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Abstract—With the rapid development of electric vehicles
(EVs) in recent years, it has become an essential flexible load in
microgrids, and their impact on the grid is increasingly
significant. Currently, a mature and scientific evaluation
scheme for EV charging responsiveness is lacking, making it
difficult to utilize the potential of adjustable user-side flexible
resources fully. To this end, a comprehensive EV charging
responsiveness evaluation method is proposed based on
improved rank correlation analysis, flexible entropy model, and
a technique for order preference by similarity to an ideal
solution improved by grey correlation degree (Grey-TOPSIS).
Firstly, an EV charging responsiveness evaluation index system
is established. The weights of each index are determined using
the improved rank correlation analysis method and flexible
entropy model. Then, the evaluation scores of different types of
EV charging responsiveness are obtained using Grey-TOPSIS.
The experimental results show that the method is more effective
and applicable than the traditional multiple evaluation methods,
which provide decision-making support for grid managers and
improve the power system's operational and energy utilization
efficiency.

Index Terms—Index system, Rank correlation analysis
method, Flexible entropy model, Grey-TOPSIS.

1. INTRODUCTION

With the scarcity of fossil energy and the rapid growth of
new energy generation, the technological development
and number of EVs are rising at an alarming rate[1]. The
charging behavior of large-scale EVs will inevitably cause
severe negative impacts on the power grid, increase the
instability of the grid, cause line blockage, and cause serious
peak-to-valley differences[2]. Therefore, it is necessary to
develop a scientific evaluation system to better utilize the role
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of EVs in microgrid regulation, to ensure the ability to reduce
the pressure on the grid by using the energy storage of EVs
during the peak power hours, and to utilize the storage
characteristics of EVs to absorb the excess power from
renewable energy sources during the low power hours.
Reference [3] proposes a joint control and optimization
strategy for EV aggregators (EVAs) to participate in grid
frequency and voltage regulation based on the cloud-side
cooperative  hierarchical scheduling architecture. It
establishes a multi-timescale EV charging pile cluster (EVC)
scheduling model to maximize EVA profits. The Reference[4]
establishes an EV demand response aggregation potential
assessment index system containing six evaluation indices
from the grid and user sides. Reference [5] establishes an EV
cluster evaluation index model using the reported dispatch
power, user credit, battery wear, and user participation as
evaluation indices. Reference [6] established a
multidimensional EV safety evaluation system consisting of
ten indicators that assess component safety and dangerous
driving behavior. Reference[7] takes EV real-time charging
message data as the research object, analyzes and establishes
the affiliation model of charging safety influencing factors,
and proposes an EV real-time charging risk assessment
method based on the improved generalized back-propagation
and hierarchical analysis process (BBP-AHP) assessment
method. Most of the above studies focus on aspects such as
EV dispatch capability and safety assessment, and less
consideration is given to charging responsiveness influencing
factors, which makes it challenging to provide appropriate
guidance for auxiliary distribution network planning.
Scientific evaluation methods are essential for accurately
assessing EV charging responsiveness in the grid.
Reference[8] evaluates key storage technologies for EVs
based on five criteria: cost, technical characteristics,
compatibility, technology maturity, environment, health, and
safety, and uses the AHP method to select storage for EVs.
Reference[9] proposes a two-stage Multi-Criteria Decision
Making (MCDM) framework that combines the Technique
for Ordering Priorities of Similarity of Ideal Solutions
(TOPSIS) with Binary Goal Planning (BGP) to evaluate EV
charging pile locations based on geospatial, environmental,
technical, and economic criteria. Reference[10] uses the
hierarchical analysis method to calculate the weights of
indices at each level. Then, it introduces the fuzzy
comprehensive evaluation method to evaluate the integrated
operation of the vehicle-pile-network-source. Reference[11]
constructs a response intention assessment model based on
TSK fuzzy mathematics, taking electricity prices, battery
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charge status, and temperature as key influencing factors, and
establishes 27 fuzzy rules to quantify EV users' response
intentions accurately. Reference [12] proposes a distributed
robust real-time flexibility assessment model to accurately
evaluate EVs' real-time flexibility in charging stations. This
model formulates EVs' uncertain departure behavior and
charging status in an online update mode.

The above studies mainly focus on EV storage technology,
location selection of charging piles,
vehicle—pile—network—source integrated operation, and EV
flexibility evaluation. Still, few relevant research results and
practical cases exist in EV charging responsiveness
evaluation. Therefore, a comprehensive EV charging
responsiveness evaluation method is proposed, utilizing the
improved rank correlation analysis method, flexible entropy
model, and Grey-TOPSIS to fully utilize the adjustable
potential of user-side EVs. The method fully considers the
operational purpose of the EV control system and the
charging response of different EVs, in which the proposed
EV charging responsiveness index system contains four core
evaluation indices and 16 sub-indices. The main
contributions of this paper are summarized as follows.

(1) EV is an essential flexible load. Still, the lack of a
scientific EV charging responsiveness evaluation system
makes it difficult to guide access to flexible resources. We
propose a comprehensive evaluation method for EV charging
responsiveness, based on an improved rank correlation
analysis method, a flexible entropy model, and
Grey-TOPSIS.

(1) To utilize the adjustable potential of user-side flexible
resources, by the principles of science, representativeness
and reliability in the construction of the evaluation index
system, and based on the charging response characteristics of
different types of EVs, an EV charging responsiveness
evaluation index system is proposed, which contains four
core evaluation criteria and 16 evaluation indices.

(iii)) Combining the improved rank correlation analysis
method of the subjective assignment method and the flexible
entropy model of the objective assignment method can
complement the influence of subjective and objective factors
to make the weight allocation more comprehensive.

(iv) Combined with the grey correlation degree, the
traditional TOPSIS method is improved, and the new model
uses the weighted grey correlation degree as the distance
measure to replace the original Euclidean distance. The
improved model reflects the proximity and ideal value of the
target in terms of both curve similarity and positional
distance, which can more accurately reflect the internal
changes of each evaluation object and make up for the
shortcomings of the Euclidean distance in the traditional
TOPSIS.

The remainder of the paper is organized as follows.
Section II outlines the evaluation methods used in this study.
Section III presents the evaluation model for EV charging
responsiveness. Section VI introduces the case study results
and discussions. Finally, Section V summarizes the work of
the paper.

II. EVALUATION METHODOLOGY

The proposed EV charging responsiveness evaluation
method can be categorized into three main stages, as shown

in Fig. 1. It integrates the improved rank correlation analysis
method, the flexible entropy model, and Grey-TOPSIS. The
following is a brief description of these evaluation methods.

