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Abstract—Traffic speed prediction, as an important part
of intelligent transportation system, is of great significance
for traffic planning, management and control. Traffic speed
are spatially and temporally dependent due to the influence
of roadway topology, tidal changes in traffic flow, and other
factors. Compared to the use of time series prediction models
for traffic speed prediction, Temporal Graph Convolutional
Network (TGCN) model can capture the spatio-temporal
features of traffic speed and achieve better prediction
performance. Increasingly complex real-world traffic situations
place higher demands on the predictive power of models.
Therefore, this paper proposes a MatVMD-TGCN fusion model
that combines signal processing method and deep neural
network. Where Matrix Variational Mode Decomposition
(MatVMD) is used to decompose a multidimensional univariate
time series into a number of mode time series. Parallel TGCN
learn the patterns and regularities of each mode time series
by capturing their spatio-temporal features, which enables the
fusion model to have better prediction capability. Use two
real traffic speed datasets, SZ-taxi and Los-loop to test fusion
model and other baseline models. Comparing with TGCN
model under the prediction horizon 3 and 12; For the SZ-taxi
datasets, the RMSE of fusion model decrease 44.85% and
25.70% respectively, the accuracy of fusion model increase
17.86% and 10.49% respectively. For the Los-loop datasets,
the RMSE of fusion model decrease 47.26% and 46.51%
respectively, the accuracy of fusion model increase 4.59% and
6.72% respectively. The experiment results proved that the
fusion model not only has better prediction performance, but
also has the ability of long and short-term prediction, real-time
prediction, and short-term fluctuation prediction.

Index Terms—Traffic speed prediction, Variational
Mode Decomposition (VMD), Matrix Variational Mode
Decomposition (MatVMD), Temporal Graph Convolutional
Network (TGCN), MatVMD-TGCN fusion model.

I. INTRODUCTION

THE rapid growth of the urban population and the
rapid development of the automobile industry have

put enormous pressure on the transportation system.
Traffic congestion, pollution and accidents are increasingly
serious problems. In order to improve the traffic efficiency
and reduce the energy loss of transportation systems,
artificial intelligence technologies have been integrated
into transportation services and management, resulting
in the development of Intelligent Transportation Systems
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(ITS). ITS can anticipate future traffic states by collecting
and processing diverse historical data through smart
infrastructure and advanced algorithms[1]. The results of
the prediction can be used for transportation planning,
management and control, thus alleviating problems such
as traffic congestion to a certain extent. In traffic states,
speed is a fundamental attribute of dynamic traffic, reflecting
vehicle motion and traffic efficiency[2]. Advance path
planning and traffic intervention based on speed prediction
is an effective way to improve transportation efficiency
and reduce energy consumption. Therefore, our proposed
MatVMD-TGCN fusion model for traffic speed prediction
has practical significance.

Existing traffic speed prediction methods are divided
into 3 main categories, which are model-driven methods,
classical data-driven methods and deep learning model-based
methods. Model-driven methods require comprehensive and
detailed system modeling based on a priori knowledge[3].
The representative algorithms are “traffic velocity” model[4],
cell transmission model[5], queuing theory model[6], etc.
Although the model-driven methods is highly interpretable,
it is difficult to construct accurate traffic speed prediction
models, and the constructed models can not describe traffic
speed variations in complex real-world situations. Classical
data-driven methods are used to infer trends of change based
on statistical patterns of historical data, which are ultimately
used to predict and evaluate traffic conditions[1]. Classical
data-driven methods can be subdivided into statistical
methods and traditional machine learning methods. The Auto
Regressive Integrated Moving Average (ARIMA) is one of
the dominant methods in statistical methods. ARIMA models
traffic speed as a time series and combines auto regressive
models, moving average models and integration to capture
time dependence[1]. Many variants have been derived from
ARIMA, such as SARIMA[7], which integrates seasonal
features into prediction, and STARIMA[8], which takes into
account finite spatio-temporal features. Compared to simple
statistical methods, traditional machine learning methods can
deal with high-dimensional data and learn complex patterns
of traffic speed dynamics. Common traditional machine
learning methods include K-nearest neighbor model[9],
Support Vector Regression (SVR) model[10], [11], [12],
fuzzy logic model[13], Bayesian network model[14] and
neural network model. Deep learning models have received
widespread attention for their ability to better capture
the dynamic features of traffic speed and achieve the
most advanced prediction results available. Some methods
based on deep learning models only consider the time
dependence of traffic speed, such as using feed-forward
neural networks[15], Deep Belief Networks (DBN)[16],
Long-Short-Term Memory networks (LSTM) and Gated
Recurrent Units (GRUs)[17] to make predictions in the
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time dimension. In order to take into account the spatial
dependence of traffic speed for better prediction, deep
learning models such as SAE[18], ST-ResNet[19] have been
proposed. Moreover, with the development of convolutional
neural networks and graph neural networks, feature
architectures combining convolutional neural networks and
recurrent neural networks (CNN+RNN)[20], [21], [22],
[23], and feature architectures combining graph neural
networks and recurrent neural networks (GNN+RNN)[3],
[24], [25], [26] were successively proposed. With the
emergence of the attention mechanism[27], more and
more Transformer-based traffic prediction models have
been proposed. Zheng et al proposed GMAN[28] model
that employs spatial and temporal attention mechanisms
to track dynamic correlations among traffic sensors
effectively. Jiang et al proposed PDFormer[29] model
which designs a traffic delay-aware feature transformation
module that allows explicit modeling of time delays in
the propagation of spatial information. While models are
pushing the envelope, attention is returning to the data
itself. Shao et al proposed STID[30] model which uses
the one-hot encoding to integrate the spatial and temporal
feature information into input data, thus enhances sample
distinguishability. Liu et al proposed STAEformer[31] model
which introduces a spatial-temporal adaptive embedding
that enhances the capabilities of standard transformers for
traffic flow prediction. STID, STAEFormer demonstrated that
augmentation of data features by spatio-temporal embedding
coding prior to training effectively enhances the richness
of data representations, and thus significantly improve the
performance of the model. Traffic data can also be considered
as sequential signals, and there is no precedent for signal
processing of traffic data to enhance the expression of data
features. Therefore, we proposed MatVMD-TGCN fusion
model which combines the MatVMD signal decomposition
method and deep learning model TGCN. Experiments have
demonstrated that the fusion model has better predictive
performance compared to other models.

