
Application of Graph Complements and Labeling
in Secure Communication

Naik Sinchana Ganapathi, Medini H.R., and Sabitha D’Souza*

Abstract—The internet has become a permanent fixture in
people’s lives and has expanded significantly over the last
few decades. As it has grown, data protection has become a
critical concern to ensure that information is accessed only
by intended recipients and remains secure from unauthorized
modifications. Encryption plays a crucial role in data protection
by transforming information into an unreadable format using
a specific algorithm, requiring proper decryption to access and
utilize the data. Graph theory, a field within discrete mathemat-
ics, is widely applied to strengthen encryption techniques for
securing information. Harmonious labeling is utilized to assign
values to edges in a graph, representing encrypted plaintext
to ensure secure communication. Furthermore, incorporating
the complement of a graph method along with the partial
complement enhances encryption by adding an extra layer of
complexity.

Index Terms—Encryption and decryption, Harmonious La-
beling, Secure communication, Complement of a graph, Partial
complement.

I. INTRODUCTION

Graph theory is a rapidly evolving field with diverse
applications in cryptography. Various encryption methods
have applied graph theory concepts to enhance security. One
such approach, proposed by Etaiwi, integrates principles like
minimum spanning tree, cycles, and complete graphs. [1].
Several techniques of graph theory, such as graph labeling,
complement of a graph, and generalized complements have
applications in the field of cryptography [2], [3], [4].

In this study, the proposed algorithm employs graph label-
ing and partial complement operations for plaintext encod-
ing. Alexander Rosa first introduced the concept of graph
labeling in 1967 [5], and extensive research on the subject
was later conducted by Graham and Sloane in 1980. The
comprehensive Gallian survey on graph labeling provides a
vast collection of studies in this area [6]. Additionally, Deepa
and Maheswari explored the relationship between various
ciphers and graph labeling techniques for data encoding [7].
Harmonious labeling, a significant type of graph labeling
introduced by Graham and Sloane in 1980, applies to a
specific subset of graphs [8]. Their study established that
a cycle (Cn) is harmonious if and only if it is of odd length
and the wheel (Wn) is harmonious for any value of n. Vaidya
et al. conducted additional research on odd harmonious

Manuscript received April 9, 2025; revised July 28, 2025.
Naik Sinchana Ganapathi is a postgraduate student in the Depart-

ment of Mathematics, Manipal Institute of Technology, Manipal Academy
of Higher Education, Manipal, Karnataka, India-576104 (email: sin-
chananaik18@gmail.com).

Medini H R is a research scholar in the Department of Mathematics,
Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal, Karnataka, India-576104 (e-mail: medinihr@gmail.com).

*Sabitha D’Souza is an Associate Professor in the Department of Math-
ematics, Manipal Institute of Technology, Manipal Academy of Higher
Education, Manipal, Karnataka, India-576104 (corresponding author; phone:
9449727376; e-mail: sabitha.dsouza@manipal.edu).

labeling of certain graphs in 2012 [9]. The concept of partial
complementation of a graph was introduced by Fomin et al.
[10].

In encryption, harmonious graph labeling is performed
to set edge values identical to different plaintext values
from the encryption table. The process is executed on a
general graph to find edge values for the input plaintext.
Next, both the complement and partial complement of the
graph are calculated to form a complex encryption-oriented
graph (cipher graph). Decryption is a process of reversal,
beginning with the partial complement of the input cipher
graph, followed by the regular complementation. The original
edge values (plaintext values) are retrieved by reapplying
the original graph labeling procedure. The plaintext is then
reconstructed from the assigned keys and the encryption
table. The algorithm adopts a symmetric key cryptographic
technique since the same keys are employed for encryption
and decryption.

II. PRELIMINARIES

Definition 1. Graph labeling is a function that maps a set
of vertices or edges of a graph to a non-negative integer that
fulfills specific properties/rules.

Definition 2. A graph G with q edges is said to be harmo-
nious if there is a one-to-one (injective) function f that maps
the set of vertices to {0,1,2,. . . ,q-1} so that each edge gets
the label of the sum of the two vertices labels incident with
that edge in modulo q, which are all different.