Index system
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Fig. 1. EV charging responsiveness evaluation framework

A. Improved Rank Correlation Analysis Method

In current research, the rank correlation analysis method,
known as the G1 method, is widely used to establish the
subjective weights of evaluation criteria. This method stems
from a reimagining of the hierarchical analysis method
(AHP). Compared with AHP, the G1 method is more concise
and efficient in calculation and avoids the difficulty of the
consistency test, overcoming the limitations of AHP[13].
First, experts qualitatively rank the importance of evaluation
indices. Then, the ranking results are compared to determine
the importance of adjacent indices. Finally, the weight of
evaluation indices is obtained, simplifying the calculation of
weight coefficients[14]. However, the sequential relationship
analysis technique necessitates strong consistency among
evaluation indices and employs the proportional scale
approach. Under strong consistency, ensuring that the
evaluation indices do not violate people's thinking isn't easy.
Thus, within this study, the subjective index weights are
derived through the improved rank correlation analysis
method. Under the hierarchical relationship between indices
assumed, this analysis focuses on weak consistency rather
than strong, employing a distinct scalar methodology. The
steps for determining subjective weights via the improved
rank correlation analysis method include the following
stages[15]:

Step 1: The
f =ty =...=1, in the set of contribution rates {1.t5.....1,} ,

2'n

expert gives the ordinal relation

which is still expressed ¢ >, >...>=1¢, for the convenience
of writing. The intuitive meaning of the contribution rate ¢;

is the ratio of the sum of the evaluation values contributed by
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the jth index to the composite evaluation magnitude,

calculated as shown in Eq. (1).
Assuming that there are m

{s1.82,....8,} , n evaluation indices {b.b,.....5,} . A

evaluation samples

normalized evaluation matrix denoted B = [bij} ,and b; is
mxn N

the standardized measure of the irth evaluation sample
concerning the jth index. The contribution of each
evaluation index b; is:

m
Wiy by
m 7]

x.
z,‘=1 !

Where, w; is the individual significance of each metric,

t= =1,2,...,n (1

m o e
and w; =1. x; denotes the holistic assessment score for

i=1
the subject s; under review, determined in accordance with
Eq. (2).
n
x; =zj:1wjbij,i=1,2,...,m 2)

Denote the sum of the m evaluation data in the b; as /;,

m
l;= Zi:lbij , then:

wil
tj=—">— (3)

Z it
Step 2: A reasonable judgment of the relative contribution
between #,_; andz, should be provided, based on a judicious

assessment of the proportion of the extent of contribution of
the experts to the evaluation indices is shown in Eq. (4).

7 =L )

The assignment of 7, is shown in Table I.

TABLEI
ASSIGNMENT OF 7},
Tk Meaning
1.0 t;_; and f; contribute equally

12 The contribution of #;_; is slightly higher than that of ¢,

1.4 The contribution of #;_; is higher than that of £,

1.6 The contribution of #;_; is obviously higher than that of #;

1.8 The contribution of #;_; is definitely higher than that of #;

Step 3: Calculation of the contribution rate ¢ .

— " —
maxf = Zk:2(1k71 *tk) = [1 7tn

tk—l _tkrk < O,k :2,3,...,1’1
tk —tk_l < O,k :2,3,.4.,}1
s.t. H—1.8t, <0 (5)

ZZthk -1

The significance of the objective function is the sum of the
distances between the contribution rates ¢; of neighboring
indices. The purpose of maximizing f under the condition

of satisfying the scale of proportionality is to expand the
distance between the contribution rates of neighboring

indices, reflecting as much as possible the reasonable
assessment of the experts regarding the ratio of the evaluation
metrics' impact. ¢ —1,_; <0 reflecting the need for
evaluation indices to meet the weak consistency requirements

of 4 21, >...1, . Under scaling, the meaning of # —1.8¢, <0 is
to avoid the situation that wy /w; =2.56 does not align with
human cognitive patterns when w;/w,=1.6 and
w, / wy =1.6 satisfy the strong consistency requirement.

Step 4: Calculation of weighting factors.
-1
12N b
W, = {1 + D Zk1:| (6)

23,2 )

It
Wiy =w, Kkl p=pp—1,..
k—1 k
fily

Where, ZZ Ve =1.

B. Flexible Entropy Model

Entropy weighting method (EWM) is a widely applied
technique for determining the objective weights of indices.
Still, its shortcomings in calculating the objective weights of
indices are that it cannot reflect the small changes in the
evaluation matrix, which can easily lead to a large gap in the
distribution of weights of the indices[16]. It only considers
the degree of variation of a single index and can't deal with
the correlation between indices. Compared with EWM, the

flexible entropy model transforms the coefficient 1 of 1-H;

in the entropy weights into a system parameter p ,

enhancing the adaptability of the weight distribution and
effectively avoiding the shortcomings of EWM. Meanwhile,
before calculation, the relationship among indices is analyzed
by the Pearson correlation coefficient method, and by using
the calculation of its average similarity value to process each
index with high correlation, the comprehensive indices
vector with high independence can be obtained, which
improves the problem that EWM can't deal with the
correlation between indices. The steps are as follows[17].
The data's objective allocation informs the application of
Pearson correlation coefficient technique for determining
index correlations. If indices show a strong correlation with
the objective data, they are treated as a single index for
calculating the objective weights. This paper uses the
optimization model for minimizing distance to integrate
highly correlated indices, as shown in Eq. (8), and the
centroid of the strongly independent indices is determined.
Following the integration of highly correlated indices, the EV
charging responsiveness evaluation indices set is denoted as
C={c,c3,...,¢;} and the normalization matrix is denoted as

R= [riilnxz :
minz' = Zizl /Z:’;(b,. —b,.p)2
B ) S

0<h <1 (8)
p=L2,...¢g
q=12,....,g,p#q
Where, g denotes the number of indices with high
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correlation in the objective indices, b; denotes the centroid

vector of indices with high correlation after the fusion
process. b, and b, are the standardized magnitudes of the

ith sample concerning the pth and qth indices.
iy - Ny
Rel - .
L ™)

Where, r

; is the normalized value of the irh sample

concerning the jth index.

Step 2: For R :|:r,»j} l, the entropy associated with the
mxXx

Jjth index is computed as:
m
E :—kzl_:lp,-j Inpy.j=12....1 )
m . .
Where, k=1/Inm , pi=r;/ Zi:lrij ; 0<E; <1, and if

pj=0, pylnp; =0.
Step 3: Based on the entropy figures for each index, the
variation coefficient #; is derived.
H;=p-E; (10)
Where, p is the parameter (p > max{El,Ez,...,En}) )

Subsequently, as per Eq. (11), the flexible entropy model
with weights » can be solved.

minz = 7/TH7/
s.t.eTy =1
720

(11)

Where, H is the diagonal matrix of nxn with diagonal
elements h; =p—E;, h;>0,j=12,..,/, and the rest of the

elements are zero.