Our contributions are as follows:
1. We propose MatVMD for decomposing

multidimensional univariate time signals based on
the VMD decomposition algorithm.

2. We propose the MatVMD-TGCN fusion model
consisting of MatVMD method and deep learning model
TGCN.

3. Comparative tests between the fusion model and other
baseline models, proves that MatVMD-TGCN fusion
model not only has better prediction performance, but
also has the ability of long and short-term prediction,
real-time prediction, and short-term fluctuation
prediction.

The paper is organized as follows: Section II proposes
the MatVMD method that can decompose multidimensional
univariate time series based on the VMD algorithm. The
MatVMD method is combined with the TGCN to obtain the
MatVMD-TGCN fusion model, a special class of prediction
model that combines signal processing method and deep
neural network. Section III evaluates the fusion model using
two real traffic speed datasets, SZ-taxi and Los-loop datasets.
Compared with other models, the fusion model not only has
advanced prediction performance, but also has the capability

of long and short-term prediction, real-time prediction and
short-term fluctuation prediction. Section IV concludes that
MatVMD-TGCN is suitable for traffic speed prediction based
on the experimental results and provides an outlook on the
future development of traffic prediction models.

II. DESCRIPTIONS OF METHODS AND MODELS

A. Description of the Problem

In this paper, we use the MatVMD-TGCN fusion model
to predict traffic speed over a certain time horizon based on
historical traffic speed. Since the prediction of traffic speed
is done at the spatio-temporal level, the topology of the road
network and the historical data of the traffic speed of each
road are required. The definition of road network topology
graph and the feature matrix are given below:

1) Definition of Road Network Topology Graph: We use
an unweighted graph G = (V,E,A) to characterize the
topology of the road network by considering a road as a
node vi and V = {v1, v2, . . . , vn} as the set of road nodes.
n is the number of road nodes, E is the set of edges and the
adjacency matrix A is used to describe the spatial location
relationship between streets.

2) Definition of Feature Matrix: Since the fusion model
uses a supervised learning mechanism that requires sample
data and its corresponding label data. The feature matrix
consists of sample feature matrix and label feature matrix
which are obtained by preprocessing the historical data in
the method given later.

Sample feature matrix X ∈ Rh×(n·K):

X = [xt−h+1, xt−h+2, ..., xt]
T (1)

Label feature matrix Y ∈ Rp×n:

Y = [yt+1, yt+2, ..., yt+p]
T (2)

In Eq (1), Eq (2) where h, p are the length of the historical
time series and the length of the predicted time series,
respectively, n is the number of road nodes, and K is the
mode decomposition number. Time stamp of sample feature
matrix and label feature matrix are xi ∈ R(n·K)×1, yi ∈
Rn×1. The road speed prediction problem can be expressed
in the following equation:

Y = F (G,X) (3)

Eq (3) represents the mapping relationship between the
sample feature matrix X , the road network topology graph
G and the label feature matrix Y , F is the nonlinear function
that the fusion model tends to fit.

B. Signal Decomposition Methods

1) Variational Mode Decomposition (VMD) Algorithm:
Variational Mode Decomposition (VMD)[32] is an effective,
adaptive, non-recursive mode decomposition, which aims to
decompose the original signal into Intrinsic Mode Function
(IMF) components at different frequencies. In other words,
VMD can decompose a signal with high complexity, and
non-smoothness into multiple, less complexity and relatively
smooth sub-signals with different center frequencies.
Moreover, it overcomes the endpoint effects and the problem
of mode aliasing, such as those existing in the Experience
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Mode Decomposition (EMD). In summary, VMD is very
suitable for signal decomposition of time series.

The VMD algorithm consists of the following steps:
Firstly, the Hilbert transform is applied to each mode to
construct the analyzed signal and obtain the one-sided
spectrum. Secondly, the spectrum of each IMF is modulated
into the corresponding baseband by mixing the exponent
with the corresponding estimated center frequency. Finally,
the bandwidth of each mode is determined by the Gaussian
smoothing of the demodulated signal[33].

The goal of the VMD algorithm is to ensure that the
decomposed signal is finite-bandwidth mode component
with a center frequency, while minimizing the sum of the
estimated bandwidths of each mode under the condition that
the sum of all modes is equal to the original signal. This is to
maximize the distribution of all frequencies of a mode around
its center frequency, thus ensuring the maximum difference
between the modes. The resulting constrained variational
problem is as follows:

min
{uk},{wk}

{
K∑

k=1

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt

∥∥∥∥2
2

}
(4)

s.t. f(t) =
K∑

k=1

uk(t) (5)

In Eq (4), Eq (5) f(t) is the original signal, K is the mode
decomposition number; uk = {u1, u2, . . . , uK} is the set of
each IMF component, wk = {w1, w2, . . . , wK} is the set of
center frequency of each IMF component. δ(t) is the Dirac
function; ∗ denotes the convolution operation in the Hilbert
transform. Eq (4) is the objective function to be optimized
and Eq (5) is the constraint. The augmented Lagrangian
function is introduced to convert the constrained problem
into an unconstrained one:

L( {uk} , {wk} , λ) =

α
K∑

k=1

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt

∥∥∥∥2
2

+

∥∥∥∥∥f(t)−
K∑

k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f(t)−

K∑
k=1

uk(t)

〉 (6)

In Eq (6) α denotes the penalty factor, which has a significant
impact on data fidelity; λ is Lagrange multiplier. The solution
to the original minimization constraint problem is the saddle
point of the augmented Lagrangian function in a series of
iterative sub-optimizations (Including optimization of each
IMF, the center frequency of each IMF and Lagrange
multiplier). Using the Alternating Direction Multiplier
Method (ADMM) to solve the augmented Lagrangian
function, we have the update formula of functional
ûk, ŵk and Lagrange multiplier λ̂k. The complete VMD
algorithm is shown below: Where f̂(w), ûn

k (w), λ̂(w) are
the Fourier transforms of f(t), un

k (t), λ(t) under the L2

norm, respectively. n indicates iteration times. Time step of
dual ascent τ indicates the noise tolerance, When there is
strong noise in the signal that should not be included in the
decomposition, the Lagrange multiplier should be turned off
(set τ to 0). Specific proofs and derivations of the VMD
iteration formula are given in the paper[32].