Definition 3. The Partial complement of a graph G is the
concept derived from the complement of a graph, where only
a subset of edges (say S) is toggled (added or removed)
instead of considering the entire edge set.

Theorem 1. Splitting graph of a bistar S’(Bn, n) is an odd
harmonious graph [10].

III. RESERACH APPROACH

This study introduces a novel cryptographic technique
that integrates graph complements with harmonious label-
ing methods. The approach involves constructing a general
graph, defining an encryption table, and subsequently en-
crypting the plaintext using these techniques.

A. Encryption table
English alphabet, spaces between words, special characters

up to ‘#‘, and numerals up to ‘2‘ are assigned odd values
ranging from 1 to 67. The remaining special characters
and numerals are assigned even values ranging from 0
to 68. Using Table 1, the plaintext is converted into its
numeric representation. These values serve as the first level
of encryption, where unique values are used as edge weights
to construct a cipher graph for the given plaintext.

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4605-4611

__

TABLE I
ENCRYPTION TABLE

A B C D E F G H I J K L
1 3 5 7 9 11 13 15 17 19 21 23
M N O P Q R S T U V W X
25 27 29 31 33 35 37 39 41 43 45 47
Y Z space ∼ ‵ ! 1 @ 2 # 3 $
49 51 53 55 57 59 61 63 65 67 0 2
4 % 5 ˆ 6 & 7 * 8 (9)

4 6 8 10 12 14 16 18 20 22 24 26
0 - + = { } [] | \ :
28 30 32 34 36 38 40 42 44 46 48 50
; ’ ” , < > . ? /
52 54 56 58 60 62 64 66 68

B. Methodology for Constructing a Standard Graph

Fig. 1 General/Standard Graph

The vertices of the general graph are labeled according
to Theorem 1 [7]. Edge values ranging from 0 to 68 are
produced through harmonious labeling. The resulting graph
forms a flexible structure suitable for encoding various types
of plaintext. Table 1 presents the value assignments for 69
characters. If more characters are required, the graph can be
extended by adding additional vertices and edges.

C. Procedure for encryption and decryption
1) Encryption procedure: Each character in the plaintext

is mapped to a corresponding number in Table 1, which
serves as the first level of encryption. From the encrypted
values, distinct numbers are chosen and assigned as edge
values within the general graph. Only the corresponding
edges are then extracted from this graph. The cipher graph
is then created by taking the complement of the extracted
graph, followed by a partial complementation using a specific
set of edges.

2) Procedure for key generation:
Key 1: Consider only adjacent vertices in both the extracted

and complement graphs. Start with the smallest non-isolated
vertex (if the smallest vertex is an isolated vertex, then
switch to the complement graph and start) in the extracted
graph, select the minimum among its neighbors, and form an
edge. Then, switch to the complement graph and repeat the
process. Continue selecting vertices from the extracted and
complement graphs alternately until all vertices are covered.
The total edges will be ⌊n/2⌋; if odd, the last vertex is
ignored. This subset of edges S forms Key 1.

Key 2: To obtain the second encrypted values, the distinct
numbers of order n from the first encrypted values are
arranged in increasing order, and their positions are assigned
prime number indices. Key 2 is formed by substituting
the first encrypted values with their corresponding second
encrypted values based on this mapping.

Key 3: In plaintext, it is essential to differentiate between
capital and small letters. Uppercase and lowercase letters are
given special characters, ? and #, respectively. The integration

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4605-4611

__

of ? and produces Key 2. The keys, along with the vertex-
labeled cipher graph and its associated edge set, are shared
with the recipient.

3) Decryption Procedure:: The partial complement of the
vertex-labeled cipher graph is taken using Key 1 sent by
the sender. The resulting graph is then complemented once
more, and its edge values are computed using harmonious
labeling. These values are sorted in ascending order and
assigned prime number positions. Using Key 2, the numbers
from Table 1 are decrypted in the order of the original
plaintext, converting them back into characters. Key 3 is
used to distinguish between the uppercase and lowercase
alphabets. As a result, the original plaintext is successfully
reconstructed.

