
experiments, 50% of the data in each view were retained,
50% of the labels were randomly removed, three positive
labels were assigned to 50% of the samples, and 70% of
the samples were used for training. Fig. 3 presents the AP
performance of the model under different settings of α, β,
and γ.

To ensure the reliability of the results, all other parameters
were held constant while one parameter was varied. The
experimental results demonstrate that the model maintains
consistently strong performance when α is within the range
[1, 100], with peak performance observed at α = 15. For
γ, the model exhibits stable behavior across the range [5,
500], achieving the best result at γ = 45. Regarding β, the
model also shows robustness within the range [5, 100], with
optimal performance achieved when β is set to 1× 10−2.

V. CONCLUSION

In this paper, we propose a novel theory-driven two-stage
information extraction framework to address the IDLCLN
problem. Unlike existing approaches, our method is
grounded in information-driven theory, with the objective
of effectively modeling and extracting informative signals
from incomplete and noisy data. Extensive experimental
evaluations on benchmark datasets demonstrate that our
method consistently outperforms state-of-the-art techniques,
thereby validating the feasibility and potential of leveraging
information-theoretic principles for tackling the IDLCLN
task.

Despite the notable progress achieved, several important
research directions remain unexplored. Future work
may focus on developing more efficient strategies
for incomplete data recovery, designing more adaptive
weighting mechanisms to better handle complex scenarios
involving incomplete views and label noise, or incorporating
high-order label correlation modeling to further improve
classification performance. Additionally, exploring more
effective utilization of unlabeled or mislabeled data, as well
as evaluating model generalization on large-scale datasets,
are also promising areas for further investigation.

In conclusion, this work presents a novel perspective and
technical solution to the IDLCLN problem. It not only
advances the theoretical understanding at the intersection of
multi-view learning and multi-label classification but also
provides practical support for real-world applications.
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