
 

  

Abstract—With the rapid development of electric vehicles 

(EVs) in recent years, it has become an essential flexible load in 

microgrids, and their impact on the grid is increasingly 

significant. Currently, a mature and scientific evaluation 

scheme for EV charging responsiveness is lacking, making it 

difficult to utilize the potential of adjustable user-side flexible 

resources fully. To this end, a comprehensive EV charging 

responsiveness evaluation method is proposed based on 

improved rank correlation analysis, flexible entropy model, and 

a technique for order preference by similarity to an ideal 

solution improved by grey correlation degree (Grey-TOPSIS). 

Firstly, an EV charging responsiveness evaluation index system 

is established. The weights of each index are determined using 

the improved rank correlation analysis method and flexible 

entropy model. Then, the evaluation scores of different types of 

EV charging responsiveness are obtained using Grey-TOPSIS. 

The experimental results show that the method is more effective 

and applicable than the traditional multiple evaluation methods, 

which provide decision-making support for grid managers and 

improve the power system's operational and energy utilization 

efficiency. 

 
Index Terms—Index system, Rank correlation analysis 

method, Flexible entropy model, Grey-TOPSIS. 

 

I. INTRODUCTION 

ith the scarcity of fossil energy and the rapid growth of 

new energy generation, the technological development 

and number of EVs are rising at an alarming rate[1]. The 

charging behavior of large-scale EVs will inevitably cause 

severe negative impacts on the power grid, increase the 

instability of the grid, cause line blockage, and cause serious 

peak-to-valley differences[2]. Therefore, it is necessary to 

develop a scientific evaluation system to better utilize the role 
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of EVs in microgrid regulation, to ensure the ability to reduce 

the pressure on the grid by using the energy storage of EVs 

during the peak power hours, and to utilize the storage 

characteristics of EVs to absorb the excess power from 

renewable energy sources during the low power hours. 

Reference [3] proposes a joint control and optimization 

strategy for EV aggregators (EVAs) to participate in grid 

frequency and voltage regulation based on the cloud-side 

cooperative hierarchical scheduling architecture. It 

establishes a multi-timescale EV charging pile cluster (EVC) 

scheduling model to maximize EVA profits. The Reference[4] 

establishes an EV demand response aggregation potential 

assessment index system containing six evaluation indices 

from the grid and user sides. Reference [5] establishes an EV 

cluster evaluation index model using the reported dispatch 

power, user credit, battery wear, and user participation as 

evaluation indices. Reference [6] established a 

multidimensional EV safety evaluation system consisting of 

ten indicators that assess component safety and dangerous 

driving behavior. Reference[7] takes EV real-time charging 

message data as the research object, analyzes and establishes 

the affiliation model of charging safety influencing factors, 

and proposes an EV real-time charging risk assessment 

method based on the improved generalized back-propagation 

and hierarchical analysis process (BBP-AHP) assessment 

method. Most of the above studies focus on aspects such as 

EV dispatch capability and safety assessment, and less 

consideration is given to charging responsiveness influencing 

factors, which makes it challenging to provide appropriate 

guidance for auxiliary distribution network planning. 

Scientific evaluation methods are essential for accurately 

assessing EV charging responsiveness in the grid. 

Reference[8] evaluates key storage technologies for EVs 

based on five criteria: cost, technical characteristics, 

compatibility, technology maturity, environment, health, and 

safety, and uses the AHP method to select storage for EVs. 

Reference[9] proposes a two-stage Multi-Criteria Decision 

Making (MCDM) framework that combines the Technique 

for Ordering Priorities of Similarity of Ideal Solutions 

(TOPSIS) with Binary Goal Planning (BGP) to evaluate EV 

charging pile locations based on geospatial, environmental, 

technical, and economic criteria. Reference[10] uses the 

hierarchical analysis method to calculate the weights of 

indices at each level. Then, it introduces the fuzzy 

comprehensive evaluation method to evaluate the integrated 

operation of the vehicle-pile-network-source. Reference[11] 

constructs a response intention assessment model based on 

TSK fuzzy mathematics, taking electricity prices, battery 

Comprehensive Evaluation of Electric Vehicle 

Charging Responsiveness Based on Combined 

Weights and Grey-TOPSIS 

Yiwei Ma, Ningying Liu, Miao Huang 

W 

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4612-4624

 
______________________________________________________________________________________ 



 

charge status, and temperature as key influencing factors, and 

establishes 27 fuzzy rules to quantify EV users' response 

intentions accurately. Reference [12] proposes a distributed 

robust real-time flexibility assessment model to accurately 

evaluate EVs' real-time flexibility in charging stations. This 

model formulates EVs' uncertain departure behavior and 

charging status in an online update mode. 

The above studies mainly focus on EV storage technology, 

location selection of charging piles, 

vehicle–pile–network–source integrated operation, and EV 

flexibility evaluation. Still, few relevant research results and 

practical cases exist in EV charging responsiveness 

evaluation. Therefore, a comprehensive EV charging 

responsiveness evaluation method is proposed, utilizing the 

improved rank correlation analysis method, flexible entropy 

model, and Grey-TOPSIS to fully utilize the adjustable 

potential of user-side EVs. The method fully considers the 

operational purpose of the EV control system and the 

charging response of different EVs, in which the proposed 

EV charging responsiveness index system contains four core 

evaluation indices and 16 sub-indices. The main 

contributions of this paper are summarized as follows. 

(i) EV is an essential flexible load. Still, the lack of a 

scientific EV charging responsiveness evaluation system 

makes it difficult to guide access to flexible resources. We 

propose a comprehensive evaluation method for EV charging 

responsiveness, based on an improved rank correlation 

analysis method, a flexible entropy model, and 

Grey-TOPSIS. 

(ii) To utilize the adjustable potential of user-side flexible 

resources, by the principles of science, representativeness 

and reliability in the construction of the evaluation index 

system, and based on the charging response characteristics of 

different types of EVs, an EV charging responsiveness 

evaluation index system is proposed, which contains four 

core evaluation criteria and 16 evaluation indices. 

(iii) Combining the improved rank correlation analysis 

method of the subjective assignment method and the flexible 

entropy model of the objective assignment method can 

complement the influence of subjective and objective factors 

to make the weight allocation more comprehensive. 

(iv) Combined with the grey correlation degree, the 

traditional TOPSIS method is improved, and the new model 

uses the weighted grey correlation degree as the distance 

measure to replace the original Euclidean distance. The 

improved model reflects the proximity and ideal value of the 

target in terms of both curve similarity and positional 

distance, which can more accurately reflect the internal 

changes of each evaluation object and make up for the 

shortcomings of the Euclidean distance in the traditional 

TOPSIS. 

The remainder of the paper is organized as follows. 

Section II outlines the evaluation methods used in this study. 

Section III presents the evaluation model for EV charging 

responsiveness. Section VI introduces the case study results 

and discussions. Finally, Section V summarizes the work of 

the paper. 

II. EVALUATION METHODOLOGY 

The proposed EV charging responsiveness evaluation 

method can be categorized into three main stages, as shown 

in Fig. 1. It integrates the improved rank correlation analysis 

method, the flexible entropy model, and Grey-TOPSIS. The 

following is a brief description of these evaluation methods. 