Suppose L= yTHyf/I(eT 71) , and ol _ 2hy—A=0 ,
(l]/j
a_j =elw-1=0. The flexible entropy weights of the indices
Q.
can be calculated according to Eq. (12).
Hle
= 12
g ' H e (12)

Step 4: To assign weights to each relevant index, we use
the Pearson correlation coefficient method to assess the
degree of association among each pertinent index and various
standalone variables. By analyzing the correlation coefficient,
the autonomous objective weight for each pertinent indicator
is derived.

C. Grey-TOPSIS

Krohling and Pacheco proposed the Technique of Ranking
Preferences by Similarity to Ideal Solutions (TOPSIS)[18].
The method is based on ideal solutions; an alternative is
considered optimal if it is closer to a positive ideal solution.
However, the traditional TOPSIS method uses Euclidean
distance to calculate the distance between the evaluation
object and the positive and negative ideal solutions. The
Euclidean distance can only reflect the positional relationship
between the data curves, but not the trend changes of the data
series, which affects the accuracy of the evaluation
results[19].

To address the issues above, the traditional TOPSIS
method is enhanced by integrating the grey correlation
degree to assess EV charging responsiveness. The grey
correlation degree measures the magnitude of the correlation
between two systems concerning factors that vary over time
or across different objects[20]. The grey correlation degree is
used as a distance measure, replacing the original Euclidean
distance. The improved model reflects the proximity and
ideal value of the target in terms of both curve similarity and
positional distance, which can more accurately reflect the
internal changes of each evaluated country and make up for
the shortcomings of the Euclidean distance in the traditional
TOPSIS. The specific steps of the new model Grey-TOPSIS
are as follows.

Step 1: Construct the evaluation matrix. For m evaluation
samples and » indices, construct the evaluation index matrix
C as follows:

(13)

Cml """ Cmn
Where, c;; is the evaluated value of the jth index for the ith

sample.

Step 2: The evaluation matrix is standardized and
normalized. Indices standardization is shown in Eq. (14),
which transforms all negative and interval-type indices into
positive indices to maintain consistency; normalization is
shown in Eq. (15), which finally obtains the standardization
matrix C' and the normalization matrix U .

¢ positive indices

1 o
— negative indices
Cij

(14)

|cij - cbest,j|

1- interval indices

'

Ci:

S A (15)
m
’ 2
Z i
Where, ¢; denotes the positive standardized index value of

the jth index for the ith sample. u; denotes the

ij
standardized value of the js» index for the ith sample.
Cpest,; denotes the optimal value of the jth index. M is the

maximum value of the jth index at a distance of ¢y, ; , and

M = max{|cl-j _cbest,j|} .
Step 3: Construct the weighted normalization matrix Z,

calculated as shown in Eq. (16).
z;; = W* *y..

j =Wy (16)
Where, zj; denotes the weighted normalized value of the jth
index for the ith sample, and wj» is the composite weight of
the jih index.
Step 4: Determine the positive ideal solution Z* and
negative ideal solution Z~, as shown in Eq. (17) and Eq. (18).

Calculate the grey correlation coefficients y* and y~ as
shown in Eq. (19) and Eq. (20).
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(17)

z* ={maxz[i}={zf',z§',...,z;}
J

zZ" ={minz[j}:{zl—,z£,...,z;}
J

Where, z;,z3,...,z; denotes the positive ideal solution for

(18)

each index, z;,z,,...,z, denotes the negative ideal solution
for each index.

minmin|z; — zjf + pmaxmax|z; — z}'
+_ i i J
i = - (19)
Zj —Zj |t pmaxmax|z; = z;
i
minmin|z; —z; |+ pmaxmax |z; —z;
—__i J i
Vi = - - (20)
Zjj —Zj|+ pmaxmax|z; —z;

i
Where, p is the resolution factor, pe[0,1]. p=0.001 is
taken in this paper.

Step 5: Calculate the Grey-TOPSIS distance measures S;

and S; . The weighted grey correlation degree calculated by

the weighted sum of grey correlation coefficients is used as
the distance measure because the matrix Z has been
weighted normalized, so the grey correlation degree is
obtained by directly summing the grey correlation
coefficients. The calculation is shown in Eq. (21) and Eq.
(22).

e2y)

(22)
j=1
Where, S is the distance from the ith sample to the positive

ideal solution, S; is the distance from the itk solution to the

negative ideal solution.
Step 6: Calculate the composite evaluation value of the

sample S; , as shown in Eq. (23).

S.*:L

; 23
S+ (23)

Where, S; takes a value in the range of 0 to 1. The larger its

value, the closer the evaluation object is to the positive ideal
solution.

III. EVALUATION MODEL AND STRATEGY

In order to comprehensively evaluate the charging
responsiveness of EVs, we first determine the evaluation
indices affecting the response of EVs, then establish a
two-level evaluation index system of EV charging
responsiveness, and solve the subjective and objective
weights of the evaluation index system by using the improved
rank correlation analysis method and the flexible entropy
model. Finally, a comprehensive evaluation of different types
of EVs is carried out using the Grey-TOPSIS method.

A. EV Charging Responsiveness Evaluation Index System

The comprehensive evaluation index system for charging
guidance of EV charging stations fully considers the demand

of EV charging stations and the characteristics of different
types of EVs. It guides the charging of different types of EVs
from EV battery charging characteristics, EV charging

spatiotemporal characteristics, EV charging response
characteristics, and EV charging economic cost
characteristics[21].

Fig. 2 shows the EV charging responsiveness evaluation
index system. EV battery charging characteristics include
capacity of battery, charging efficiency, rechargeable
capacity, state of battery health, and monitoring of battery
charging temperature. EV charging spatiotemporal
characteristics include the distance to the charging station,
the charging duration, the charging level during off-peak
periods, and the peak charging level. EV charging response
characteristics include timeliness of charging response,
frequency of EV charging response, interruptibility of
charging in emergencies, and planned charging capacity. EV
charging economic cost characteristics include rationality of
charging price, level of price compensation, and charging
cost.

Aji: Capacity of battery

Aj,: Charging efficiency

A;: EV battery|HA;: Rechargeable capacity

- charging
characteristics | A14: State of battery health
Ajs: Monitoring of battery
charging temperature
_|A,;: Distance to the charging
station
A: EV
charging _{Azz: Charging duration ‘
EV Charging S%atwtfm? (;ral | |Az3: Charging level during off-
Responsivene || Charactentsics | Mpeak periods
Issfva;uattlon {AM: The peak charging levels ‘
ndex System
|Az;: Timeliness of charging
A EV response
38
|| charging || |As: Frequency of EV charging
response response
SRS | |Az3: Interruptibility of charging
in emergencies
{AM: Planned charging capacity ‘
31“; glli\:g {AM: Rationality of charging price‘
rgin,
economic cost {A“: Level of price compensation ‘
characteristics
{A43: Charging cost ‘

Fig. 2. EV charging responsiveness evaluation index system

The hierarchical structure of EV charging responsiveness
evaluation index system is divided into three layers. The first
layer is the target layer, the second layer is the criterion layer,
and the third layer is the index layer, which has 16 indices in
total.

