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Abstract—Free-surface two-dimensional flows past successive
triangular obstacles are considered. We suppose that the fluid
is incompressible and non-viscous. The flow is assumed to be
steady and irrotational. The gravity and the surface tension
are included in the free surface condition. The problem is
solved numerically by employing series-truncation method. The
numerical solutions exist for various values of the Weber
number and the Froude number. When the surface tension
tends to zero, It is shown that there are solutions for which
the flow is supercritical and sub-critical both upstream and
downstream. The free surface profiles are plotted for different
sizes of successive triangles.

Index Terms—Free surface flow; potential flow; Weber num-
ber; surface tension; Froude number.

I. INTRODUCTION

He problem of free-surface flows over a submerged

obstacle has been studied by many researchers. Various
mathematical techniques have been employed to study free-
surface flows over different kinds of obstacles situated at the
bottom of a channel. For example, Forbes [8] considered flow
over a semi-circular obstruction, Dias [6] studied the free
surface flows over a triangular obstacle with gravity effect,
Hanna [10] considered super-critical free-surface flow over
a trapezoidal obstacle of a finite depth by using a series-
truncation method. In the case of flows over two obstacles,
several authors have solved this problem using the boundary
integral equation method [4], [5]. In this work, we study the
problem of flows over two triangular obstacles by applying
a series-truncation technique. This method has been used
extensively by many researchers, Birkhoff [3], Dias [6], Lee
[11], Daboussy [7], Vanden-Broeck [16], [17] and others.
The fluid is assumed to be inviscid, incompressible and the
flow is irrotationnal. The flow is supposed to be uniform, with
a constant velocity U and constant depth H, far upstream.
Both of surface tension and gravity are considered. In this
case, the problem is characterized by the Weber number o
defined by

pU?H
= 1
=" (M
and the Froude number F'r defined by
2
Fr=—2_ @)

VgH

Where T is the surface tension, g is the acceleration of
gravity and p is the density of the fluid. The upstream flow
is said to be supercritical when (F'r > 1) and sub-critical
when (Fr < 1). The problem of free surface flow over an
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obstacle under the effect of gravity and surface tension has
been treated by many authors, for example, Forbes [8], Lee
[12] considered the bubbles rising in an inclined tube and
others. It is shown that there are solutions for each value
of the Weber number o > o« where « is a critical value,
and different values of the Froude number F'r. It is found
that solutions exist for triangular obstacles of arbitrary size.
When T' = 0, we calculate these solutions for supercritical
and sub-critical flow. In section 2, we formulate the problem.
The numerical scheme is described in section 3. The results
are presented and discussed in section 4.

II. MATHEMATICAL FORMULATION

We consider steady two-dimensional flow over an isosceles
triangle. The angle between the wall BC' and the horizontal
is v, where —5 <y < 0. The fluid domain is bounded below
by the rigid wall AG, the two triangles BC'D and DEF, and
above by the free surface A’G’ (see figure 1). We introduce
Cartesian coordinates such that the x—axis is parallel to the
wall AG and the y—axis is vertically. Far upstream, x — oo,
the flow is uniform with a constant velocity U and a constant
depth H. Gravity is acting vertically downwards, and the
surface tension is considered. We choose H as the unit length
and U is the unit velocity. The fluid is assumed to be inviscid
and incompressible, and the flow is irrotational. We introduce
the complex potential f = ¢ + i7) , which is a function of
the complex variable z = x + iy. The function ¢ is the
stream function and ¢ is the potential function. Without loss
of generality, we choose ¢ = 0 at point D on streamline
1 = 0. The free surface A’G’ defines a streamline on ¢ = 1.
The upper half of the flow region in the z—plane will be
mapped via the potential function f onto the infinite strip 0 <
1 < 1 (see figure 2). The problem is formulated in terms
of the velocity potential ¢. This function satisfies Laplace’s
equation

Ap=0 in the fluid domain 3)

We denote by u — iv the complex velocity. The function
u — v is an analytic function of z everywhere in the fluid
domain. We define the function

E=u—iv=— 4

On the free streamline (free surface) A’G’, the Bernoulli
equation yields

1

1
2q2+2+gy:§U2+@+gH:const on A'G (5
p p
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Fig. 1. Sketch of the flow domain in the physical z—plane z = z + iy.
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Fig. 2. Sketch of the flow in the complex potential f-plane f = ¢ + ).