 

Index system

Overall objective Evaluation indicators

 Combination weights WC=μ1W1+μ2W2

Rank correlation analysis

Emphasize weak 

consistency

EWM Weight calculation

Change the coefficient 1 of 
1-HJ in entropy to a tunable 

parameter ρ 

Grey-TOPSIS

TOPSIS evaluation Grey correlation degree

Evaluation results of EV charging response capability

Improved rank correlation 
analysis

Flexible entropy model

Subjective weight W1Objective weight W2

 
Fig. 1. EV charging responsiveness evaluation framework 

 

A. Improved Rank Correlation Analysis Method 

In current research, the rank correlation analysis method, 

known as the G1 method, is widely used to establish the 

subjective weights of evaluation criteria. This method stems 

from a reimagining of the hierarchical analysis method 

(AHP). Compared with AHP, the G1 method is more concise 

and efficient in calculation and avoids the difficulty of the 

consistency test, overcoming the limitations of AHP[13]. 

First, experts qualitatively rank the importance of evaluation 

indices. Then, the ranking results are compared to determine 

the importance of adjacent indices. Finally, the weight of 

evaluation indices is obtained, simplifying the calculation of 

weight coefficients[14]. However, the sequential relationship 

analysis technique necessitates strong consistency among 

evaluation indices and employs the proportional scale 

approach. Under strong consistency, ensuring that the 

evaluation indices do not violate people's thinking isn't easy. 

Thus, within this study, the subjective index weights are 

derived through the improved rank correlation analysis 

method. Under the hierarchical relationship between indices 

assumed, this analysis focuses on weak consistency rather 

than strong, employing a distinct scalar methodology. The 

steps for determining subjective weights via the improved 

rank correlation analysis method include the following 

stages[15]: 

Step 1: The expert gives the ordinal relation 
* * *
1 2 nt t t  in the set of contribution rates  1 2, , , nt t t , 

which is still expressed  1 2 nt t t  for the convenience 

of writing. The intuitive meaning of the contribution rate jt  

is the ratio of the sum of the evaluation values contributed by 
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the jth  index to the composite evaluation magnitude, 

calculated as shown in Eq. (1). 

Assuming that there are m  evaluation samples 

 1 2, , , ms s s , n  evaluation indices  1 2, , , nb b b . A 

normalized evaluation matrix denoted ij
m n

B b


 =
 

, and  ijb  is 

the standardized measure of the ith  evaluation sample 

concerning the jth  index. The contribution of each 

evaluation index jb  is: 

 1

1

, 1,2, ,

m

j ij
i

j m

i
i

w b
t j n

x

=

=

= = 



 (1) 

Where, jw  is the individual significance of each metric, 

and
1

1
m

i
i

w
=

= . ix  denotes the holistic assessment score for 

the subject is  under review, determined in accordance with 

Eq. (2). 

 
1

, 1,2, ,
n

i j ij
j

x w b i m
=

= =   (2) 

Denote the sum of the m  evaluation data in the jb  as jl , 

1

m

j ij
i

l b
=

=  , then: 

 

1

j j
j n

j j
j

w l
t

w l
=

=


 (3) 

Step 2: A reasonable judgment of the relative contribution 

between 1kt −  and kt  should be provided, based on a judicious 

assessment of the proportion of the extent of contribution of 

the experts to the evaluation indices is shown in Eq. (4). 

 1k
k

k

h
r

h

−=  (4) 

The assignment of kr  is shown in Table I. 

 
TABLE I 

ASSIGNMENT OF kr  

kr  Meaning 

1.0 1kt −  and kt  contribute equally 

1.2 The contribution of 1kt −  is slightly higher than that of kt  

1.4 The contribution of 1kt −  is higher than that of kt  

1.6 The contribution of 1kt −  is obviously higher than that of kt  

1.8 The contribution of 1kt −  is definitely higher than that of kt  

 

Step 3: Calculation of the contribution rate jt . 

 ( )1 1
2

n

k k n
k

maxf t t t t−
=

= − = −  

 

1

1

1

1

0, 2,3, ,

0, 2,3, ,

. . 1.8 0

1

k k k

k k

n

n

k
k

t t r k n

t t k n

s t t t

t

−

−

=

−  = 


−  = 
 − 

 =
 

 (5) 

The significance of the objective function is the sum of the 

distances between the contribution rates jt  of neighboring 

indices. The purpose of maximizing f  under the condition 

of satisfying the scale of proportionality is to expand the 

distance between the contribution rates of neighboring 

indices, reflecting as much as possible the reasonable 

assessment of the experts regarding the ratio of the evaluation 

metrics' impact. 1 0k kt t −−   reflecting the need for 

evaluation indices to meet the weak consistency requirements 

of 1 2 nt t t   . Under scaling, the meaning of 1 1.8 0nt t−   is 

to avoid the situation that 1 3/ 2.56w w =  does not align with 

human cognitive patterns when 1 2/ 1.6w w =  and 

2 3/ 1.6w w =  satisfy the strong consistency requirement. 

Step 4: Calculation of weighting factors. 

 

1

1

2 1

1
n

n k
n

kn k

l t
w

t l

−

−

= −

 
= + 

 
  (6) 

 1
1

1

, , 1, ,3,2k k
k k

k k

l t
w w k n n

t l

−
−

−

= = −   (7) 

Where, 
1

1
n

k
k

w
−

= . 

B. Flexible Entropy Model 

Entropy weighting method (EWM) is a widely applied 

technique for determining the objective weights of indices. 

Still, its shortcomings in calculating the objective weights of 

indices are that it cannot reflect the small changes in the 

evaluation matrix, which can easily lead to a large gap in the 

distribution of weights of the indices[16]. It only considers 

the degree of variation of a single index and can't deal with 

the correlation between indices. Compared with EWM, the 

flexible entropy model transforms the coefficient 1  of 1 jH−  

in the entropy weights into a system parameter   , 

enhancing the adaptability of the weight distribution and 

effectively avoiding the shortcomings of EWM. Meanwhile, 

before calculation, the relationship among indices is analyzed 

by the Pearson correlation coefficient method, and by using 

the calculation of its average similarity value to process each 

index with high correlation, the comprehensive indices 

vector with high independence can be obtained, which 

improves the problem that EWM can't deal with the 

correlation between indices. The steps are as follows[17]. 

The data's objective allocation informs the application of 

Pearson correlation coefficient technique for determining 

index correlations. If indices show a strong correlation with 

the objective data, they are treated as a single index for 

calculating the objective weights. This paper uses the 

optimization model for minimizing distance to integrate 

highly correlated indices, as shown in Eq. (8), and the 

centroid of the strongly independent indices is determined. 

Following the integration of highly correlated indices, the EV 

charging responsiveness evaluation indices set is denoted as 

 1 2, , , lC c c c=   and the normalization matrix is denoted as 

ij
m l

R r


 =
 

. 

 ( )
2

1 1
min

g m

i ip
f i

z b b
= =

 = −   

 

( ) ( )
2 2

1 1

0 1

1,2, ,

1,2, , ,

m m

i ip i iq
i i

i

b b b b

b

p g

q g p q

= =


− = −




 
 = 


=  

 
 (8) 

Where, g  denotes the number of indices with high 
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correlation in the objective indices, ib  denotes the centroid 

vector of indices with high correlation after the fusion 

process. ipb  and iqb  are the standardized magnitudes of the 

ith sample concerning the pth  and qth  indices. 