B. EV Charging Responsiveness Evaluation Process

In order to accurately evaluate the charging responsiveness
of different types of EVs and give full play to the adjustable
potential of user-side flexible resources, a method is
proposed to utilize the improved rank correlation analysis
and the flexible entropy model to solve the subjective and
objective weights of the evaluation index system, and utilize
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the Grey-TOPSIS method to conduct a comprehensive
evaluation of different types of EVs. Fig. 3 illustrates the
specific evaluation flowchart.

Establish an evaluation index system ’—

Improved rank correlation
analysis method

-

Experts give the rank correlation in the set of
contribution rates for each index
-
Experts provide the relative contribution ratio for
each index based on Table I
¥
Calculate the contribution rate of each index
according to Eq.(5)
¥
The subjective weight of each index are derived
through Eqs.(6)-(7)

Flexible entropy model

Calculate the Pearson correlation coefficients for
each index and fuse the highly correlated —
indices using Eq.(8)

+

Calculate the entropy value of each
index using Eq.(9)
+
Calculate the flexibility entropy weight for each
index according to Eqs.(10)-(12)
+
Calculate the objective weights based on the
— correlation between each index and other
independent indices

After obtaining the subjective and objective weights,
calculate the combination weights

Grey-TOPSIS l

Construct an evaluation matrix using Eqs.(13)-(15)
and standardize it
+
Calculate the comprehensive evaluation value
according to Eqs.(16)-(24)

End

Fig. 3. EV charging responsiveness evaluation process

As shown in Fig. 3, the main steps of the evaluation are
summarized below.

Step 1: Construct the EV charging responsiveness
evaluation index system and analyze each index
quantitatively and qualitatively.

Step 2: Calculate the subjective weight of each index using
the improved ordinal relationship analysis.

Firstly, the expert establishes the ordinal relationship and
the ratio of relative contribution degree within the set of
contribution rates for each index. Then, the expert analyzes
the hierarchical structure relationship of the constructed
index system and calculates the subjective weight of each
index using the Egs. (5)-(7).

Step 3: Calculate the objective weight of each index using
the flexible entropy model.

Prior to determining each index's objective weight, the
Pearson correlation coefficient technique is applied to
examine the relationships among indices based on data
distribution. The correlation coefficients of the evaluation
indices are calculated as shown in Eq. (24), and the
evaluation metrics' correlation matrix E is then calculated.

ar e
P .

e e,

nl nn

Where, ¢, isthe correlation coefficient between y, and y, ,

a greater value indices, a stronger association between the
indices. In this study, the correlation cutoff is established at
0.9, which means that y, has a strong correlation when

e, 20.9 . Otherwise, their association is slight and not

contingent on one another.

D W O
0 (B o)

Where, b, and b, are the average of the data of the uzh and

(24)

keh indices within the adjusted assessment array; m
represents the comprehensive count of chosen EV categories.

Using the Pearson correlation coefficient method, indices
with high correlations to objective data are treated as a single
index for calculating objective weights. Eq. (8) combines the
elevated correlation coefficients. It also determines the
centroid vector from highly independent measures.
Following the integration of the strongly correlated indices,
the objective weights of each index are calculated by Egs.
(9)-(12),

Step 4: The obtained subjective and objective weights are
combined. Ultimately, the EV charging responsiveness of
each type is evaluated comprehensively by Grey-TOPSIS.

The portfolio weights are calculated as shown in Eq. (25).

We = + W, (25)
Where, W, denotes the subjective weighting derived from by
improved rank correlation analysis method, W, denotes the

objective weight determined through flexible entropy model,
which is combined by Eq. (25) to get its combined weight W, .

4 and u, denote the subjective and objective coefficients

of the combined weights, and satisfy 0<gq,u, <1 ,

M+, =1. This paper ensures that both subjective and

objective factors are considered equally in the evaluation
process to avoid over-reliance on one aspect of information,
SO 44 =, =0.5 is taken.

Finally, the comprehensive evaluation values of the
charging responsiveness of different types of EVs are
calculated by Egs. (13)-(24).

IV. CASE STUDY

To verify the effectiveness of the proposed evaluation
method, data related to EV charging responsiveness are
collected. Typical EV types include: electric buses (EV)),
electric cabs (EV>), electric trucks (EV3), and electric private
cars (EV4). The responsiveness of these four types of EVs is
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evaluated using the proposed method.

A. Data Acquisition and Organization

The charging performance data collected for different
types of EVs are shown in Table II. Typical EV types can be
represented as: electric buses (EV)), electric cabs (EV>),
electric trucks (EV3), and electric private cars (EVy).

TABLE I
INDEX PERFORMANCE INFORMATION FOR DIFFERENT TYPES OF EVS
Indices EV, EV, EV; EV,
An 180kWh 90kWh 200kWh 100kWh
A Lower High Low Higher
A Az 170kWh 80kWh 160kWh 70kWh
A Moderate Better Moderate Poorer
A Higher Moderate Higher Moderate
Asy Near Moderate Far Farther
Ar Short Shorter Long Moderate
Ao As Moderate Lower Low Lower
.on Moderate Higher High Higher
Az Low High Low Higher
Az 0-1 3-5 0-1 1-2
A Az Moderate Higher Low High
Az 150kWh 70kWh 160kWh 60kWh
Al real\s/f)?lr;ble Moderate reagci?zsible Reasonable
Ay Ay Low High Low Higher
Az Low Higher Lower Higher

The qualitative indices are quantified according to the
scoring rules and then normalized by Eqs. (13)-(15), where
Ais, Asi, Az, and Aos are negative indices, and the rest are
positive indices. Tables III and IV show the quantitative and
normalized data for the four EVs and 16 indices.

TABLE IV
INDICES NORMALIZED DATA FOR DIFFERENT TYPES OF EVS
Indices EV, EV, EV; EV,
Ay 0.5983 0.2992 0.6648 0.3324
A 0.4438 0.5804 0.4097 0.5462
A, Az 0.6627 0.3119 0.6237 0.2729
Ay 0.4826 0.5148 0.4504 0.547
Ajs 0.4668 0.5001 0.4376 0.5835
Ay 0.7035 0.469 0.3127 0.4329
Ay 0.6169 0.5484 0.2742 0.4935
A Aj 0.3838 0.3358 0.6717 0.5373
Ay 0.4097 0.4438 0.5804 0.5462
As 0.3587 0.6457 0.287 0.6099
A 0.326 0.6883 0.2898 0.5796
A Az 0.4532 0.491 0.3022 0.6799
Az 0.6305 0.2942 0.6725 0.2522
Ay 0.4026 0.6039 0.2416 0.6441
Ay Ap 0.2708 0.6092 0.4738 0.5754
Asy 0.3961 0.5611 0.4621 0.5611