Algorithm 1: VMD algorithm [32]

Initialize
{
û1
k

}
,
{
w1

k

}
, λ̂1, n← 0

Repeat:
n← n+ 1
for k = 1 : K do:

Update ûk for all w ≥ 0 :

ûn+1
k (w)← f̂(w)−

∑k−1
i=1 ûn+1

i (w)−
∑K

i=k+1 ûn
i (w)+

λ̂n(w)
2

1+2α(w−wn
k
)2

Update wk :

wn+1
k ←

∫∞
0 w|ûn+1

k
(w)|2dw∫∞

0 |ûn+1
k

(w)|2dw
end for
Dual ascent for all w ≥ 0

λ̂n+1(w)← λ̂n(w) + τ
(
f̂(w)−

∑K
k=1 û

n+1
k (w)

)
until convergence:

∑K
k=1

∥ûn+1
k

−ûn
k∥22

∥ûn
k∥22

< ε

2) Matrix Variational Mode Decomposition (MatVMD)
Method: VMD is suitable for signal decomposition of
one-dimensional time series, while traffic speed prediction
is a multidimensional univariate time series prediction
task. Therefore we propose the Matrix Variational Mode
Decomposition (MatVMD) for signal decomposition of
multidimensional univariate time series. MatVMD is
extended by VMD, the decomposition steps of MatVMD are
as follows:

1. Splitting the multidimensional univariate time series
matrix T ∈ Rh×n into n ti ∈ Rh×1:

T = [t0, t1, ..., tn−1] (7)

2. Using VMD algorithm to decompose each ti in T , n
IMF components corresponding to each ti are obtained:

ti
V MD−→

[
I0ti , I

1
ti , ..., I

K−1
ti

]
, Ikti ∈ Rh×1 (8)

3. The mode k matrix Mk is obtained by splicing together
the kth IMF component of each ti:

Mk =
[
Ikt0 , I

k
t1 , ..., I

k
tn−1

]
,Mk ∈ Rh×n (9)

MatVMD can decompose a multidimensional univariate time
series matrix T ∈ Rm×n into K mode time series matrix
Mk ∈ Rm×n, where the mode decomposition number
K of MatVMD is the same as the mode decomposition
number K of VMD. MatVMD aims to decompose a
multidimensional univariate time series with high complexity
and insignificant signal features into several mode time
series with significantly reduced complexity and prominent
signal features, thus facilitating the subsequent deep neural
networks to learn their patterns and regularities. In order to
provide an intuitive description of the MatVMD method,
Decomposition of the historical time series of road traffic
speed where sensors numbered 772151, 718371 and 717489
are located in the Los-loop datasets uses the MatVMD
method (Mode decomposition number K is set to 6). The
historical traffic speed fluctuation curves are shown in Figure
1.

Each historical time series is decomposed in turn using the
VMD algorithm, and the decomposition results are shown in
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Fig. 1: Multidimensional univariate historical time series of road traffic speed where sensors 772151 to 717489 are located
in the Los-loop datasets.

Fig. 2: Decomposition results of VMD for each historical time series in figure 1.
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Fig. 3: Each mode time series is obtained by combining the same-level IMFs in figure 2
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Figure 2. In Figure 3, mode time series with sequentially
increasing frequencies, simple modes, and prominent signal
features are obtained by splicing the same-level IMF
components from the decomposition results of each historical
time series, respectively.

C. Description of Models

1) Graph Convolutional Network (GCN): GCN[34] is a
type of Graph Neural Network (GNN), which is mainly
used for processing non-Euclidean spatial data such as graph
data. Unlike Euclidean spatial data with regular patterns
such as images, text and speech; Graph data represents
entities and relationships between entities through nodes
and edges. Thus graph data allows a natural, general
representation of transportation networks. GCN leverages
the ability of the convolutional kernel in Convolutional
Neural Network (CNN) to model local structures and the
node dependencies prevalent on the graph to become the
most active and important branch of GNNs. Expression for
the graph convolution operator Â = D̃− 1

2 ÃD̃− 1
2 derived

from spectral map theory and Chebyshev polynomials[35].
Ãn×n = An×n + In×n is the self-looped adjacency matrix;
D̃ is the degree matrix of Ã, D̃ii =

∑n
j=1 Ãij ; W (l) is the

trainable parameter matrix for l layer; X is the input feature
matrix. Suppose H(l), H(l+1) is the output of lth, (l + 1)th
layer of the GCN, A multi-layer GCN can be expressed as:

H(l+1) = Relu
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(10)

2) Temporal Graph Convolutional Network (TGCN):
TGCN[3] is improved from GRU[36]. The specific
improvement is to construct the ÂXW structure in GCN
by left-multiplying each input of the GRU’s reset gate rt,
update gate zt and candidate state ht with Â = D̃− 1

2 ÃD̃− 1
2 ,

thus capturing the spatio-temporal features of the data. A
TGCN unit is shown as Figure 4.

“+”

1th 

tx

1[ , ]t th x

tr



“+”

1[ ]t th r 



1

1[ , ]t t th r x 

tanh


th

tz

1(1 )t tz h 


t tz h

th

A

A

“+” represents vector concatenation

Fig. 4: The structure of TGCN unit

The formulas for the key variables in Figure 4 are as
follows:

rt = sigmoid

(
Â [ht−1, xt]

[
Wrh

Wrx

]
+ br

)
(11)

zt = sigmoid

(
Â [ht−1, xt]

[
Wzh

Wzx

]
+ bz

)
(12)

h̃t = tanh

(
Â [rt ⊙ ht−1, xt]

[
Wh̃h

Wh̃x

]
+ bh̃

)
(13)

ht = (1− zt)ht−1 + zth̃t (14)

Where xt is the input of the TGCN unit at the current
moment, ht−1 and ht are the hidden states of the TGCN
unit at the previous and current moments, respectively. h̃t is
the candidate hiding state of the TGCN unit at the current
moment.