IV. ALGORITHMIC DESIGN
A. Encryption Mechanism:

Step 1: Use Table 1 to convert each character of the
plaintext into its corresponding numerical value.
Step 2: Identify the distinct numerical values and extract the
corresponding edges from the general graph.
Step 3: Compute the complement of the extracted subgraph.
Step 4: Follow the key generation steps to obtain keys 1,2,
and 3.
Step 5: Derive the cipher graph by applying the partial
complement operation to the complemented graph.
Step 6: Transmit the keys and the vertex-labeled cipher
graph to the recipient, with harmonious labeling provided as
a decoding hint.

B. Decryption Mechanism:

Step 1: Use Key 1 to obtain the partial complement of
the graph sent by the sender.
Step 2: Take the complement of the obtained graph.
Step 3: Apply the harmonious labeling method to evaluate
the edge values.
Step 4: Sort the edge values in ascending order and assign
prime numbers as positional indices.
Step 5: Use Key 2 to retrieve the edge values in the order
corresponding to the original plaintext.
Step 6: Refer to the encryption table to map the numerical
values obtained in Step 5 back to their respective characters.
Step 7: Apply Key 3 to correctly represent characters in
uppercase or lowercase, thereby reconstructing the plaintext.

V. ILLUSTRAIONS

A. Illustration 1

Consider the plaintext to be Hello World

Encryption:
By referring to Table 1, the first set of encrypted values for
the plaintext is obtained.

Plaintext H e l l o
First encrypted values 15 9 23 23 29 53

W o r l d
45 29 35 23 7

From these first encrypted values, distinct values are taken
and sorted in ascending order.

7 9 15 23 29 35 45 53

These specific edges are taken from the general graph to
form the subgraph depicted below in Fig. 1.

Fig. 2 Extracted Graph

Taking the complement of the extracted graph as shown in
Fig. 3.

Fig. 3 Complement of the extracted graph

Key generation:

Consider the smallest non-isolated vertex in the extracted
graph, which is ’0’, and the minimum among its neighbors
is 7. Choose the edge (0,7). Now, switch to the complement
graph. Here, the next smallest vertex other than 0 and 7 is
2. And the minimum among its neighbors is 3. Choose the
edge (2,3). Again, switch to the extracted graph and repeat
the process until all the vertices are covered.

Since the number of vertices is even (n = 10), the total
number of edges in S is ⌊10/2⌋ = 5 and S = {(0,7), (2,3),
(15,23), (27,35), (43,50)}. This set is considered as Key 1
for the Decryption process.

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4605-4611

__

The sorted distinct values are now numbered with prime
numbers and are regarded as second-encrypted values.

Unique values 7 9 15 23 29
Second encrypted values 2 3 5 7 11

35 45 53
13 17 19

Key 2 is generated by mapping the second encrypted values
to their corresponding first encrypted values. Key 3 is formed
by assigning ’?’ to indicate uppercase characters and ’#’ to
represent lowercase characters.

Plaintext H e l l o
First encrypted values 15 9 23 23 29 53

Key 2 5 3 7 7 11 19
Key 3 ? # # # # #

W o r l d
45 29 35 23 7
17 11 13 7 2
? # # # #

Take a partial complement of the resulting graph using S.
The graph obtained is considered as the cipher graph.

Fig. 4 Cipher Graph

Decryption:

The recipient uses Key 1 to compute the partial complement
of the vertex-labeled cipher graph received from the sender.
The resulting graph is then complemented, and harmonious
labeling is applied to determine its edge values. These edge
values are sorted in ascending order, and prime numbers
are assigned as positional indices. Key 2 is then used to
retrieve the values from Table 1 in the order of the original
plaintext and convert them into characters. Key 3 is applied to
correctly represent each character in uppercase or lowercase.
As a result, the plaintext is successfully reconstructed as
Hello World.

B. Illustration 2

Consider the plaintext to be “Hell0, W0rld!”