B. Determination of Weights

After obtaining the normalized data of the indices of
different types of EVs, the subjective and objective weights
of each index are calculated using the improved rank
correlation analysis method and the flexible entropy model.
1) Subjective weights determined based on the improved rank
correlation analysis method

This segment employs the improved rank correlation
analysis method for determining the individual subjective
importance of each evaluation criterion. Five invited experts
in the electric vehicle field provided a tiered evaluation
accordingly. They play a decisive role in determining
subjective weights, and the accuracy and consistency of their
judgments directly impact the scientific validity and

TABLE III credibility. The results are shown in Table V.
QUANTITATIVE DATA ON INDICES FOR DIFFERENT TYPES OF EVS
Indi EV EV. EV EV TABLE V
ndices ! 2 } ¢ EVALUATION OF EXPERT SERIAL RELATIONSHIPS
Ay 180 90 200 100 Expert Prlér_lafy A A, As A
A 65 85 60 80 e
2 Expert; 3412 23451 3421 4123 | 132
Ar An 170 80 160 70 Expert, 3421 32451 3412 | 2413 | 312
Ay 75 80 70 85 Expert; 3421 23145 3241 1243 123
Ais 75 70 80 60 Expert, 3142 25341 3421 1423 321
A 40 60 00 . Experts | 3412 | 23541 | 3421 | 4123 | 132
As Az 40 45 % 50 Table VI delineates the assigned proportions for each
Ax 35 40 20 25 index, as indicated by the hierarchical correlation analysis
Any 60 65 85 80 findings in Table I.
Az 50 90 40 85 TABLE VI
A 45 95 40 30 RATIO OF RELATIVE CONTRIBUTION OF EVALUATION INDICES
A Primary
As 60 65 40 90 Expert | . dices Al A As As
Az 150 70 160 60 Expert; | 1.6-1.4-1.0 {1.0-1.4-1.0-1.2| 1.4-1.4-1.0 | 1.0-1.0-1.6 | 1.0-1.2
Ag 50 75 30 80 Expert, | 1.8-1.4-1.0 {1.2-1.4-1.0-1.0| 1.4-1.4-1.0 | 1.2-1.0-1.6 | 1.2-1.2
AL A 40 90 70 85 Experts | 1.6-1.2-1.0 [1.2-12-1.4-1.2 12-1.2-1.0 | 1.2-12-1.4 | 1.0-1.2
An 60 85 70 85 Experts| 1.2-1.2-1.0 {1.4-1.0-1.2-1.2| 1.6-1.2-1.0 | 1.2-1.0-1.2 | 1.0-1.2
Experts| 1.8-1.2-1.2 [1.0-1.4-1.0-1.0] 1.4-1.4-1.0 | 1.2-1.0-1.6 | 1.2-1.4
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Referencing Eq. (5), the rate of influence for each
evaluation metric is ascertainable. For better understanding,
the spatio-temporal feature layer of Expert; serves as a case
for computational demonstration.

4
mmf:}ikﬁ0k4—@):q—u
f—14t,<0
ty—146,<0
t—1,<0
ty—t;<0
S.t. t37l2S0
ty—1 <0
f,—1.8, <0

* 4 =1
Zk:l k=
By solving the planning problem, Expert;'s contribution

rate to the indices of the time-space characteristics layer is
13=1966 , 13=1966 , t,=2528 , # =3539 .

Based on
m
lj:Zi:lbij , we can calculate [ =7.5608 , I, =5.8016 ,

13=9.7289 , 1,=7.7598 . According to #>f>...>t, ,

therefore / =5.8016, I, =7.5608 , I, =7.7598 , I, =9.7289 .

Finally, the subjective weights of each of the four indices are
derived from Eqgs. 6)-(7) as
wy = 0.3560,w, = 0.2477, w3 =1974,w, =0.1989 . Repeating the
above steps, the expert's assigned weighting for each index is
computed. Based on the following Eq. (26), the subjective
weights assigned by five experts to each index are derived.
The results are presented in Fig. 4.

(26)

ﬁ W M}.]
Jt - k q * %

D2
Where, w, is the weight of the primary indices, wj- is the
weight of the secondary indices, and S, is the subjective

weights by the ¢ th expert.
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Fig. 4. Subjective weights determined by the five experts
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The subjective weights of the EV charging responsiveness
evaluation indices can be calculated using the arithmetic
average of five experts as [0.0282, 0.0417, 0.0408, 0.0270,
0.0284, 0.0408, 0.0421, 0.0699, 0.0471, 0.0991, 0.0969,
0.0624, 0.0954, 0.0997, 0.0857, 0.0950].

From the calculation results, it can be seen that the EV
planned charging capacity (Ass), rationality of charging price
(A41), timeliness of charging response (As;), frequency of EV
charging response (As2), and EV charging cost (A43) account

for the highest weighting values. These indices are often
important factors for EV charging stations to guide charging.
On the other hand, the distance required for EVs to reach the
charging station (A2i), capacity of battery (A1), monitoring
of battery charging temperature (Ais), expected charging
waiting time (Ax), and state of battery health (Ai4) are
spatial-temporal characteristics of the EVs and their intrinsic
attributes, which are less influential to the charging guidance
decision, and thus their weights are also smaller.
2) Objective weights determined based on the flexible
entropy model

Before calculating the objective weights of each evaluation
index, the correlation between the indices is analyzed using
the Pearson correlation coefficient method based on the
analysis of the gathered data. The correlation coefficient of
the evaluation indices is calculated according to Eq. (24). The
correlation matrix for the assessment metrics is derived E .
This step helps to identify potential multicollinearity issues,
aiming to eliminate resulting weight estimation biases,
thereby guaranteeing the robustness and reliability of the
final weighting outcomes. Subsequently, the correlation
coefficient between indices is computed, as depicted in Table
VIIL

As shown in Table VII, the associations among Ajj, Ajs,
Az, A, Asy, Aso, Aar, A, Ass, Ass, Aoz, Agg, Ap, and Ags
exceed 0.9. There is a strong correlation exists between EV
capacity of battery, rechargeable capacity and planned
charging capacity; there is a high correlation between EV
charging efficiency, timeliness of charging response,
frequency of EV charging response and rationality of
charging price; there is a high correlation between state of
battery health, monitoring of battery charging temperature
and interruptibility of charging in emergencies; there is a high
correlation between charging level during off-peak periods
and peak charging level; there is a high correlation between
level of price compensation and charging cost.

Based on the correlation coefficient calculations for each
index, the vector of integrated indices with high
independence {c|,cy,c3,¢4,05} can be obtained from the

analysis of indices with strong correlations using Eq. (8). The
set of EV charging responsiveness evaluation indices after
fusion of the highly correlated indices can be expressed as
C={c,¢5,....c7} . The values of the fused evaluation indices

are shown in Table VIII.