[
WT

rh WT
rx

]T
and br are the weight and bias of

reset gate rt;
[
WT

zh WT
zx

]T
and bz are the weight and bias

of reset gate zt;
[
WT

h̃h
WT

h̃x

]T
and bh̃ are the weight and

bias of candidate state h̃t; ⊙ represents Hadamard product.
A TGCN consisting of TGCN units is shown in Figure

5; TGCN belongs to recurrent neural network, the input
of TGCN are historical time series [xt−n+1, xt−n+2, ..., xt]
and graph convolutional operator Â. The output of TGCN
is the last hidden state ht of the sequence of hidden states
[ht−n+1, ht−n+2, ..., ht]. Experiments proved that the TGCN
model is better than the GRU, GCN model in predicting
traffic speed.

Fig. 5: The structure of TGCN

3) MatVMD-TGCN Fusion Model: The MatVMD-TGCN
fusion model is a prediction model that combines MatVMD
and TGCN. MatVMD is a multidimensional univariate time
series decomposition method and TGCN is a deep neural
network which is capable of capturing the spatio-temporal
features of the data. The fusion model is described in
detail below in terms of both data preprocessing and model
structure.

a) Data Preprocessing of MatVMD-TGCN Fusion
Model: The left half of Figure 6 illustrates the data
preprocessing process of the fusion model. The specific steps
are as follows:

1. The historical multidimensional univariate time series
matrix h ∈ RT×N is data normalized and divided into
training data htrain ∈ R(x·T )×N and validation data
hval ∈ R((1−x)·T )×N in the ratio x : (1− x).

2. Perform MatVMD on training data to obtain K mode
time series matrix mx

K =
{
Mx

0 ,M
x
1 , . . . ,M

x
K−1

}
,

Mx
i ∈ R(x·T )×N ; Perform MatVMD on validation

data to obtain K mode time series matrix
m

(1−x)
K =

{
M

(1−x)
0 ,M

(1−x)
1 , . . . ,M

(1−x)
K−1

}
,

M
(1−x)
i ∈ R((1−x)·T )×N ;
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3. The full mode matrix Mx∑ ∈ R(x·T )×(K·N),M
(1−x)∑ ∈

R((1−x)·T )×(K·N) are obtained by concatenating the K
mode time series matrix Mx

i ,M
1−x
i .

4. The training samples Xtrain ∈ RB×Lin×(K·N) and
validation samples Xval ∈ RB×Lin×(K·N) are obtained
using the sliding window method[37] for full mode
matrix Mx∑,M1−x∑ .

5. The training targets Ytrain ∈ RB×Lout×N and
validation targets Yval ∈ RB×Lout×N are obtained
using the sliding window method for both training and
validation data.
b) Structure of MatVMD-TGCN Fusion Model: The

right half of Figure 6 illustrates the structure of the fusion
model. The fusion model includes K channels. The number
of channels depends on the mode decomposition number of
the MatVMD method. Each channel consists of a TGCN and
a fully connected network, and only the mode time series
corresponding to that channel are learned and predicted.
TGCN learns the pattern and regularity of the mode time
series by capturing the spatio-temporal features in the mode
time series, and the fully-connected layer is responsible for
constructing the mapping relationship between the hidden
state output of the TGCN and the channel output. In the
forward propagation process of the model, we first perform a
matrix decomposition operation on the input matrix to obtain
K mode matrices. Then, we input each mode matrix into
the corresponding channel to obtain the prediction matrix of
each mode matrix. Finally, we perform matrix summation of
the prediction matrix of each mode to obtain the prediction
matrix of the input matrix.

D. Model Training Methods

The MatVMD-TGCN fusion model is trained using an
error back-propagation training method, where the training
objective is to minimize the error between the actual traffic
value and the predicted value. We use V, V̂ to denote the
real traffic speed and the predicted traffic speed, respectively,
and the training loss function is shown in Eq (15). The first
term is used to describe the error between the real traffic
speed and the predicted traffic speed; and the second term
is a regularization term for the trainable parameters of the
model, which helps to avoid the overfitting problem of the
model. λ is the regularization coefficient.

Loss =
∥∥∥V − V̂

∥∥∥+ λLreg (15)

III. EXPERIMENTS

A. Description of Experimental Data

The experiments use two real-life datasets from the
paper[3], the SZ-taxi datasets and the Los-loop datasets
to test the prediction performance of the MatVMD-TGCN
fusion model, and the two datasets are described in detail
below.

1) SZ-taxi: The SZ-taxi datasets records taxi trajectories
in Shenzhen from 1 January to 31 January 2015, and 156
main streets in Luohu District of Shenzhen are selected as
the main study area. The experimental data consists of two
parts: one part is the adjacency matrix A ∈ R156×156, and
the other part is the historical multidimensional univariate
time series matrix F ∈ R2976×156. A is used to describe

the spatial location relationships between streets, where each
row contains the interconnections between the corresponding
street and other streets: if two streets are connected to
each other, then the corresponding position of the adjacency
matrix is set to 1, otherwise it is set to 0. F describes the
changes of the traffic speeds over time, and aggregates a total
of 2976 pieces of traffic speed data for 156 roads over the
range of data recording dates, with a sampling interval of 15
min.