Encryption:

The first encrypted values for the given plaintext are obtained

by referring to Table 1.

Plaintext “ H e l l 0
First encrypted values 56 15 9 23 23 28
, W 0 r l d ! ”

58 53 45 28 35 23 7 59 56

From these first encrypted values, distinct values are taken
and sorted in ascending order.

7 9 15 23 28 35 45 53 56 58 59

These edges are extracted from the general graph.

Fig. 5 Extracted graph

Fig. 6 Complement of the extracted graph

Key generation:

Consider the smallest non-isolated vertex in the extracted
graph, which is ’0’ and the minimum among its neighbors
is 7. Choose the edge (0,7). Now, switch to the complement
graph. Here, the next smallest vertex other than 0 and 7 is
1, and the minimum among its neighbors is 2. Choose the
edge (1,2). Again, switch to the extracted graph and repeat
the process until all the vertices are covered.

Since the number of vertices is 14, the total number of
edges in S is 7 and
S = {(0,7), (1,2), (3,50), (15,23), (35,43), (58,97),(122,124)}.
This set is considered as Key 1 for the Decryption process.
The sorted distinct values are now numbered with prime
numbers and are referred to as the second encrypted values.

Unique values 7 9 15 23 28 35
Second encrypted values 2 3 5 7 11 13

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4605-4611

__

45 53 56 58 59
17 19 23 29 31

Key 2 is created by mapping the second encrypted values
to the first encrypted values. By allocating ’?’ for uppercase
characters and ’#’ for lowercase characters, Key 3 is created.

Plaintext ” H e l l 0
First encrypted values 56 15 9 23 23 28

Key 2 23 5 3 7 7 11
Key 3 # ? # # # #

, W 0 r l d ! ”
58 53 45 28 35 23 7 59 56
29 19 17 11 13 7 2 37 23
? # # # # #

The partial complement of the resulting graph is obtained
using S. Hence, the graph obtained is the Cipher graph.

Fig. 7 Cipher Graph

Decryption:

By reversing the encryption process, the plaintext is retrieved
as
”Hell0, W0rld!”.

C. Illustration 3

Consider the plaintext to be Numbers never lie

Encryption:

By referring to Table 1, the first set of encrypted values for
the plaintext is obtained

Plaintext N u m b e r s
First encrypted
values

27 41 25 3 9 35 37

n e v e r l i e
53 27 9 43 9 35 23 17 9

The sorted distinct values are given below.

3 9 17 23 25 27 35 37 41 43 53

Fig. 8 Extracted graph

Fig. 9 Complement of the extracted graph

Key generation:

Key 1: {(0,3),(2,27),(7,15),(23,35),(39,43)}
Key 2: [13,29,11,2,3,17,23,37,13,3,31,3,17,37,7,5,3]
Key 3: [?,#,#,#,#,#,#,#,#,#,#,#,#,#,#,#,#]

Fig 10. Cipher Graph

Decryption:

By reversing the encryption process, the plaintext is retrieved
as
Numbers never lie.

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4605-4611

__

D. Illustration 4

Consider the plaintext to be N<mber$ neˆer 1!e

Encryption:

By referring to Table 1, the first set of encrypted values for
the plaintext is obtained.

Plaintext N < m b e r $
First encrypted values 27 60 25 3 9 35 2

n e ˆ e r 1 ! e
30 27 9 43 9 35 30 61 59 9

The sorted distinct values are given below.

2 3 9 10 25 27 30 35 59 60 61

Fig. 11 Extracted graph

Key generation:

Key 1: {(0,3),(1,2),(7,23),(27,35),(58,70),(78,99)}
Key 2: [13,31,11,3,5,23,2,17,13,5,7,5,23,17,37,29,5]
Key 3: [?,#,#,#,#,#,#,#,#,#,#,#,#,#,#,#,#]

Fig. 12 Cipher Graph

Decryption:

By reversing the encryption process, the plaintext is retrieved
as
N<mber$ neˆer 1!e.