 
11 1

1

l

m ml

r r

R

r r

 
 

=  
  

 

Where, ijr  is the normalized value of the ith  sample 

concerning the jth  index. 

Step 2: For ij
m l

R r


 =
 

, the entropy associated with the 

jth  index is computed as: 

 
1

ln , 1,2, ,
m

j ij ij
i

E k p p j l
=

= − =   (9) 

Where, 1/ lnk m= , 
1

/
m

ij ij ij
i

p r r
=

 
=  

 
 ; 0 1jE  , and if 

0ijp = , ln 0ij ijp p = . 

Step 3: Based on the entropy figures for each index, the 

variation coefficient jH  is derived. 

 j jH E= −  (10) 

Where,   is the parameter  ( )1 2, , , nmax E E E   . 

Subsequently, as per Eq. (11), the flexible entropy model 

with weights   can be solved. 

 . . 1

0

T

T

minz H

s t e

 





 =



=
 


 (11) 

Where, H  is the diagonal matrix of n n  with diagonal 

elements jj jh E= − , 0, 1,2, ,jjh j l =  , and the rest of the 

elements are zero. 

Suppose ( )1T TL H e  = − − , and 2 0
j

L
h


 


= − = , 

1 0TL
e





= − = . The flexible entropy weights of the indices 

can be calculated according to Eq. (12). 

 
1

1T

H e

e H e


−

−
=  (12) 

Step 4: To assign weights to each relevant index, we use 

the Pearson correlation coefficient method to assess the 

degree of association among each pertinent index and various 

standalone variables. By analyzing the correlation coefficient, 

the autonomous objective weight for each pertinent indicator 

is derived. 

C. Grey-TOPSIS 

Krohling and Pacheco proposed the Technique of Ranking 

Preferences by Similarity to Ideal Solutions (TOPSIS)[18]. 

The method is based on ideal solutions; an alternative is 

considered optimal if it is closer to a positive ideal solution. 

However, the traditional TOPSIS method uses Euclidean 

distance to calculate the distance between the evaluation 

object and the positive and negative ideal solutions. The 

Euclidean distance can only reflect the positional relationship 

between the data curves, but not the trend changes of the data 

series, which affects the accuracy of the evaluation 

results[19]. 

To address the issues above, the traditional TOPSIS 

method is enhanced by integrating the grey correlation 

degree to assess EV charging responsiveness. The grey 

correlation degree measures the magnitude of the correlation 

between two systems concerning factors that vary over time 

or across different objects[20]. The grey correlation degree is 

used as a distance measure, replacing the original Euclidean 

distance. The improved model reflects the proximity and 

ideal value of the target in terms of both curve similarity and 

positional distance, which can more accurately reflect the 

internal changes of each evaluated country and make up for 

the shortcomings of the Euclidean distance in the traditional 

TOPSIS. The specific steps of the new model Grey-TOPSIS 

are as follows. 

Step 1: Construct the evaluation matrix. For m  evaluation 

samples and n  indices, construct the evaluation index matrix 

C  as follows: 

 
11 1

1

n

m mn

c c

C

c c

 
 

=  
  

 (13) 

Where, ijc  is the evaluated value of the jth  index for the ith  

sample. 

Step 2: The evaluation matrix is standardized and 

normalized. Indices standardization is shown in Eq. (14), 

which transforms all negative and interval-type indices into 

positive indices to maintain consistency; normalization is 

shown in Eq. (15), which finally obtains the standardization 

matrix C   and the normalization matrix U . 

 

,

1

1

ij

ij
ij

ij best j

c positive indices

c negative indices
c

c c
interval indices

M







 = 



−
−



 (14) 

 
2

1

ij
ij

m

ij
i

c
u

c
=


=


 (15) 

Where, ijc  denotes the positive standardized index value of 

the jth  index for the ith  sample. iju  denotes the 

standardized value of the jth  index for the ith  sample. 

,best jc  denotes the optimal value of the jth  index. M  is the 

maximum value of the jth  index at a distance of ,best jc , and 

 ,ij best jM max c c= − . 

Step 3: Construct the weighted normalization matrix Z, 

calculated as shown in Eq. (16). 

 * *ij j ijz w u=  (16) 

Where, ijz  denotes the weighted normalized value of the jth  

index for the ith  sample, and *
jw  is the composite weight of 

the jth  index. 

Step 4: Determine the positive ideal solution Z +  and 

negative ideal solution Z − , as shown in Eq. (17) and Eq. (18). 

Calculate the grey correlation coefficients  +  and  −  as 

shown in Eq. (19) and Eq. (20). 
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  1 2max , , ,ij n
j

Z z z z z+ + + + 
= =  

 
 (17) 

  1 2min , , ,ij n
j

Z z z z z− − − − 
= =  

 
 (18) 

Where, 1 2, , , nz z z+ + +  denotes the positive ideal solution for 

each index, 1 2, , , nz z z− − −  denotes the negative ideal solution 

for each index. 

 

min min max max

max max

ij j ij j
i j i j

ij

ij j ij j
i j

z z z z

z z z z






+ +

+

+ +

− + −

=
− + −

 (19) 

 

min min max max

max max

ij j ij j
i j i j

ij

ij j ij j
i j

z z z z

z z z z






− −

−

− −

− + −

=
− + −

 (20) 

Where,   is the resolution factor, 0,1    . 0.001 =  is 

taken in this paper. 

Step 5: Calculate the Grey-TOPSIS distance measures iS +  

and iS − . The weighted grey correlation degree calculated by 

the weighted sum of grey correlation coefficients is used as 

the distance measure because the matrix Z  has been 

weighted normalized, so the grey correlation degree is 

obtained by directly summing the grey correlation 

coefficients. The calculation is shown in Eq. (21) and Eq. 

(22). 

 

1

n

i ij

j

S + +

=

=   (21) 

 

1

n

i ij

j

S − −

=

=   (22) 

Where, iS +  is the distance from the ith  sample to the positive 

ideal solution, iS −  is the distance from the ith  solution to the 

negative ideal solution. 

Step 6: Calculate the composite evaluation value of the 

sample *
iS  , as shown in Eq. (23). 

 * i
i

i i

S
S

S S

+

+ −
=

+
 (23) 

Where, *
iS  takes a value in the range of 0 to 1. The larger its 

value, the closer the evaluation object is to the positive ideal 

solution. 

III. EVALUATION MODEL AND STRATEGY 

In order to comprehensively evaluate the charging 

responsiveness of EVs, we first determine the evaluation 

indices affecting the response of EVs, then establish a 

two-level evaluation index system of EV charging 

responsiveness, and solve the subjective and objective 

weights of the evaluation index system by using the improved 

rank correlation analysis method and the flexible entropy 

model. Finally, a comprehensive evaluation of different types 

of EVs is carried out using the Grey-TOPSIS method. 

A. EV Charging Responsiveness Evaluation Index System 

The comprehensive evaluation index system for charging 

guidance of EV charging stations fully considers the demand 

of EV charging stations and the characteristics of different 

types of EVs. It guides the charging of different types of EVs 

from EV battery charging characteristics, EV charging 

spatiotemporal characteristics, EV charging response 

characteristics, and EV charging economic cost 

characteristics[21]. 