2) Los-loop: The Los-loop datasets was collected in real
time on highways of Los Angeles County by loop detectors,
and traffic speed measured by 207 sensors between 1 March
and 7 March 2012 were selected. Similar to the SZ-taxi
datasets, the Los-loop datasets consists of two parts: one part
is the adjacency matrix A ∈ R207×207, and the other part is
the historical multidimensional univariate time series matrix
F ∈ R2016×207. F aggregates a total of 2016 traffic speed
data for 207 roads over the range of data recording dates,
with a sampling interval of 5 min. In contrast to the SZ-taxi
datasets, A is calculated based on the distances between
sensors in the traffic network and a linear interpolation
method is used to fill in missing values in the datasets.
The key information of the SZ-taxi and Los-loop datasets
is shown in table I

TABLE I: Key Information of the SZ-taxi and Los-loop
Datasets

Datasets Sensors Time steps Sample Interval Time Range

SZ-taxi 156 2976 15min 2015.1.1 - 2015.1.31
Los-loop 207 2016 5min 2012.3.1 - 2012.3.7

B. Experimental Data Preprocessing
1) Perform MatVMD on Original Data: The parameters

of the VMD algorithm in the MatVMD method are set as
follows:

1. The balancing parameter of the data-fidelity constraint
alpha : 2000

2. Time step of dual ascent tanu: 0 (No tolerance for
noise)

3. Number of mode decompositions K: 6
4. Keep DC component or not DC: 0 (Do not keep)
5. Initialization method for each mode, center frequency

and Lagrange multiplier init: 1 (Initialized data follows
a uniform distribution)

6. Tolerance of convergence criterion tol: 1e-7
alpha is set based on engineering experience; After weighing
the prediction performance of the model and the computing
power of the experimental equipment, we set the mode
decomposition number K to 6; Therefore, the test model
for this experiment is a MatVMD-TGCN fusion model with
6 channels.

2) Data Normalization: In order to accelerate the model
convergence, improve prediction accuracy and avoid the
problem of gradient explosion during model training due to
large differences in the scales of features. We use equation
(16) to scale the data values to between [0, 1]. where xnorm

i

represents the normalized data and max {xi} represents the
maximum value in the datasets.

xnorm
i =

xi

max {xi}
(16)
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Fig. 6: An overall structure of MatVMD-TGCN fusion model
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3) Training Set and Validation Set Generation: The
prediction task in this experiment is to use the first 12
traffic speed time stamps as sample data for the prediction
of next 3, 6, 9, and 12 time stamps. In order to construct a
supervised learning task applicable to time series prediction
as an objective; The normalized historical traffic speed time
series are processed to obtain the training set and validation
set according to the method in 2.3.3 in the ratio of 8:2.

C. Experimental Equipment, Platform and Settings

1) Experimental Equipment and Platform: The platform
used for the experiment was a DELL laptop with a 4060
discrete graphics card. The deep learning framework Pytorch
was chosen as the experimental platform. The version details
of torch are as follows:

1. torch = 2.2.2+cu121
2. torch audio = 2.2.2+cu121
3. torch metrics = 1.4.3
2) Experimental Settings: In order to ensure the

reproducibility of the experiment and to exclude the
interference of random factors in the experiment, better
demonstrate the excellence of the MatVMD-TGCN model.
Before starting the experiment, we make the following
settings:

1. seed everything (0)
2. torch.backends.cudnn.deterministic = True
3. torch.backends.cudnn.benchmark = False

D. Indicators of Model Evaluation

To evaluate the performance of the model, we use the
following five indicators to assess the difference between the
true road speed V and the predicted road speed V̂ :

1) Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(Vi − V̂i)2 (17)

2) Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

∣∣∣Vi − V̂i

∣∣∣ (18)

3) Accuracy:

Accuracy = 1−

∥∥∥V − V̂
∥∥∥
F

∥V ∥F
(19)

4) Coefficient of Determination (R2):

R2 = 1−
∑n

i=1(Vi − V̂i)
2∑n

i=1(Vi − V̄ )2
(20)

5) Explained Variance Score (var):

var = 1−
V ar

{
V − V̂

}
V ar {V }

(21)

RMSE and MAE are the indicators used to measure the
prediction error, the smaller the value of both indicates the
better the prediction performance of the model. Accuracy is
an indicator used to test the predictive accuracy of a model.
The larger the value, the higher the predictive accuracy of

the model. R2 is used to quantify how well the model fits
the data and has a value between 0 and 1. The closer the
value of R2 is to 1, the better the fit of the model and the
higher the proportion of variation in the dependent variable
that can be explained by the independent variable. var is
used to assess how good or bad the model predictions are
relative to the actual observations. The closer var is to 1,
the better the model is at explaining changes in the data set
and the better the model predicts.

E. Model Training

1) Model Hyperparameter Settings: The hyperparameters
associated with the MatVMD-TGCN fusion model include
batch size, training epoch, learning rate, regularization factor
of the loss function and the hidden state dimension. In this
experiment, batch size is set to 64, training epoch is set
to 3000. Learning rate is set to 0.001 and regularization
factor of the loss function is set to 1.5e-3. The hidden state
dimension (ht, output of TGCN unit) is set to 100 when
the model is trained using the SZ-taxi data and to 64 when
the model is trained using the Los-loop datasets. In addition
to this, since the Adam optimization algorithm[38] is used
during model training, we set the Adam’s weight decay rate
to 1.5e-3.

2) Model Trainable Matrices: Details of trainable matrix
in each channel of the fusion model for SZ-taxi and Los-loop
datasets as table II and table III. rt weight, rt bias; zt weight,
zt bias; h̃t weight and h̃t bias are corresponding to the
[WT

rh,W
T
rx]

T , br; [WT
zh,W

T
zx]

T , bz; [WT
h̃th

,WT
h̃tx

]T , bh̃ in
Eq(11), (12), (13).

TABLE II: Details of the trainable matrices in each channel
of the fusion model for SZ-taxi datasets

Trainable matrix name Shape Parameters number

rt weight in TGCN unit [101, 100] 10100
rt bias in TGCN unit [156, 100] 15600

zt weight in TGCN unit [101, 100] 10100
zt bias in TGCN unit [156, 100] 15600

h̃t weight in TGCN unit [101, 100] 10100
h̃t bias in TCGN unit [156, 100] 15600

linear.weight [3, 100] 300
linear.bias [3] 3

TABLE III: Details of the trainable matrices in each
channel of the fusion model for Los-loop datasets

Trainable matrix name Shape Parameters number

rt weight in TGCN unit [65, 64] 4160
rt bias in TGCN unit [207, 64] 13248

zt weight in TGCN unit [65, 64] 4160
zt bias in TGCN unit [207, 64] 13248

h̃t weight in TGCN unit [65, 64] 4160
h̃t bias in TCGN unit [207, 64] 13248

linear.weight [3, 64] 192
linear.bias [3] 3

3) Model Training Process: The complete training flow
of the fusion model is shown in Fig 7, where the data
preprocessing methods and parameter settings have been
described in detail in 3.2. During the training process, after
completing a round of training, the model is evaluated using
the validation set to obtain the individual indicators of the
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Fig. 7: The complete training process for the MatVMD-TGCN fusion model

model. At the end of the iteration, the best indicators and
their corresponding parameters of the optimal model are
finally retained.