Using the flexible entropy model, target weights were
derived for the indices listed in Table II. The system
parameters of this model serve as variables, whose values
were set and validated according to Eq. (11). The
corresponding results are summarized in Table IX. The table
structure is as follows: the first row displays the fused
evaluation indices, the second row shows entropy values, and
the remaining data records the changes of each index's
weight.

Table IX shows that the maximum entropy value
calculated using EWM is 0.9850. When p<0.9850 , the

value of p—E isnegative, it isn't very meaningful to use it as
the numerator to represent the weight ratio of each index.
Therefore, the value of p <0.9850 is not reasonable. In this
paper, the objective weight of each evaluation index is
determined by changing from p=1.
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TABLE VII
PEARSON CORRELATION COEFFICIENTS BETWEEN INDICES
Indices Ay App Az Ay Ais Ag An A A As Az Asz Az A An Az
Ap | 1.0000 | 0.9948 | 0.9632 | 0.9055 | 0.7974 | 0.0490 | 0.4394 | 0.4922 | 0.1637 | 0.9998 | 0.9853 | 0.7834 | 0.9861 | 0.9646 | 0.7494 | 0.8811
A, [0.9948 | 1.0000 | 0.9374 | 0.8677 | 0.7358 | 0.0129 | 0.4727 | 0.5584 | 0.2353 | 0.9959 | 0.9938 | 0.7320 | 0.9642 | 0.9494 | 0.7313 | 0.8575
Az 10.9632]0.9374 | 1.0000 | 0.8890 | 0.8428 | 0.2835 | 0.2064 | 0.2402 | 0.1071 | 0.9580 | 0.9407 | 0.7751 | 0.9878 | 0.9058 | 0.8643 | 0.9631
Ay [0.9055(0.8677 1 0.8890 | 1.0000 | 0.9642 | 0.0996 | 0.5134 | 0.3810 | 0.1085 | 0.9052 | 0.8198 | 0.9730 | 0.9383 | 0.9726 | 0.5451 | 0.7379
Ais 10.797410.7358 | 0.8428 | 0.9642 | 1.0000 | 0.0298 | 0.3377 | 0.1373 | 0.1157 | 0.7933 | 0.6872 | 0.9762 | 0.8723 | 0.8785 | 0.5324 | 0.7105
A [0.0490 | 0.0129 ] 0.2835 | 0.0996 | 0.0298 | 1.0000 | 0.8750 | 0.7292 | 0.8827 | 0.0313 | 0.1007 | 0.1869 | 0.1312 | 0.1470 | 0.6908 | 0.5152
Ay 1043941 0.4727 | 0.2064 | 0.5134 | 0.3377 | 0.8750 | 1.0000 | 0.9084 | 0.8871 | 0.4555 | 0.3915 | 0.5265 | 0.3538 | 0.5922 | 0.2552 | 0.0378
Ay; (049221 0.5584 1 0.2402 | 0.3810 | 0.1373 1 0.7292 | 0.9084 | 1.0000 | 0.9365 | 0.5085 | 0.5161 | 0.3041 | 0.3603 | 0.5441 | 0.0826 | 0.0684
Ay 10.1637]0.2353 [ 0.1071 | 0.1085 | 0.1157 | 0.8827 | 0.8871 | 0.9365 | 1.0000 | 0.1823 | 0.1831 | 0.0851 | 0.0268 | 0.2562 | 0.4201 | 0.2858
Az [0.9998 | 0.995910.9580 | 0.9052 | 0.7933 | 0.0313 | 0.4555 | 0.5085 | 0.1823 | 1.0000 | 0.9853 | 0.7834 | 0.9835 | 0.9666 | 0.7383 | 0.8724
Az, 1 0.9853(0.9938|0.9407 | 0.8198 | 0.6872 | 0.1007 | 0.3915 [ 0.5161 | 0.1831 | 0.9853 | 1.0000 | 0.6660 | 0.9527 | 0.9113 | 0.7886 | 0.8896
Az [0.783410.7320 1 0.7751 [ 0.9730 | 0.9762 | 0.1869 | 0.5265 | 0.3041 | 0.0851 | 0.7834 | 0.6660 | 1.0000 | 0.8371 | 0.9028 | 0.3827 | 0.5956
Az [0.9861]0.964210.9878 [ 0.9383 | 0.8723 1 0.1312 | 0.3538 | 0.3603 | 0.0268 | 0.9835 | 0.9527 | 0.8371 | 1.0000 | 0.9607 | 0.7793 | 0.9110
Aqr 09646 | 0.9494 | 0.9058 | 0.9726 | 0.8785 | 0.1470 | 0.5922 | 0.5441 | 0.2562 | 0.9666 | 0.9113 | 0.9028 | 0.9607 | 1.0000 | 0.5780 | 0.7616
Ay 1074941 0.7313 1 0.8643 | 0.5451 | 0.5324 | 0.6908 | 0.2552 | 0.0826 | 0.4201 | 0.7383 | 0.7886 | 0.3827 | 0.7793 | 0.5780 | 1.0000 | 0.9677
Ay [ 0.8811(0.857510.9631 [ 0.7379 | 0.7105 ] 0.5152 | 0.0378 | 0.0684 | 0.2858 | 0.8724 | 0.8896 | 0.5956 | 0.9110 | 0.7616 | 0.9677 | 1.0000
TABLE VIII
EVALUATED VALUES OF HIGH CORRELATION INDICES AFTER FUSION TREATMENT
Ci C C3 Cq Cs Co C7
EV, 0.6286 0.5312 0.5192 0.3967 0.3334 0.7035 0.6169
EV, 0.3032 0.6673 0.5535 0.3898 0.5851 0.4690 0.5484
EV; 0.6504 0.1852 0.3049 0.6260 0.4679 0.3127 0.2742
EV, 0.2958 0.3814 0.5541 0.5418 0.5682 0.4329 0.4935
TABLE IX
DISTRIBUTION OF WEIGHTS FOR DIFFERENT VALUES OF P
Ci C2 C3 Cq4 Cs Ce C7
E 0.9515 0.9354 0.9817 0.9850 0.9840 0.9694 0.9720
p=1 0.2194 0.2925 0.0830 0.0677 0.0724 0.1383 0.1267
p=1.5 0.1474 0.1517 0.1393 0.1384 0.1387 0.1426 0.1419
p=2 0.1452 0.1474 0.1410 0.1406 0.1407 0.1427 0.1424
p=2.5 0.1444 0.1459 0.1416 0.1413 0.1414 0.1428 0.1425
p=3 0.1440 0.1452 0.1419 0.1417 0.1418 0.1428 0.1426

When p=1 corresponds to the traditional EWM, it often

results in significant drawbacks in weight distribution. As
Table IX shows, the weight value of ¢, is 0.2925, and the

weight value of ¢, is 0.0677. The weight value of ¢, is only
23% of that of ¢, , and the difference between them is 0.2248,
which means that ¢, contributes about 22.48% more weight
than ¢, in the total evaluation. The over-emphasis of high
informative index ( ¢, ) and the weakening of low informative
index () in decision making may lead to bias and reduce

the comprehensiveness and fairness of decision making.
When p=1.5, the unreasonable situation of traditional
entropy weight is avoided, and when p>1.5, there is no

significant difference in the distribution of weights compared
with p=1.5. From Fig. 5, it can be more intuitively seen that
the objective weight distribution of each index when p is

varied, and the weight of each index tends to be consistent
with the increase of p. As p increases, each index’s weight

approaches 0.14.