Fig. 2 shows the EV charging responsiveness evaluation 

index system. EV battery charging characteristics include 

capacity of battery, charging efficiency, rechargeable 

capacity, state of battery health, and monitoring of battery 

charging temperature. EV charging spatiotemporal 

characteristics include the distance to the charging station, 

the charging duration, the charging level during off-peak 

periods, and the peak charging level. EV charging response 

characteristics include timeliness of charging response, 

frequency of EV charging response, interruptibility of 

charging in emergencies, and planned charging capacity. EV 

charging economic cost characteristics include rationality of 

charging price, level of price compensation, and charging 

cost. 

 

EV Charging 

Responsivene

ss Evaluation 

Index System

A1：EV battery 

charging 

characteristics

A2：EV 

charging 

spatiotemporal 

characteristics

A3：EV 

charging 

response 

characteristics

A4：EV 

charging 

economic cost 

characteristics

A11：Capacity of battery 

A12：Charging efficiency

A13：Rechargeable capacity

A14：State of battery health

A15：Monitoring of battery 
charging temperature

A21：Distance to the charging 
station

A22：Charging duration

A23：Charging level during off-
peak periods

A24：The peak charging levels

A31：Timeliness of charging 
response

A32：Frequency of EV charging 
response

A33：Interruptibility of charging 
in emergencies

A34：Planned charging capacity

A41：Rationality of charging price

A42：Level of price compensation

A43：Charging cost  
Fig. 2. EV charging responsiveness evaluation index system 

 

The hierarchical structure of EV charging responsiveness 

evaluation index system is divided into three layers. The first 

layer is the target layer, the second layer is the criterion layer, 

and the third layer is the index layer, which has 16 indices in 

total. 

B. EV Charging Responsiveness Evaluation Process 

In order to accurately evaluate the charging responsiveness 

of different types of EVs and give full play to the adjustable 

potential of user-side flexible resources, a method is 

proposed to utilize the improved rank correlation analysis 

and the flexible entropy model to solve the subjective and 

objective weights of the evaluation index system, and utilize 
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the Grey-TOPSIS method to conduct a comprehensive 

evaluation of different types of EVs. Fig. 3 illustrates the 

specific evaluation flowchart. 

 

Establish an evaluation index system

Star

Experts give the rank correlation in the set of 

contribution rates for each index

Experts provide the relative contribution ratio for 

each index based on Table I

Calculate the contribution rate of each index 

according to Eq.(5)

The subjective weight of each index are derived 

through Eqs.(6)-(7)

Calculate the Pearson correlation coefficients for 

each index and fuse the highly correlated 

indices using Eq.(8)

Calculate the entropy value of each 

index using Eq.(9)

Calculate the flexibility entropy weight for each 

index according to Eqs.(10)-(12)

Calculate the objective weights based on the 

correlation between each index and other 

independent indices

Construct an evaluation matrix using Eqs.(13)-(15) 

and standardize it

Calculate the comprehensive evaluation value 

according to Eqs.(16)-(24)

End

Improved rank correlation 
analysis method

Flexible entropy model

Grey-TOPSIS

After obtaining the subjective and objective weights, 

calculate the combination weights

 
Fig. 3. EV charging responsiveness evaluation process 

 

As shown in Fig. 3, the main steps of the evaluation are 

summarized below. 

Step 1: Construct the EV charging responsiveness 

evaluation index system and analyze each index 

quantitatively and qualitatively. 

Step 2: Calculate the subjective weight of each index using 

the improved ordinal relationship analysis. 

Firstly, the expert establishes the ordinal relationship and 

the ratio of relative contribution degree within the set of 

contribution rates for each index. Then, the expert analyzes 

the hierarchical structure relationship of the constructed 

index system and calculates the subjective weight of each 

index using the Eqs. (5)-(7). 

Step 3: Calculate the objective weight of each index using 

the flexible entropy model. 

Prior to determining each index's objective weight, the 

Pearson correlation coefficient technique is applied to 

examine the relationships among indices based on data 

distribution. The correlation coefficients of the evaluation 

indices are calculated as shown in Eq. (24), and the 

evaluation metrics' correlation matrix E  is then calculated. 
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Where, uke  is the correlation coefficient between uy  and ky , 

a greater value indices, a stronger association between the 

indices. In this study, the correlation cutoff is established at 

0.9, which means that uy  has a strong correlation when 

0.9uke  . Otherwise, their association is slight and not 

contingent on one another. 
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Where, ub  and kb  are the average of the data of the uth  and 

kth  indices within the adjusted assessment array; m  

represents the comprehensive count of chosen EV categories. 

Using the Pearson correlation coefficient method, indices 

with high correlations to objective data are treated as a single 

index for calculating objective weights. Eq. (8) combines the 

elevated correlation coefficients. It also determines the 

centroid vector from highly independent measures. 

Following the integration of the strongly correlated indices, 

the objective weights of each index are calculated by Eqs. 

(9)-(12). 

Step 4: The obtained subjective and objective weights are 

combined. Ultimately, the EV charging responsiveness of 

each type is evaluated comprehensively by Grey-TOPSIS. 

The portfolio weights are calculated as shown in Eq. (25). 

 1 1 2 2cW W W = +  (25) 

Where, 1W  denotes the subjective weighting derived from by 

improved rank correlation analysis method, 2W  denotes the 

objective weight determined through flexible entropy model, 

which is combined by Eq. (25) to get its combined weight cW . 

1  and 2  denote the subjective and objective coefficients 

of the combined weights, and satisfy 1 20 , 1   , 

1 2 1 + = . This paper ensures that both subjective and 

objective factors are considered equally in the evaluation 

process to avoid over-reliance on one aspect of information, 

so 1 2 0.5 = =  is taken. 

Finally, the comprehensive evaluation values of the 

charging responsiveness of different types of EVs are 

calculated by Eqs. (13)-(24). 

IV. CASE STUDY 

To verify the effectiveness of the proposed evaluation 

method, data related to EV charging responsiveness are 

collected. Typical EV types include: electric buses (EV1), 

electric cabs (EV2), electric trucks (EV3), and electric private 

cars (EV4). The responsiveness of these four types of EVs is 
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evaluated using the proposed method. 

A. Data Acquisition and Organization 

The charging performance data collected for different 

types of EVs are shown in Table II. Typical EV types can be 

represented as: electric buses (EV1), electric cabs (EV2), 

electric trucks (EV3), and electric private cars (EV4). 

 
TABLE II 

INDEX PERFORMANCE INFORMATION FOR DIFFERENT TYPES OF EVS 

Indices EV1 EV2 EV3 EV4 

A1 

A11 180kWh 90kWh 200kWh 100kWh 

A12 Lower High Low Higher 

A13 170kWh 80kWh 160kWh 70kWh 

A14 Moderate Better Moderate Poorer 

A15 Higher Moderate Higher Moderate 

A2 

A21 Near Moderate Far Farther 

A22 Short Shorter Long Moderate 

A23 Moderate Lower Low Lower 

A24 Moderate Higher High Higher 

A3 

A31 Low High Low Higher 

A32 0-1 3-5 0-1 1-2 

A33 Moderate Higher Low High 

A34 150kWh 70kWh 160kWh 60kWh 

A4 

A41 
More 

reasonable 
Moderate 

Less 
reasonable 

Reasonable 

A42 Low High Low Higher 

A43 Low Higher Lower Higher 

 

The qualitative indices are quantified according to the 

scoring rules and then normalized by Eqs. (13)-(15), where 

A15, A21, A22, and A23 are negative indices, and the rest are 

positive indices. Tables III and IV show the quantitative and 

normalized data for the four EVs and 16 indices. 