Here ¢ = Vu? +v? is the flow speed, p is the fluid
pressure and pg is the pressure at infinity. In dimensionless
variables, Bernoulli’s equation takes the form

5 2 2
q+aK+Fr2(y 1)=1 (6)

Here K is the curvature of the free surface, F'r and « are
the Froude number and the Weber number defined by (1)
and (2) respectively.

We introduce the function 7 — i6 as

E=u—iv=e"" (7)

Where 6 is the angle between the speed vector and the
horizontal.
The curvature K is defined by the relation

- |00
K=—¢ 7 (®)
Substituting (8) into (6) and using (7), (6) becomes
or 201900 2 (= _
e 8¢+F7‘2(y 1)=1 on =1 (9)

The kinematic conditions on the solid boundaries can be
written as

ImE=0,0=0 onyp=0, ¢pa<od<¢p and
or <Y < ¢
Imé = utan~,0 = |y| on =0, 5 <o < do,

¢c <9< ¢p,pp < ¢ < ¢p and ¢pp < ¢ < ¢F (10,

We shall seek (7 — i6) as an analytic function of f =
¢ + i1 in the strip 0 < ¥ < 1 (see figure 2), satisfying the
conditions (9) and (10).

III. NUMERICAL PROCEDURE

We define a new variable ¢ by the relation

2 1+1¢
J=log

R (b

This transformation maps the flow domain into the upper

half of the unit disc in the complex ¢—plane so that the free
surface on the circumference (see figure 3). The points of
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Fig. 3. The complex ¢t— plane.

the free surface in the t—plane are given by the relation:

t=€e",0<o<m (12)

Since there are angled corners at tp,tc,tp,tg and tp, &
has singularities at these points. By using the symmetry of
the problem with respect to the vertical y— axis, we choose

tp = —tp and tc = —tg. The appropriate singularities are
t—tp\ 7
—tB 3
= t—t 13
(1 — ttB) as B (13)
2y
t—tc \ ™
= t—t 14
<1 — ttc) as c (14)
£ =t as  t—stp (15)

We represent the complex velocity £ by the expansion

~

2 2\ 7 2 _ 42 2%727
£=(t tB) (t tC) 1 exp (Q (1) (16)

2 2
1— 1263 1— 1262,

Where the function §2(¢) is bounded and continuous on the
unit circle and analytic in the interior. The conditions (10)
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show that Q(t) can be expanded in the form of a Taylor
expansion in even powers of t. Hence, we write

12— 12 £2 — 42 iy
B C Z athk
k=0

G E
1—t2t% 1— 122
an

The kinematic conditions (10) are satisfied by requiring
the coefficients aj to be real. It can be checked that (16)
satisfies (13) —(15). Therefore we expect the series in (17) to
converge for |¢| < 1. The coefficients aj must be determined
to satisfy the boundary condition (9) on the free surface
A’G'. According to (12) and (17), we have:

- 2y

i t2, sin 2
0 (o) = 2 (arctan —S220 _ _ arctan 5 B-——"—
™ cos QUftB tg cos 20—1
t2 in?2 .
+2 (arctan <3220 _ aretan —Sin20

s t% cos20—1

STRE ay sin(2k — 1)o
7(0) = 7= apcos (2 (k — 1) o)

T 9g 12
cos 20 —t¢,

(18)
It is convenient to eliminate y from (9) by differentiating
(9) with respect to o. Using (11),(12) and the identity

19)

we obtain after some algebra

(— =9 (k — 1) aysin2 (k — 1) 0) €27(0) — Zem(o)

{(g—;sina+cosa) agf) +sino 2 (’a%(:) )}
T TsincFr? e’ o) sin ¢ (J) =0

(20)
Here 7 (0) and 6 (o) denote the values of 7 and 6 on the
free surface A'G.
We solve the problem numerically by truncating the infi-
nite series in (17) after N terms. We find the N coefficients
ay, by collocation. Thus we introduce the N mesh points

s 1
—(I-=),I=1,...N
N( 2)’ ) )

Using (16) we obtain [7 (0)], [0 (0)], [2—;] and [%] in
terms of coefficients ay. Thus, we obtain N non-linear
algebraic equations of N unknowns (ax,k = 1,..., N). We
solve this system by Newton’s method.