The flexible entropy model employs p=2 as its
parameter, with the weight vector y computed. These

findings are depicted in Fig. 6.
Of the seven weighting values calculated from the
calculation, the value of ¢; denotes the combined weights of

A1, Az, and Asg after the fusion process. The value of ¢,

represents the combined weights of A1z, Azi, A3y, and Asr.
The value of ¢; represents the combined weights of A4, Ajs,

and Ass. The value of ¢, represents the combined weights of
Ay and Aj4. The value of ¢s represents the combined
weights of A4, and Ass. The values of ¢ and ¢, indicate the
weights of As; and Ao,.
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Then, the weights of ¢, to ¢s are reassigned, and the
weights of the synthesized vectors ¢; to cs are assigned to

the indices other than A»; and A»; to obtain the final objective
weights in Table II.

According to Eq. (24), the correlations of Aji, A3, and Ass
with the other 13 evaluation indices have been determined.
The results of these calculations are presented in Table X.
The average correlation for other evaluation indices can also
be obtained.

The higher the interplay among an index and various other
indices, the less pertinent info the index offers for gauging
EV charging promptness, and the less weight should be given
to that index. On the flip side, it should carry more
significance.

Based on the above, objective weights can be assigned to
Air, Ais, Asa, Avz, Asi, Asz, Aary Aug, Ass, Az, Aoz, Aos, Aa,
and Ag. The value of Ay equals 0.1452><(1 —(—0.5997))/

[(1-(—0.5997)) + (1-(~0.6051))+(1—(

(~0.6180) )] 0.0482 ;

value  of Az equals  0.1452x(1-(-0.6051) )
[(1-(—0.5997)) +(1-(~0.6051))+ (1 (-0.6180))] ~ 0.0483 ;
value  of Az equals  0.1452x(1-(-0.6180) )

[(1-(-0.5997)) +(1-(-0.6051))+(1—-(-0.6180))] ~ 0.0487 . The

value of other indices can be obtained by similar methods.
Finally, the objective weights of the 16 indices are
calculated as [0.0482, 0.0373, 0.0483, 0.0465, 0.0470,
0.01427, 0.1424, 0.0736, 0.0670, 0.0367, 0.0378, 0.0475,
0.0487, 0.0357, 0.0729, 0.0678].
From the calculation results, it can be seen that the distance
required for the EV to reach the charging station (Az), the

expected charging waiting time (Az2), the charging level
during off-peak periods (A23), and the peak charging levels
(A24) account for the highest value of the weights, which
indicates that the data of these indices have a greater degree
of wvariability, provide more information, and have high
weights. The other indices are relatively less informative and
therefore have smaller weights.

TABLE X
CORRELATION OF INDICES Aj;, Aj3 AND Ay
Indices Ap Az Az
Apz -0.9948 -0.9374 -0.9642
Ay -0.9055 -0.889 -0.9383
Ajs -0.7974 -0.8428 -0.8723
Ay 0.049 0.2835 0.1312
Ay -0.4394 -0.2064 -0.3538
As 0.4922 0.2402 0.3603
Ay 0.1637 -0.1071 0.0268
Az -0.9998 -0.958 -0.9835
As -0.9853 -0.9407 -0.9527
Az -0.7834 -0.7751 -0.8371
Ay -0.9646 -0.9058 -0.9607
Ap -0.7494 -0.8643 -0.7793
Ay -0.8811 -0.9631 -0.911
Average value -0.5997 -0.6051 -0.618

3) Assignment
combinations

In complex decision problems, it is often difficult for a
single type of weight to adequately capture the importance of
all relevant factors. For this reason, we adopt a weight
combination method that combines subjectivity and
objectivity, incorporating both the improved rank correlation
analysis method and the flexible entropy model.

of subjective and objective weight

0.16
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0.10 f
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m Subjective weight
® Objective weight

Weights
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Indices
Fig. 7. Subjective and objective index weightings

The improved rank correlation analysis method depends
on expert opinions. It assigns the weights by constructing the
rank correlation evaluation matrix, which fully reflects the
preferences and experience of decision makers. However, the
flexible entropy model is based on the distribution
characteristics of the data itself, which reflects the objectivity
of the data. Combining the weights obtained by these two
methods by a certain ratio or rule takes into account both the
subjective will of the decision maker and the objective
information of the data.
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Fig. 8. Combined weights of indices

Fig. 7 shows the final subjective and objective weights of
the indices.

Referencing Eq. (25), the subjective and objective
weightage values are determined to get the comprehensive
weights of EV charging responsiveness evaluation indices.
The calculation results are [0.0382, 0.0395, 0.0446, 0.0367,
0.0377, 0.0917, 0.0922, 0.0717, 0.0570, 0.0679, 0.0673,
0.0550, 0.0720, 0.0677, 0.0793, 0.0814]. And the combined
weights of the indices are shown in Fig. 8.

From the final combination of weights, it can be seen that
the five indices that have the greatest impact on EV charging
responsiveness are the distance required to reach the charging
station (Az1), the expected charging waiting time (A2), the
EV charging cost (A43), level of price compensation (Asy),
and the planned charging capacity (Ass4) with corresponding
weights 0f 0.0922, 0.0917, 0.0814, 0.0793, and 0.0720.

C. EV Charging Responsiveness Evaluation Based on

Grey-TOPSIS

There are four typical types of EVs, including electric
buses (EV)), electric cabs (EV>), electric trucks (EV3), and
electric private cars (EV4). Based on the weighted
normalization matrix, the combined evaluation values of the
four different types of EVs are calculated using the
Grey-TOPSIS method. The final score of the evaluation is
calculated using Eq. (23), where the weights in the equation
are the combined weights calculated in the previous section,
and the results are shown in Table XI. The EV charging
responsiveness is ranked based on the score.

TABLE XI
EV CHARGING RESPONSIVENESS RESULTS BASED ON GREY-TOPSIS
EV types EV, EV, EV; EV,
Score 0.4935 0.7090 0.3103 0.7118
Sorting 3 2 4 1

From the comprehensive evaluation scores and rankings, it
can be seen that the charging responsiveness of different
types of EVs is ranked as electric private cars (EV4) > electric
cabs (EV») > electric buses (EV) > electric trucks (EV3).