 
TABLE III 

QUANTITATIVE DATA ON INDICES FOR DIFFERENT TYPES OF EVS 

Indices EV1 EV2 EV3 EV4 

A1 

A11 180 90 200 100 

A12 65 85 60 80 

A13 170 80 160 70 

A14 75 80 70 85 

A15 75 70 80 60 

A2 

A21 40 60 90 65 

A22 40 45 90 50 

A23 35 40 20 25 

A24 60 65 85 80 

A3 

A31 50 90 40 85 

A32 45 95 40 80 

A33 60 65 40 90 

A34 150 70 160 60 

A4 

A41 50 75 30 80 

A42 40 90 70 85 

A43 60 85 70 85 

 

TABLE IV 
INDICES NORMALIZED DATA FOR DIFFERENT TYPES OF EVS 

Indices EV1 EV2 EV3 EV4 

A1 

A11 0.5983 0.2992 0.6648 0.3324 

A12 0.4438 0.5804 0.4097 0.5462 

A13 0.6627 0.3119 0.6237 0.2729 

A14 0.4826 0.5148 0.4504 0.547 

A15 0.4668 0.5001 0.4376 0.5835 

A2 

A21 0.7035 0.469 0.3127 0.4329 

A22 0.6169 0.5484 0.2742 0.4935 

A23 0.3838 0.3358 0.6717 0.5373 

A24 0.4097 0.4438 0.5804 0.5462 

A3 

A31 0.3587 0.6457 0.287 0.6099 

A32 0.326 0.6883 0.2898 0.5796 

A33 0.4532 0.491 0.3022 0.6799 

A34 0.6305 0.2942 0.6725 0.2522 

A4 

A41 0.4026 0.6039 0.2416 0.6441 

A42 0.2708 0.6092 0.4738 0.5754 

A43 0.3961 0.5611 0.4621 0.5611 

B. Determination of Weights 

After obtaining the normalized data of the indices of 

different types of EVs, the subjective and objective weights 

of each index are calculated using the improved rank 

correlation analysis method and the flexible entropy model. 

1) Subjective weights determined based on the improved rank 

correlation analysis method 

This segment employs the improved rank correlation 

analysis method for determining the individual subjective 

importance of each evaluation criterion. Five invited experts 

in the electric vehicle field provided a tiered evaluation 

accordingly. They play a decisive role in determining 

subjective weights, and the accuracy and consistency of their 

judgments directly impact the scientific validity and 

credibility. The results are shown in Table V. 
 

TABLE V 

EVALUATION OF EXPERT SERIAL RELATIONSHIPS 

Expert 
Primary 
indices 

A1 A2 A3 A4 

Expert1 3412 23451 3421 4123 132 

Expert2 3421 32451 3412 2413 312 

Expert3 3421 23145 3241 1243 123 

Expert4 3142 25341 3421 1423 321 

Expert5 3412 23541 3421 4123 132 

 

Table VI delineates the assigned proportions for each 

index, as indicated by the hierarchical correlation analysis 

findings in Table I. 
 

TABLE VI 

RATIO OF RELATIVE CONTRIBUTION OF EVALUATION INDICES 

Expert 
Primary 

indices 
A1 A2 A3 A4 

Expert1 1.6-1.4-1.0 1.0-1.4-1.0-1.2 1.4-1.4-1.0 1.0-1.0-1.6 1.0-1.2 

Expert2 1.8-1.4-1.0 1.2-1.4-1.0-1.0 1.4-1.4-1.0 1.2-1.0-1.6 1.2-1.2 

Expert3 1.6-1.2-1.0 1.2-1.2-1.4-1.2 1.2-1.2-1.0 1.2-1.2-1.4 1.0-1.2 

Expert4 1.2-1.2-1.0 1.4-1.0-1.2-1.2 1.6-1.2-1.0 1.2-1.0-1.2 1.0-1.2 

Expert5 1.8-1.2-1.2 1.0-1.4-1.0-1.0 1.4-1.4-1.0 1.2-1.0-1.6 1.2-1.4 
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Referencing Eq. (5), the rate of influence for each 

evaluation metric is ascertainable. For better understanding, 

the spatio-temporal feature layer of Expert1 serves as a case 

for computational demonstration. 

 ( )
4

1 1 4
2

k k
k

maxf t t t t−
=

= − = −  

 

1 2

2 3

1 2

4 3

3 2

2 1

1 4

4

1

1.4 0

1.4 0

0

0

. . 0

0

1.8 0

1k
k

t t

t t

t t

t t

s t t t

t t

t t

t
=

− 


− 
 − 


− 

 − 


− 
 − 



=


 

By solving the planning problem, Expert1's contribution 

rate to the indices of the time-space characteristics layer is 
*
4 1966t = , *

3 1966t = , *
2 2528t = , *

1 3539t = . Based on 

1

m

j ij
i

l b
=

=  , we can calculate 1 7.5608l = , 2 5.8016l = , 

3 9.7289l = , 4 7.7598l = . According to 1 1 nt t t , 

therefore *
1 5.8016l = , *

2 7.5608l = , *
3 7.7598l = , *

4 9.7289l = . 

Finally, the subjective weights of each of the four indices are 

derived from Eqs. (6)-(7) as 

1 2 3 40.3560, 0.2477, 1974, 0.1989w w w w= = = = . Repeating the 

above steps, the expert's assigned weighting for each index is 

computed. Based on the following Eq. (26), the subjective 

weights assigned by five experts to each index are derived. 

The results are presented in Fig. 4. 

 

* *

* *
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 (26) 

Where, *
iw  is the weight of the primary indices, *

jw  is the 

weight of the secondary indices, and jt  is the subjective 

weights by the t th expert. 

 

 
Fig. 4. Subjective weights determined by the five experts 

 

The subjective weights of the EV charging responsiveness 

evaluation indices can be calculated using the arithmetic 

average of five experts as [0.0282, 0.0417, 0.0408, 0.0270, 

0.0284, 0.0408, 0.0421, 0.0699, 0.0471, 0.0991, 0.0969, 

0.0624, 0.0954, 0.0997, 0.0857, 0.0950]. 

From the calculation results, it can be seen that the EV 

planned charging capacity (A34), rationality of charging price 

(A41), timeliness of charging response (A31), frequency of EV 

charging response (A32), and EV charging cost (A43) account 

for the highest weighting values. These indices are often 

important factors for EV charging stations to guide charging. 

On the other hand, the distance required for EVs to reach the 

charging station (A21), capacity of battery (A11), monitoring 

of battery charging temperature (A15), expected charging 

waiting time (A22), and state of battery health (A14) are 

spatial-temporal characteristics of the EVs and their intrinsic 

attributes, which are less influential to the charging guidance 

decision, and thus their weights are also smaller. 

2) Objective weights determined based on the flexible 

entropy model 

Before calculating the objective weights of each evaluation 

index, the correlation between the indices is analyzed using 

the Pearson correlation coefficient method based on the 

analysis of the gathered data. The correlation coefficient of 

the evaluation indices is calculated according to Eq. (24). The 

correlation matrix for the assessment metrics is derived E . 