F. Analysis of Experimental Results

We compare the performance of MatVMD-TGCN fusion
model with the performance of the following models:

1. History Average model (HA)[39]: Use of average flow
information from historical periods as prediction.

2. Auto Regressive Integrated Moving Average (ARIMA).
3. Support Vector Regression model (SVR): Train the

model using historical data and obtain the relationship
between inputs and outputs. Then trained model is used
to predict future traffic data.

4. Convolutional Neural Network (CNN).
5. Graph Convolutional Neural Network (GCN).
6. Gated Recurrent Units (GRU).
7. Transformer consists of Encoder Block with attention

mechanism
8. Temporal Graph Convolutional Network (TGCN).

Table IV, V show the predictive indicators of the statistical
model HA, ARIMA; machine learning model SVR; deep
learning model CNN, GCN, GRU, Transformer, TGCN and
MatVMD-TGCN fusion model on SZ-taxi and Los-loop
datasets.

Figure 8 shows the prediction results of the deep learning
models CNN, GRU, Transformer, TGCN and the fusion
model for the speed of the road traffic where sensor
No. 92856 is located in the SZ-taxi datasets for different
prediction range conditions from 29th January to 31th
January. Figure 9 shows the prediction results of the deep
learning models CNN, GRU, Transformer, TGCN and the
fusion model for the speed of the road traffic where sensor
No. 772151 is located in the Los-loop datasets for different
prediction range conditions on 7 March. The road on which
the sensor is located experienced morning and evening peaks
from 7:00 to 10:00 and 15:00 to 18:00 on 7 March, with short
periods of traffic congestion at around 15:00 and 16:00 due
to uncertainties such as traffic accidents.

As can be seen from Table IV, V and Figure 8,9; the
advantages of the MatVMD-TGCN fusion model are:
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TABLE IV: Predictive indicators of MatVMD-TGCN and other models on SZ-taxi datasets

Datasets SZ-taxi

Horizon Indicators
Models HA ARIMA SVR CNN GCN GRU Transformer TGCN MatVMD-TGCN

3

RMSE 4.2951 7.2406 4.1455 4.2144 5.6596 4.0738 4.0518 4.0874 2.2540
MAE 2.7815 4.9824 2.6233 2.8037 4.2367 2.6815 2.6777 2.7129 1.6479

Accuracy 0.7008 0.4463 0.7112 0.7063 0.6107 0.7161 0.7177 0.7152 0.8429
R2 0.8307 * 0.8423 0.8372 0.6654 0.8479 0.8496 0.8469 0.9534
var 0.8307 0.0035 0.8424 0.8372 0.6655 0.8479 0.8497 0.8469 0.9535

6

RMSE 4.2951 6.7899 4.1628 4.3148 5.6918 4.1294 4.0616 4.1197 2.4434
MAE 2.7815 4.6765 2.6875 2.8917 4.2647 2.7344 2.7071 2.7317 1.7698

Accuracy 0.7008 0.3845 0.7100 0.6993 0.6085 0.7122 0.7169 0.7129 0.8297
R2 0.8307 * 0.8410 0.8294 0.6616 0.8438 0.8489 0.8445 0.9453
var 0.8307 0.0081 0.8413 0.8294 0.6617 0.8438 0.8494 0.8445 0.9453

9

RMSE 4.2951 6.7852 4.1885 4.4210 5.7142 4.1633 4.0614 4.1395 2.7789
MAE 2.7815 4.6734 2.7359 2.9798 4.2844 2.7577 2.6789 2.7441 1.9589

Accuracy 0.7008 0.3847 0.7082 0.6918 0.6069 0.7098 0.7169 0.7115 0.8063
R2 0.8307 * 0.8391 0.8209 0.6589 0.8412 0.8489 0.8430 0.9292
var 0.8307 0.0087 0.8397 0.8210 0.6590 0.8412 0.8491 0.8431 0.9292

12

RMSE 4.2951 6.7708 4.2156 4.4894 5.7361 4.1907 4.0670 4.1570 3.0888
MAE 2.7815 4.6655 2.7751 3.0681 4.3034 2.7965 2.6902 2.7681 2.1409

Accuracy 0.7008 0.3851 0.7063 0.6870 0.6054 0.7078 0.7165 0.7102 0.7847
R2 0.8307 * 0.8370 0.8154 0.6564 0.8391 0.8487 0.8417 0.9126
var 0.8307 0.0111 0.8379 0.8155 0.6564 0.8393 0.8485 0.8419 0.9126

* means that the values are small enough to be negligible, indicating that the model’s prediction effect is poor.

TABLE V: Predictive indicators of MatVMD-TGCN and other models on Los-loop datasets

Datasets Los-loop

Horizon Indicators
Models HA ARIMA SVR CNN GCN GRU Transformer TGCN MatVMD-TGCN

3

RMSE 7.4427 10.0439 6.0084 5.5677 7.7952 5.2419 6.8261 5.1999 2.7442
MAE 4.0145 7.6832 3.7285 3.1255 5.3525 2.9853 4.2344 3.1479 1.8993

Accuracy 0.8733 0.8275 0.8977 0.9052 0.8673 0.9108 0.8838 0.9115 0.9533
R2 0.7121 * 0.8123 0.8389 0.6843 0.8573 0.7590 0.8595 0.9609
var 0.7121 * 0.8146 0.8392 0.6844 0.8577 0.7628 0.8601 0.9609

6

RMSE 7.4427 9.3450 6.9588 6.6705 8.3353 6.2884 7.4830 6.1820 3.1658
MAE 4.0145 7.6891 3.7248 3.6766 5.6118 3.5590 4.4867 3.6907 2.1699