As can be seen from the index values in Table II, electric
private vehicles (EV4) rank first in six indices as the type with
the highest EV charging response capability, and three of

] 0.0382

»
Ll

0.10

0.05
Weights

0.06 0.07 0.08 0.09

these indices have high weights: charging cost, charging level
during off-peak periods, and rationality of charging price.
The charging responsiveness of electric cabs (EV») is also
relatively high, with all indices of charging response
characteristics performing better than other types of EVs. In
contrast, electric trucks (EV3) and electric buses (EV1) are
less responsive. Therefore, when EVs are utilized to regulate
the electric load of the grid through EV aggregators, electric
private cars and electric cabs can be prioritized, which in turn
effectively shaves the peaks and fills the troughs of the
electric loads that have different modal performances at
different times of the day.

To authenticate the efficacy of this approach, the methods
AHP[22], AHP-EWM[23], AHP-TOPSIS[24], AHP-EWM-
TOPSIS[25], AHP-Grey-TOPSIS[26], and AHP-EWM-
Grey-TOPSIS[27] are compared. Table XII and Table XIII
represent scores and ranking results of the four different types
of EVs after applying different evaluation methods. And Fs is
the improved rank correlation analysis (IRCA), flexible
entropy model (FEM), and Grey-TOPSIS proposed in this

paper.

TABLE XII
SCORES OF THE FOUR DIFFERENT TYPES OF EVS
Method Typel EV, EV, EV; EV,
F, AHP 0.4617 | 0.5001 | 0.4436 | 0.5003
F, AHP-EWM 0.4635 | 0.5170 | 0.4052 | 0.5369
F; AHP-TOPSIS 0.5799 | 0.4881 | 0.5244 | 0.4669
Fy AHP-EWM-TOPSIS 0.5669 | 0.4934 | 0.5101 | 0.4732
Fs AHP-Grey-TOPSIS 0.4736 | 0.7010 | 0.3145 | 0.6938
F¢ |IRCA-FEM-Grey-TOPSIS| 0.4935 | 0.7090 | 0.3103 | 0.7118
TABLE XIII
RANKING RESULTS OF THE FOUR DIFFERENT TYPES OF EVS
Method Type | EV, EV, EV; | EV,
F; AHP 3 2 4 1
F, AHP-EWM 3 2 4 1
F; AHP-TOPSIS 1 3 2 4
Fa AHP-EWM-TOPSIS 1 3 2 4
Fs AHP-Grey-TOPSIS 3 1 4 2
Fs | IRCA-FEM-Grey-TOPSIS 3 2 4 1

Volume 33, Issue 11, November 2025, Pages 4612-4624



Engineering Letters

Fig. 9 and Fig. 10 show comparisons of scores and ranking
results of the different evaluation methods.

In order to compare the ranking differences between the
methods in this paper and other methods, the mean absolute
error (MAE) of each method is calculated. The ranking
vectors of the six methods in Table XIII are denoted as M,
Ma, M3, M4, M, and Mg. The MAE among sorting sequences

is given by:
ZTZJM i~ My|

m
Where, M; denotes the jth magnitude of the sequence

MAE(M;,M}) = 27

M; and m denotes the length of the sequence.

scores

Fig. 9. Scores of different evaluation methods
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OEV:
OEVs
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v
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Fig. 10. Ranking results of different evaluation methods

The results are shown in Table XIV. The lower the MAE,
the better the performance of the method. The MAE value of
the method in this paper is less than AHP-TOPSIS,
AHP-EWM-TOPSIS, and AHP-Grey- TOPSIS, so the
sorting accuracy is better than them. Compared with AHP
and AHP-EWM, which have equal MAE value, as shown in
Table XII, the top two ranking scores calculated by them
differ only by 0.0002 and 0.0004. In contrast, the proposed
method significantly magnifies this gap to 0.0028, which is
equivalent to a magnification of about 10 times. The same
applies to the last two ranked scores. Therefore, this method
can more clearly distinguish the subtle differences in
regulation responsiveness among different types of EVs,
enhance the sensitivity of the model, and provide a more
reliable basis for formulating clear priority strategies. In
summary, the overall sorting accuracy of the proposed
method is better than that of AHP, AHP-EWM,

AHP-TOPSIS, AHP-EWM-TOPSIS, and
AHP-Grey-TOPSIS.
TABLE XIV
MAE VALUES FOR DIFFERENT METHODS
vecor | M| M| Ms | Me | owe | ome | R

M, 0 0 2 2 0.5 0 0.75
M, 0 0 2 2 0.5 0 0.75
M; 2 2 0 0 2 2 1.33
My 2 2 0 0 2 2 1.33
M;s 0.5 0.5 2 2 0 0.5 0.92
Mg 0 0 2 2 0.5 0 0.75

Different evaluation methods lead to different scores and
rankings in EV charging responsiveness evaluation. The
main reasons for this are: (i) The improved rank correlation
analysis and flexible entropy model in this paper have
respectively improved the AHP and EWM methods. There
are differences in the distribution of weights when
calculating the weights of indices in different evaluation
methods, and the results of the evaluations are different. (ii)
We improve the Euclidean distance in TOPSIS through grey
correlation degree, which also makes the evaluation results of
Grey-TOPSIS and traditional TOPSIS significantly different.
(i) Compared with AHP-TOPSIS, AHP-EWM-TOPSIS,
and AHP-Grey-TOPSIS, etc., the improved rank correlation
analysis method, flexible entropy model, and Grey-TOPSIS
selected make full use of the advantages of each of AHP,
EWM, and TOPSIS, improve their deficiencies, and obtain
new evaluation results. The evaluation index system
combines various EVs' natural and physical characteristics
and the adjustable capacity as flexible loads. The proposed
improved rank correlation analysis method, flexible entropy
model, and Grey-TOPSIS evaluation method fully consider
the significant differences between evaluation indices and
EV charging characteristics, which are more suitable for
guiding flexible resource access in practical applications.

V. CONCLUSION

To fully utilize the adjustable potential of user-side
flexible resources, a comprehensive evaluation method for
EV charging responsiveness is proposed, utilizing the
improved rank correlation analysis method, flexible entropy
model, and Grey-TOPSIS. This approach can obtain
quantifiable EV charging evaluation data. The experimental
results show that, compared with the traditional methods such
as AHP, AHP-EWM, AHP-TOPSIS, AHP-EWM-TOPSIS,
and AHP-Grey-TOPSIS, this evaluation method guides the
access of flexible resources. On the other hand, it can also
assist with the distribution network planning.

The evaluation method facilitates grid operators to
accurately grasp the ability of flexible loads to regulate their
response to the grid, so that they can reduce the pressure on
the grid by guiding users to reduce electricity consumption
through demand response during peak hours, and make full
use of the energy storage characteristics of flexible loads to
absorb excess electricity from renewable energy sources
during the low hours of the power, thus optimizing the
allocation of power resources.
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