This step helps to identify potential multicollinearity issues, 

aiming to eliminate resulting weight estimation biases, 

thereby guaranteeing the robustness and reliability of the 

final weighting outcomes. Subsequently, the correlation 

coefficient between indices is computed, as depicted in Table 

VII. 

As shown in Table VII, the associations among A11, A13, 

A34, A12, A31, A32, A41, A14, A15, A33, A23, A24, A42, and A43 

exceed 0.9. There is a strong correlation exists between EV 

capacity of battery, rechargeable capacity and planned 

charging capacity; there is a high correlation between EV 

charging efficiency, timeliness of charging response, 

frequency of EV charging response and rationality of 

charging price; there is a high correlation between state of 

battery health, monitoring of battery charging temperature 

and interruptibility of charging in emergencies; there is a high 

correlation between charging level during off-peak periods 

and peak charging level; there is a high correlation between 

level of price compensation and charging cost. 

Based on the correlation coefficient calculations for each 

index, the vector of integrated indices with high 

independence  1 2 3 4 5, , , ,c c c c c  can be obtained from the 

analysis of indices with strong correlations using Eq. (8). The 

set of EV charging responsiveness evaluation indices after 

fusion of the highly correlated indices can be expressed as 

 1 2 7, ,...,C c c c= . The values of the fused evaluation indices 

are shown in Table VIII. 

Using the flexible entropy model, target weights were 

derived for the indices listed in Table II. The system 

parameters of this model serve as variables, whose values 

were set and validated according to Eq. (11). The 

corresponding results are summarized in Table IX. The table 

structure is as follows: the first row displays the fused 

evaluation indices, the second row shows entropy values, and 

the remaining data records the changes of each index's 

weight. 

Table IX shows that the maximum entropy value 

calculated using EWM is 0.9850. When 0.9850  , the 

value of E −  is negative, it isn't very meaningful to use it as 

the numerator to represent the weight ratio of each index. 

Therefore, the value of 0.9850   is not reasonable. In this 

paper, the objective weight of each evaluation index is 

determined by changing from 1 = . 
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TABLE VII 
PEARSON CORRELATION COEFFICIENTS BETWEEN INDICES 

Indices A11 A12 A13 A14 A15 A21 A22 A23 A24 A31 A32 A33 A34 A41 A42 A43 

A11 1.0000 0.9948 0.9632 0.9055 0.7974 0.0490 0.4394 0.4922 0.1637 0.9998 0.9853 0.7834 0.9861 0.9646 0.7494 0.8811 

A12 0.9948 1.0000 0.9374 0.8677 0.7358 0.0129 0.4727 0.5584 0.2353 0.9959 0.9938 0.7320 0.9642 0.9494 0.7313 0.8575 

A13 0.9632 0.9374 1.0000 0.8890 0.8428 0.2835 0.2064 0.2402 0.1071 0.9580 0.9407 0.7751 0.9878 0.9058 0.8643 0.9631 

A14 0.9055 0.8677 0.8890 1.0000 0.9642 0.0996 0.5134 0.3810 0.1085 0.9052 0.8198 0.9730 0.9383 0.9726 0.5451 0.7379 

A15 0.7974 0.7358 0.8428 0.9642 1.0000 0.0298 0.3377 0.1373 0.1157 0.7933 0.6872 0.9762 0.8723 0.8785 0.5324 0.7105 

A21 0.0490 0.0129 0.2835 0.0996 0.0298 1.0000 0.8750 0.7292 0.8827 0.0313 0.1007 0.1869 0.1312 0.1470 0.6908 0.5152 

A22 0.4394 0.4727 0.2064 0.5134 0.3377 0.8750 1.0000 0.9084 0.8871 0.4555 0.3915 0.5265 0.3538 0.5922 0.2552 0.0378 

A23 0.4922 0.5584 0.2402 0.3810 0.1373 0.7292 0.9084 1.0000 0.9365 0.5085 0.5161 0.3041 0.3603 0.5441 0.0826 0.0684 

A24 0.1637 0.2353 0.1071 0.1085 0.1157 0.8827 0.8871 0.9365 1.0000 0.1823 0.1831 0.0851 0.0268 0.2562 0.4201 0.2858 

A31 0.9998 0.9959 0.9580 0.9052 0.7933 0.0313 0.4555 0.5085 0.1823 1.0000 0.9853 0.7834 0.9835 0.9666 0.7383 0.8724 

A32 0.9853 0.9938 0.9407 0.8198 0.6872 0.1007 0.3915 0.5161 0.1831 0.9853 1.0000 0.6660 0.9527 0.9113 0.7886 0.8896 

A33 0.7834 0.7320 0.7751 0.9730 0.9762 0.1869 0.5265 0.3041 0.0851 0.7834 0.6660 1.0000 0.8371 0.9028 0.3827 0.5956 

A34 0.9861 0.9642 0.9878 0.9383 0.8723 0.1312 0.3538 0.3603 0.0268 0.9835 0.9527 0.8371 1.0000 0.9607 0.7793 0.9110 

A41 0.9646 0.9494 0.9058 0.9726 0.8785 0.1470 0.5922 0.5441 0.2562 0.9666 0.9113 0.9028 0.9607 1.0000 0.5780 0.7616 

A42 0.7494 0.7313 0.8643 0.5451 0.5324 0.6908 0.2552 0.0826 0.4201 0.7383 0.7886 0.3827 0.7793 0.5780 1.0000 0.9677 

A43 0.8811 0.8575 0.9631 0.7379 0.7105 0.5152 0.0378 0.0684 0.2858 0.8724 0.8896 0.5956 0.9110 0.7616 0.9677 1.0000 

 
TABLE VIII 

EVALUATED VALUES OF HIGH CORRELATION INDICES AFTER FUSION TREATMENT 

 c1 c2 c3 c4 c5 c6 c7 

EV1 0.6286 0.5312 0.5192 0.3967 0.3334 0.7035 0.6169 

EV2 0.3032 0.6673 0.5535 0.3898 0.5851 0.4690 0.5484 

EV3 0.6504 0.1852 0.3049 0.6260 0.4679 0.3127 0.2742 

EV4 0.2958 0.3814 0.5541 0.5418 0.5682 0.4329 0.4935 

 
TABLE IX 

DISTRIBUTION OF WEIGHTS FOR DIFFERENT VALUES OF   

 c1 c2 c3 c4 c5 c6 c7 

E 0.9515 0.9354 0.9817 0.9850 0.9840 0.9694 0.9720 

ρ=1 0.2194 0.2925 0.0830 0.0677 0.0724 0.1383 0.1267 

ρ=1.5 0.1474 0.1517 0.1393 0.1384 0.1387 0.1426 0.1419 

ρ=2 0.1452 0.1474 0.1410 0.1406 0.1407 0.1427 0.1424 

ρ=2.5 0.1444 0.1459 0.1416 0.1413 0.1414 0.1428 0.1425 

ρ=3 0.1440 0.1452 0.1419 0.1417 0.1418 0.1428 0.1426 

 

When 1 =  corresponds to the traditional EWM, it often 

results in significant drawbacks in weight distribution. As 

Table IX shows, the weight value of 2c  is 0.2925, and the 

weight value of 4c  is 0.0677. The weight value of 4c  is only 

23% of that of 2c  , and the difference between them is 0.2248, 

which means that 2c  contributes about 22.48% more weight 

than 4c  in the total evaluation. The over-emphasis of high 

informative index ( 2c ) and the weakening of low informative 

index ( 4c ) in decision making may lead to bias and reduce 

the comprehensiveness and fairness of decision making. 