VI. EMPIRICAL ANALYSIS

Tables II and III display the cipher graphs generated
for different plaintext sizes, emphasizing the effect of
graph-based encryption. As the plaintext size increases,
the resulting graph structures become more complex. The
incorporation of special characters in plaintext also adds
complexity to cipher graphs, influencing connectivity and
encryption structure. In addition, the results emphasize how
graph labeling and complement operations influence the
encryption-decryption process.

TABLE II
SOME CIPHER GRAPHS WITHOUT SPECIAL

CHARACTERS

Sl. No. Plaintext
length
excluding
special
characters

Cipher graphs

1 10

2 20

3 30

4 40

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4605-4611

__

TABLE III
SOME CIPHER GRAPHS WITH SPECIAL

CHARACTERS

Sl. No. Plaintext length in-
cluding special char-
acters

Cipher graphs

1 10

2 20

3 30

4 40

VII. CONCLUSION

This study introduces a novel encryption and decryption
approach utilizing the concepts of graph theory, focusing

on the use of graph complementation and graph labeling
techniques. By leveraging these graph-based methods, the
proposed approach enhances data security and encryption
complexity. By representing plaintext characters as num-
bers and including them in graph structures, this algorithm
provides security. The suggested approach is confidential
through the employment of various keys and graph trans-
formation, thus resistant to usual cryptographic attacks.

Additionally, the research builds upon existing studies
in graph labeling, such as harmonious labeling and partial
complementation, further expanding its potential applications
in cryptography. This method not only illustrates the real-
world applicability of graph theory to cryptography but
also suggests new directions for future research, including
the optimization of key generation algorithms and further
application of this method to big data. Through ongoing
developments, this encryption model can be modified for use
in secure communications across a variety of fields, including
cybersecurity and secure messaging networks.

REFERENCES

[1] Wael Mahmoud Al Etaiwi, “Encryption Algorithm Using Graph The-
ory”, Journal of Scientific Research and Reports, vol. 3, no.19, pp.
2519-2527, 2014.

[2] Medini H.R., Sabitha Dsouza, Devadas Nayak C, Pradeep G Bhat,
“Encoding and Decoding of Messages Using Graph Labeling and
Complement of a Graph”. Global and Stochastic Analysis, vol. 11,
pp. 1-13, 2024.

[3] Medini H.R., Sabitha Dsouza, Devadas Nayak C, Pradeep G Bhat,
“Multifaceted Coding of Messages Using the Concepts of Graph
Theory”, IAENG International Journal of Computer Science, vol. 51,
pp. 143-153, 2024.

[4] Medini H.R., Sabitha Dsouza, Devadas Nayak C, Pradeep G Bhat,
“Exploring Secure Communication Through Artistic Graph Creation”,
Journal of Discrete Mathematical Sciences and Cryptography, vol. 28,
pp. 143–159, 2025.

[5] Alexandar Rosa, “On Certain Valuations of the Vertices of a Graph”,
Theory of Graphs (Internat. Symposium, Rome), pp. 349-355,1966.

[6] Joseph A Gallian, “A Dynamic Survey of Graph Labeling”, Electron
J Combin DS6, vol. 19,2018

[7] Deepa Balaraman, Maheswari Veerasamy, Balaji V, “Creating Cipher-
text and Decipher using Graph Labeling Techniques”, International
Journal of Engineering and Advanced Technology, vol. 9 pp. 206-211,
2019.

[8] Ronald L Graham, Neil James Alexander Sloane, “On Additive
Bases and Harmonious Graphs”, SIAM Journal on Algebraic Discrete
Methods, vol.1(4), pp. 382-404, 1980.

[9] Samir Vaidya, Nirav Shah, “Odd Harmonious Labeling of Some
Graphs”, International Journal of Mathematical Combinatorics, vol.
3, pp. 105-112, 2012.

[10] Fedor V Fomin, Petr Golovach, Torstein Strømme, Thilikos,
Dimitrios, “Partial complementation of graphs”, arXiv preprint
arXiv:1804.10920, 2018.

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4605-4611

__