Accuracy 0.8733 0.8275 0.8815 0.8864 0.8581 0.8929 0.8726 0.8947 0.9461
R2 0.7121 * 0.7492 0.7697 0.6402 0.7953 0.7113 0.8023 0.9481
var 0.7121 * 0.7523 0.7704 0.6404 0.7956 0.7145 0.8031 0.9481

9

RMSE 7.4427 10.0508 7.7504 7.7315 8.8036 7.0390 7.9282 6.8495 3.6123
MAE 4.0145 7.6924 4.1288 4.3175 5.9534 4.1480 4.6966 4.1237 2.4541

Accuracy 0.8733 0.8273 0.8680 0.8683 0.8500 0.8801 0.8649 0.8833 0.9385
R2 0.7121 * 0.6899 0.6916 0.5999 0.7444 0.6763 0.7579 0.9327
var 0.7121 * 0.6947 0.6919 0.6001 0.7446 0.6779 0.7582 0.9327

12

RMSE 7.4427 10.0538 8.4388 8.4063 9.2657 7.6878 8.2410 7.4134 3.9651
MAE 4.0145 7.6952 4.5036 4.8491 6.2892 4.4825 4.8215 4.4950 2.6784

Accuracy 0.8733 0.8273 0.8562 0.8568 0.8421 0.8690 0.8596 0.8737 0.9324
R2 0.7121 * 0.6336 0.6365 0.5583 0.6960 0.6511 0.7173 0.9191
var 0.7121 * 0.5593 0.6365 0.5593 0.6960 0.6519 0.7174 0.9192

* means that the values are small enough to be negligible, indicating that the model’s prediction effect is poor.

1. Performance of prediction:
The fusion model has excellent predictors in all
horizons. Compared to the HA, SVR, CNN, GRU,
Transformer and TGCN model. The prediction error
of the fusion model is significantly reduced and
the prediction accuracy is substantially improved. On
the Los-loop datasets, the accuracy under different
prediction ranges reaches more than 93%. The R2, var
values of the fusion model under different prediction
ranges on two datasets are all greater than 0.90, which
indicates that the model has a high degree of fit to the
data and strong explanatory power; it can fully learn the
patterns and regularities in the historical time series.

2. Ability of long and short-term prediction:
When making short-term prediction (horizon 3, 6),
without exception, the fusion model are all significantly
ahead in their indicators on both datasets. When making
long-term prediction (horizon 9, 12) on SZ-taxi datasets,

the CNN model was even worse than the HA model
for each indicator, and the SVR model was comparable
to the HA model for each indicator. When making
long-term prediction (horizon 9, 12) on Los-loop
datasets, the SVR, CNN, and Transformer model are
worse than HA model. When the prediction horizon is
12 on SZ-taxi datasets, compared to the most advanced
Transformer model, the RMSE, MAE of the fusion
model decreased by 24.05% and 20.42%, respectively;
and Accuracy,R2, var improved by 9.52%, 7.53% and
7.55%, respectively. When the prediction horizon is 12
on Los-loop datasets, compared to the most advanced
TGCN model, the RMSE, MAE of the fusion model
decreased by 46.51%, 40.41%; and Accuracy,R2, var
improved by 6.72%, 28.13% and 28.13% respectively.

3. Ability of real-time prediction:
In different prediction horizon on Los-loop datasets, the
prediction results of the CNN, GRU, Transformer and
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Fig. 8: Comparison of prediction results of each deep learning model with different prediction horizon on SZ datasets

TGCN models have hysteresis compared with the real
traffic speed curves; and this hysteresis increases as the
prediction horizon increases. The fusion model, on the
other hand, does not have hysteresis and is able to make
real-time prediction.

4. Ability of short-term fluctuation prediction:
The CNN, GRU, Transformer and TGCN models are
not capable of predicting short-term changes in traffic
speed, and this disadvantage is highlighted as the
prediction horizon increases. For example, On SZ-taxi
datasets, CNN, GRU, Transformer and TGCN can
not show fluctuations in traffic speed; On Los-loop
datasets, when the prediction horizon is 9 and 12, CNN,
GRU, Transformer and TGCN models can not reflect
the traffic speed fluctuations during the morning and
evening peaks well, and can only give the general trend

of their changes; and each of them can not reflect the
short-term traffic congestion. Nevertheless, the fusion
model has a very satisfactory prediction of the highly
nonlinear short-term fluctuations of traffic speed under
different prediction horizons.

G. Experiments on the mode decomposition K value

The number of channel in the fusion model is determined
by the mode decomposition value K, which plays a key
influence on the structure and prediction performance of the
model. Therefore, we evaluated the prediction performance
of the fusion model with different value of K on two
datasets under prediction horizon 3. The results are shown in
Table VI. As shown in Figure 10 and 11, For the Los-loop
datasets, The prediction indicators RMSE of the fusion
model decreases and then increases as K increases. The
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Fig. 9: Comparison of prediction results of each deep learning model with different prediction horizon on Los-loop datasets

TABLE VI: Indicators of MatVMD-TGCN on Los-loop and SZ-taxi datasets with different K-value under prediction
horizon 3

Datasets SZ-taxi Los-loop

K value
Indicators

RMSE MAE Accuracy R2 V ar RMSE MAE Accuracy R2 V ar

K = 4 2.9066 2.0707 0.7975 0.9226 0.9226 3.4403 2.3447 0.9414 0.9385 0.9385
K = 5 2.6185 1.8853 0.8175 0.9372 0.9372 3.2117 2.2009 0.9453 0.9464 0.9464
K = 6 2.2540 1.6479 0.8429 0.9534 0.9535 2.7442 1.8993 0.9533 0.9609 0.9609
K = 7 2.3343 1.7106 0.8373 0.9501 0.9501 2.9295 2.0627 0.9501 0.9554 0.9554
K = 8 2.1969 1.6163 0.8469 0.9558 0.9558 2.9574 2.0771 0.9497 0.9545 0.9545
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Fig. 10: RMSE of MatVMD-TGCN fusion model with
different K value on SZ-taxi datasets
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Fig. 11: RMSE of MatVMD-TGCN fusion model with
different K value on Los-loop datasets

optimal indicators of fusion model are obtained when K is
chosen as 6. For the SZ-taxi datasets, The optimal indicators
of fusion model are obtained when K is chosen as 8 which
is not improved a lot comparing the K is chosen as 6.
Considering the model complexity and computational effort,
We set the mode decomposition value as 6 in the experiment.