When 1.5 = , the unreasonable situation of traditional 

entropy weight is avoided, and when 1.5  , there is no 

significant difference in the distribution of weights compared 

with 1.5 = . From Fig. 5, it can be more intuitively seen that 

the objective weight distribution of each index when   is 

varied, and the weight of each index tends to be consistent 

with the increase of  . As   increases, each index’s weight 

approaches 0.14. 

The flexible entropy model employs 2 =  as its 

parameter, with the weight vector   computed. These 

findings are depicted in Fig. 6. 

Of the seven weighting values calculated from the 

calculation, the value of 1c  denotes the combined weights of 

A11, A13, and A34 after the fusion process. The value of 2c  

represents the combined weights of A12, A31, A32, and A41. 

The value of 3c  represents the combined weights of A14, A15, 

and A33. The value of 4c  represents the combined weights of 

A23 and A24. The value of 5c  represents the combined 

weights of A42 and A43. The values of 6c  and 7c  indicate the 

weights of A21 and A22. 
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Fig. 5. Distribution of weights for different values of ρ 

 

 
Fig. 6. Indices' flexible entropy weights after processing 

 

Then, the weights of 1c  to 5c  are reassigned, and the 

weights of the synthesized vectors 1c  to 5c  are assigned to 

the indices other than A21 and A22 to obtain the final objective 

weights in Table II. 

According to Eq. (24), the correlations of A11, A13, and A34 

with the other 13 evaluation indices have been determined. 

The results of these calculations are presented in Table X. 

The average correlation for other evaluation indices can also 

be obtained. 

The higher the interplay among an index and various other 

indices, the less pertinent info the index offers for gauging 

EV charging promptness, and the less weight should be given 

to that index. On the flip side, it should carry more 

significance. 

Based on the above, objective weights can be assigned to 

A11, A13, A34, A12, A31, A32, A41, A14, A15, A33, A23, A24, A42, 

and A43. The value of A11 equals ( )( )0.1452 1 0.5997 / − −  

( )( ) ( )( ) ( )( )[ 1 0.5997 1 0.6051 1 0.6180 ] 0.0482− − + − − + − −  ; the 

value of A13 equals ( )( )0.1452 1 0.6051 / − −  

( )( ) ( )( ) ( )( )[ 1 0.5997 1 0.6051 1 0.6180 ] 0.0483− − + − − + − −  ; the 

value of A34 equals ( )( )0.1452 1 0.6180 / − −  

( )( ) ( )( ) ( )( )[ 1 0.5997 1 0.6051 1 0.6180 ] 0.0487− − + − − + − −  . The 

value of other indices can be obtained by similar methods. 

Finally, the objective weights of the 16 indices are 

calculated as [0.0482, 0.0373, 0.0483, 0.0465, 0.0470, 

0.01427, 0.1424, 0.0736, 0.0670, 0.0367, 0.0378, 0.0475, 

0.0487, 0.0357, 0.0729, 0.0678]. 

From the calculation results, it can be seen that the distance 

required for the EV to reach the charging station (A21), the 

expected charging waiting time (A22), the charging level 

during off-peak periods (A23), and the peak charging levels 

(A24) account for the highest value of the weights, which 

indicates that the data of these indices have a greater degree 

of variability, provide more information, and have high 

weights. The other indices are relatively less informative and 

therefore have smaller weights. 

 
TABLE X 

CORRELATION OF INDICES A11, A13 AND A34 

Indices A11 A13 A34 

A12 -0.9948 -0.9374 -0.9642 

A14 -0.9055 -0.889 -0.9383 

A15 -0.7974 -0.8428 -0.8723 

A21 0.049 0.2835 0.1312 

A22 -0.4394 -0.2064 -0.3538 

A23 0.4922 0.2402 0.3603 

A24 0.1637 -0.1071 0.0268 

A31 -0.9998 -0.958 -0.9835 

A32 -0.9853 -0.9407 -0.9527 

A33 -0.7834 -0.7751 -0.8371 

A41 -0.9646 -0.9058 -0.9607 

A42 -0.7494 -0.8643 -0.7793 

A43 -0.8811 -0.9631 -0.911 

Average value -0.5997 -0.6051 -0.618 

 

3) Assignment of subjective and objective weight 

combinations 

In complex decision problems, it is often difficult for a 

single type of weight to adequately capture the importance of 

all relevant factors. For this reason, we adopt a weight 

combination method that combines subjectivity and 

objectivity, incorporating both the improved rank correlation 

analysis method and the flexible entropy model. 
 

 
Fig. 7. Subjective and objective index weightings 

 

The improved rank correlation analysis method depends 

on expert opinions. It assigns the weights by constructing the 

rank correlation evaluation matrix, which fully reflects the 

preferences and experience of decision makers. However, the 

flexible entropy model is based on the distribution 

characteristics of the data itself, which reflects the objectivity 

of the data. Combining the weights obtained by these two 

methods by a certain ratio or rule takes into account both the 

subjective will of the decision maker and the objective 

information of the data. 

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4612-4624

 
______________________________________________________________________________________ 



 

 
Fig. 8. Combined weights of indices 

 

Fig. 7 shows the final subjective and objective weights of 

the indices. 

Referencing Eq. (25), the subjective and objective 

weightage values are determined to get the comprehensive 

weights of EV charging responsiveness evaluation indices. 

The calculation results are [0.0382, 0.0395, 0.0446, 0.0367, 

0.0377, 0.0917, 0.0922, 0.0717, 0.0570, 0.0679, 0.0673, 

0.0550, 0.0720, 0.0677, 0.0793, 0.0814]. And the combined 

weights of the indices are shown in Fig. 8. 

From the final combination of weights, it can be seen that 

the five indices that have the greatest impact on EV charging 

responsiveness are the distance required to reach the charging 

station (A21), the expected charging waiting time (A22), the 

EV charging cost (A43), level of price compensation (A42), 

and the planned charging capacity (A34) with corresponding 

weights of 0.0922, 0.0917, 0.0814, 0.0793, and 0.0720. 

C. EV Charging Responsiveness Evaluation Based on 

Grey-TOPSIS 

There are four typical types of EVs, including electric 

buses (EV1), electric cabs (EV2), electric trucks (EV3), and 

electric private cars (EV4). Based on the weighted 

normalization matrix, the combined evaluation values of the 

four different types of EVs are calculated using the 

Grey-TOPSIS method. The final score of the evaluation is 

calculated using Eq. (23), where the weights in the equation 

are the combined weights calculated in the previous section, 

and the results are shown in Table XI. The EV charging 

responsiveness is ranked based on the score. 
 

TABLE XI 

EV CHARGING RESPONSIVENESS RESULTS BASED ON GREY-TOPSIS 

EV types EV1 EV2 EV3 EV4 

Score 0.4935 0.7090 0.3103 0.7118 

Sorting 3 2 4 1 

 

From the comprehensive evaluation scores and rankings, it 

can be seen that the charging responsiveness of different 

types of EVs is ranked as electric private cars (EV4)  electric 

cabs (EV2)  electric buses (EV1)  electric trucks (EV3). 