We calculate the height W of the triangle by integrating (19)

from ¢ = t¢ to t = ¢tp and using (11)

o = 21

tp

W =sin~y (22)
tc

The shape of the free surface is obtained by integrating

numerically the relation (19), we obtain

9z — _=2 =7(9) cog o
{ % - (0 ()
do

= e~ 77 sin (6 (o))
Most of the calculations were performed with N = 50.

(23)

msino

IV. DISCUSSION OF THE RESULTS

The numerical scheme described in section 3 was used to
compute solutions for various values of the Weber number
« and Froude number F'r. We found that the coefficients ay
decrease rapidly as N increases. For example, a; = 1.66 x
1072, a10 = —9.88 x 1075, a30 = —3.77 x 1076 and a5 =
—7.04x 1077 for vy = £, v = 20 and Fr — oo.
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Fig. 5. The free surface profile for v = %, Fr = oo and aig = 0.97.

A. Solution with surface tension and without gravity.

When gravity is neglected and surface tension is included
in the free surface condition, the numerical computations
show that there is a solution for each value of « and ~.
This results shows that there is a critical Weber number
ag for each value of v such that for @« = ag the solution
approach limiting configuration with a free surface flow over
an obstacle. For example, the free surface profile for a critical
value g = 0.97 and v = % is shown in figure 5. Most of
the results are obtained with N = 50, W = 0.18,y = .
The effect of the Weber number o« > «¢ on free surface
profile is shown in figure 4. It should be noted that the
free surface elevation increases when the Weber number o
decreases which when @ — «y, this elevation reaches its
maximum. Figure 6 shows the effect of the angle v on the
shape of free surface for a = 200. The influence of the size
of triangle W is shown in figure 7.

B. Solution with gravity and without surface tension.

When surface tension is neglected (&« — o0) and gravity
is taken into account, numerical solutions exist for different
values of F'r and ~. Most of the results are obtained with
N =50,W = 0.65,v = 7. We noticed that the coefficients
ay, of the series (17) were found to decrease very rapidly. For

example, a5 = —6.88 x 1075, a9 = —5.17 x 1079, a3y =
—1.63 x 107" and aso = —1.57 x 107*? for v = % and

Fr = 2. Figure 8 shows the effect of Froude number on the
free surface profile of supercritical flow (F'r > 1) for vy = §.
For subcritical flow (Fr < 1), the effect of Froude number
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Fig. 7. The free surface profiles for F'r = oco,a = 100,v = § and

various values of the height W.
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Fig. 8. The free surface profiles of supercritical flow for a = oo,y =
%, W = 0.65 and various values of the Froude number.

us

is shown in figure 9 for v = %. For large Froude number is
shown in figure 10. It can be seen that the elevation of the
free surfaces decreases as Froude number F'r decreases.

V. CONCLUSION

We have presented numerical solutions for a free surface
flow over a successive triangular obstacles. The fluid is
subjected to the combined effects of gravity and surface
tension. When surface tension is neglected there are solutions
corresponding to two different values of the angle v and the
Froude number. It is shown that the effect of Froude number
on the free surface profile of supercritical flow (F'r > 1)
and subcritical flow (Fr < 1). When gravity is neglected
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Fig. 9. The free surface profiles of sub-critical flow for &« = oo,y =

%, W = 0.07 and various values of the Froude number.
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Fig. 10. The free surface profiles of supercritical flow for v = %, a =

oo, W = 0.65 and various values of Froude number F'r.

and surface tension is included in the free surface condition,
It was found that for given values of v and size of obstacle,
there is a unique solution. It should be noted that the Weber
number « increases as the elevation of the free surfaces
decreases.
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