H. Ablation Study

Compared to other model improvement paths by stacking
functional layers vertically, MatVMD-TGCN alternatively
adopts a horizontal channel stacking strategy to achieve
model optimization. Therefore, the objective of ablation
experiments is to verify the effectiveness of different channel.
We made an ablation study on two datasets under prediction
horizon 3. The specific experimental procedure is to increase
the number of channels of the fusion model one by one
while keeping channel 0 and channel 1, and to evaluate the
prediction effect of the fusion model. The results are shown
in table VII. For SZ-taxi, The absence of channels has a
large impact on the predictive performance of the model; For
Los-loop datasets, The prediction performance of the fusion

model has a tendency to enhance as the number of channels
increases. It is concluded that each channel is indispensable
for the fusion model.

I. Robustness Study
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Fig. 12: Robustness study of MatVMD-TGCN fusion
model on SZ-taxi datasets under prediction horizon 3 with

different standard deviation
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Fig. 13: Robustness study of MatVMD-TGCN fusion
model on Los-loop datasets under prediction horizon 3 with

different standard deviation

Noise is inevitable in the actual data collection process. To
test the noise resistance of the fusion model, we evaluated
the robustness of the model through perturbation analysis
experiments. We added common random noise—Gaussian
noise—to the data during the experiment. Gaussian noise
follows a normal distribution N ∈ (0, σ2), where σ ∈
(0.2, 0.4, 0.8, 1, 2). The noisy matrix is normalized between
0 to 1 before adding to the original data. Table VIII and
figure 12, 13 show the results of robustness study of fusion
model on SZ-taxi and Los-loop datasets. It can be seen that
noise does not have a significant impact on the predictive
performance of the model and is acceptable to a certain
extent. Therefore, the fusion model is robust and is able to
handle noise issues.
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TABLE VII: Ablation study of MatVMD-TGCN fusion model on SZ-taxi and Los-loop datasets under prediction horizon
3

Datasets SZ-taxi Los-loop

Reserved channels
Indicators

RMSE MAE Accuracy R2 V ar RMSE MAE Accuracy R2 V ar

Channel 0,1 10.2129 7.9831 0.2883 0.1615 0.1842 12.2488 10.3178 0.7915 0.4658 0.6800
Channel 0,1,2 12.8181 9.6647 0.1068 -0.4238 -0.4482 10.2302 8.3782 0.8258 0.5622 0.6986

Channel 0,1,2,3 13.7109 10.2576 0.0446 -0.5448 -0.4624 6.9720 5.3844 0.8813 0.7578 0.7906
Channel 0,1,2,3,4 12.4325 10.2543 0.1336 -0.3754 -0.3866 8.1664 6.6218 0.8610 0.6591 0.6703

All Channels 2.2540 1.6479 0.8429 0.9534 0.9535 2.7442 1.8993 0.9533 0.9609 0.9609

TABLE VIII: Robustness study of MatVMD-TGCN fusion model on SZ-taxi datasets under prediction horizon 3 with
different standard deviation

Datasets SZ-taxi Los-loop

σ
Indicators

RMSE MAE Accuracy R2 V ar RMSE MAE Accuracy R2 V ar

0.2 2.2682 1.6593 0.8419 0.9529 0.9529 2.7589 1.9112 0.9530 0.9604 0.9605
0.4 2.2914 1.6812 0.8403 0.9519 0.9519 2.7872 1.9394 0.9526 0.9596 0.9597
0.8 2.3475 1.7356 0.8364 0.9495 0.9495 2.8658 2.0102 0.9512 0.9573 0.9574
1 2.4469 1.8136 0.8295 0.9451 0.9451 2.9347 2.0725 0.9500 0.9552 0.9553
2 2.8127 2.1443 0.8040 0.9275 0.9275 3.3781 2.4596 0.9425 0.9407 0.9407

J. Model Interpretation

Traffic historical time series have the characteristics of
high complexity and inconspicuous signal features, which
makes it difficult for even deep neural networks to fully
learn their patterns and regularities. The traffic historical time
series is decomposed into a number of mode time series
with significantly reduced complexity and distinct signal
features by the MatVMD method; it serves to simplify the
complexity and enhance the signal features, thus improving
the learning efficiency of deep neural networks. The graph
convolution structure in the TGCN unit extracts the spatial
features between the same-level IMF components of each
sensor signal, and the gating structure extracts the temporal
features of the IMF components. Compared to using a single
TGCN to learn complex patterns of traffic historical time
series, it is more efficient to use parallel TGCNs to learn
simple patterns of each mode time series. This is the reason
why MatVMD-TGCN achieves excellent prediction results.

IV. CONCLUSION

For the traffic speed prediction problem, this paper
proposes the MatVMD-TGCN fusion model. MatVMD
method is used to decompose a multidimensional univariate
time series into multiple mode time series; Parallel TGCN
learn the patterns and regularities of each mode time series
by capturing the spatio-temporal features in each mode
time series, which enables the fusion model to have better
prediction capability. Comparative tests between the fusion
model and other models using two real traffic speed datasets,
Los-loop and SZ-taxi, demonstrate that the fusion model
is not only advanced in prediction performance, but also
has the ability of long and short-term prediction, real-time
prediction, and short-term fluctuation prediction. In addition,
Robustness study demonstrates that the fusion model is
able to handle noise in a certain extent. In summary,
the MatVMD-TGCN fusion model can perform the traffic
prediction task well.

The hidden unit dimension of the fusion model is
the optimal solution determined by a large number of

experiments, and can not be determined by mathematical
proofs and logical reasoning. Therefore, the fusion model
has the same “black box” property as other deep neural
networks. The increasingly complex real-world traffic
situation not only poses a greater challenge to the model’s
prediction performance, but also puts forward higher
requirements on the model’s interpretability. The Deep
Stochastic Configuration Network (DSCN)[40] model is
a possible direction for the development of future traffic
speed prediction models because of its rigorous mathematical
theory and scientific construction method, which has strong
model interpretability and excellent prediction ability.
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