As can be seen from the index values in Table II, electric 

private vehicles (EV4) rank first in six indices as the type with 

the highest EV charging response capability, and three of 

these indices have high weights: charging cost, charging level 

during off-peak periods, and rationality of charging price. 

The charging responsiveness of electric cabs (EV2) is also 

relatively high, with all indices of charging response 

characteristics performing better than other types of EVs. In 

contrast, electric trucks (EV3) and electric buses (EV1) are 

less responsive. Therefore, when EVs are utilized to regulate 

the electric load of the grid through EV aggregators, electric 

private cars and electric cabs can be prioritized, which in turn 

effectively shaves the peaks and fills the troughs of the 

electric loads that have different modal performances at 

different times of the day. 

To authenticate the efficacy of this approach, the methods 

AHP[22], AHP-EWM[23], AHP-TOPSIS[24], AHP-EWM- 

TOPSIS[25], AHP-Grey-TOPSIS[26], and AHP-EWM- 

Grey-TOPSIS[27] are compared. Table XII and Table XIII 

represent scores and ranking results of the four different types 

of EVs after applying different evaluation methods. And F6 is 

the improved rank correlation analysis (IRCA), flexible 

entropy model (FEM), and Grey-TOPSIS proposed in this 

paper. 

 
TABLE XII 

SCORES OF THE FOUR DIFFERENT TYPES OF EVS 

Method                                      Type EV1 EV2 EV3 EV4 

F1 AHP 0.4617 0.5001 0.4436 0.5003 

F2 AHP-EWM 0.4635 0.5170 0.4052 0.5369 

F3 AHP-TOPSIS 0.5799 0.4881 0.5244 0.4669 

F4 AHP-EWM-TOPSIS 0.5669 0.4934 0.5101 0.4732 

F5 AHP-Grey-TOPSIS 0.4736 0.7010 0.3145 0.6938 

F6 IRCA-FEM-Grey-TOPSIS 0.4935 0.7090 0.3103 0.7118 

 
TABLE XIII 

RANKING RESULTS OF THE FOUR DIFFERENT TYPES OF EVS 

Method                                      Type EV1 EV2 EV3 EV4 

F1 AHP 3 2 4 1 

F2 AHP-EWM 3 2 4 1 

F3 AHP-TOPSIS 1 3 2 4 

F4 AHP-EWM-TOPSIS 1 3 2 4 

F5 AHP-Grey-TOPSIS 3 1 4 2 

F6 IRCA-FEM-Grey-TOPSIS 3 2 4 1 
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Fig. 9 and Fig. 10 show comparisons of scores and ranking 

results of the different evaluation methods. 

In order to compare the ranking differences between the 

methods in this paper and other methods, the mean absolute 

error (MAE) of each method is calculated. The ranking 

vectors of the six methods in Table XIII are denoted as M1, 

M2, M3, M4, M5, and M6. The MAE among sorting sequences 

is given by: 

 ( )
1

,

m

ij kj
j

i k

M M

MAE M M
m

=
−

=


 (27) 

Where, ijM  denotes the jth  magnitude of the sequence 

iM  and m  denotes the length of the sequence. 

 

 
Fig. 9. Scores of different evaluation methods 

 

 
Fig. 10. Ranking results of different evaluation methods 

 

The results are shown in Table XIV. The lower the MAE, 

the better the performance of the method. The MAE value of 

the method in this paper is less than AHP-TOPSIS, 

AHP-EWM-TOPSIS, and AHP-Grey- TOPSIS, so the 

sorting accuracy is better than them. Compared with AHP 

and AHP-EWM, which have equal MAE value, as shown in 

Table XII, the top two ranking scores calculated by them 

differ only by 0.0002 and 0.0004. In contrast, the proposed 

method significantly magnifies this gap to 0.0028, which is 

equivalent to a magnification of about 10 times. The same 

applies to the last two ranked scores. Therefore, this method 

can more clearly distinguish the subtle differences in 

regulation responsiveness among different types of EVs, 

enhance the sensitivity of the model, and provide a more 

reliable basis for formulating clear priority strategies. In 

summary, the overall sorting accuracy of the proposed 

method is better than that of AHP, AHP-EWM, 

AHP-TOPSIS, AHP-EWM-TOPSIS, and 

AHP-Grey-TOPSIS. 

 
TABLE XIV 

MAE VALUES FOR DIFFERENT METHODS 

Sorting 
vector 

M1 M2 M3 M4 M5 M6 
Average 

value 

M1 0 0 2 2 0.5 0 0.75 

M2 0 0 2 2 0.5 0 0.75 

M3 2 2 0 0 2 2 1.33 

M4 2 2 0 0 2 2 1.33 

M5 0.5 0.5 2 2 0 0.5 0.92 

M6 0 0 2 2 0.5 0 0.75 

 

Different evaluation methods lead to different scores and 

rankings in EV charging responsiveness evaluation. The 

main reasons for this are: (i) The improved rank correlation 

analysis and flexible entropy model in this paper have 

respectively improved the AHP and EWM methods. There 

are differences in the distribution of weights when 

calculating the weights of indices in different evaluation 

methods, and the results of the evaluations are different. (ii) 

We improve the Euclidean distance in TOPSIS through grey 

correlation degree, which also makes the evaluation results of 

Grey-TOPSIS and traditional TOPSIS significantly different. 

(iii) Compared with AHP-TOPSIS, AHP-EWM-TOPSIS, 

and AHP-Grey-TOPSIS, etc., the improved rank correlation 

analysis method, flexible entropy model, and Grey-TOPSIS 

selected make full use of the advantages of each of AHP, 

EWM, and TOPSIS, improve their deficiencies, and obtain 

new evaluation results. The evaluation index system 

combines various EVs' natural and physical characteristics 

and the adjustable capacity as flexible loads. The proposed 

improved rank correlation analysis method, flexible entropy 

model, and Grey-TOPSIS evaluation method fully consider 

the significant differences between evaluation indices and 

EV charging characteristics, which are more suitable for 

guiding flexible resource access in practical applications. 

V. CONCLUSION 

To fully utilize the adjustable potential of user-side 

flexible resources, a comprehensive evaluation method for 

EV charging responsiveness is proposed, utilizing the 

improved rank correlation analysis method, flexible entropy 

model, and Grey-TOPSIS. This approach can obtain 

quantifiable EV charging evaluation data. The experimental 

results show that, compared with the traditional methods such 

as AHP, AHP-EWM, AHP-TOPSIS, AHP-EWM-TOPSIS, 

and AHP-Grey-TOPSIS, this evaluation method guides the 

access of flexible resources. On the other hand, it can also 

assist with the distribution network planning. 

The evaluation method facilitates grid operators to 

accurately grasp the ability of flexible loads to regulate their 

response to the grid, so that they can reduce the pressure on 

the grid by guiding users to reduce electricity consumption 

through demand response during peak hours, and make full 

use of the energy storage characteristics of flexible loads to 

absorb excess electricity from renewable energy sources 

during the low hours of the power, thus optimizing the 

allocation of power resources. 
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