
 

 

Abstract—Social recommender systems face challenges in 

modeling complex user preferences due to underexplored item 

semantic relatedness, ignored connections are driven by 

complex factors, and noise may be introduced by social relation 

data. To address these limitations, we propose DDGNN4Rec 

(Disentangled and Diffusion-Denoising Graph Neural Networks 

for Social Recommendation), a novel framework that integrates 

disentangled representation learning with diffusion-denoising 

techniques. First, a collaborative heterogeneous graph is built, 

incorporating social connections between users, interactions 

between users and items, and relationships among items. 

Furthermore, we design novel memory enhancement 

mechanisms for message propagation and aggregation within 

the framework of graph neural networks, enabling the 

automatic and iterative distillation of semantic relationships 

into the representations of both users and items. Second, a 

latent-space diffusion-denoising module is introduced to 

improve the robustness of social relation data through multi-

step forward noise propagation and reverse denoising training 

in the latent space. Experiments on three real-world datasets 

(Ciao, Epinions, Yelp) demonstrate that that DDGNN4Rec 

achieves advanced performance. Ablation studies validate the 

necessity of disentangled memory mechanisms, layer 

normalization, and diffusion-denoising.  

 
Index Terms—Graph Neural Network; Social 

Recommendation; Memory-Enhanced Network; Diffusion-

Denoising 

I. INTRODUCTION 

raditional recommendation algorithms (e.g., 

collaborative filtering) rely on user-item interaction data 

but suffer from significant performance degradation in data-

sparse or cold-start scenarios. Social recommendation 

mitigates these issues by incorporating user social relations, 

leveraging social network homophily to enhance user 

preference modeling. Early social recommendation models 

(e.g., SocialMF[1]) integrated social trust relations through 

matrix factorization but struggled to model complex high-

order interactions. Recently, Graph Neural Networks (GNNs) 

have emerged as a research focus in social recommendation 

due to their powerful representation learning capabilities for 

graph-structured data. Through message passing mechanisms, 

GNNs aggregate neighborhood information from both user-

item interaction graphs and social graphs, simultaneously 

capturing collaborative filtering signals (user-item 

interactions) and social homophily (user-user associations)[2]. 

For instance, GraphRec[3] first applied GNNs to social 

recommendation with a dual aggregation framework 

encoding user-item interactions and social influence 

separately; DiffNet[4] simulated dynamic social influence 

propagation through deep influence diffusion; DANSER[5] 

introduced dual attention mechanisms to distinguish explicit 

(e.g., direct following) and implicit (e.g., shared communities) 

social influences in user-user graphs, dynamically fusing 

multi-source information. 

However, existing social recommendation models 

typically couple social relations with user behaviors into a 

single graph structure, leading to three limitations: 

⚫ The semantic correlations among projects are rich, but this 

is something that most existing learning solutions have yet 

to explore. In real life, items often exhibit inherent relations 

(e.g., product types/functionalities, spatial proximity of 

venues). Such semantic correlations help reveal latent 

dependencies crucial for understanding complex user 

interests. 

⚫ The driving force of connection is influenced by complex 

factors, but most current social recommendation systems 

ignore this point. User-item interactions (e.g., 

clicks/purchases) may be driven by diverse item attributes 

(brand/color for products, director for movies). Similarly, 

social connections form through multifaceted motivations 

(interest-based communities, colleagues, family). If no 

distinction is made when representing inter-user influence, 

it is difficult for the learned user preferences to reflect 

multiple social contexts. 

⚫ Social relations may contain irrelevant interactions (e.g., 

off-topic communications) contradicting preference 

similarity. While social data captures interest-aligned 

relations, noise from spurious connections could mislead 

recommendations—overemphasizing similarities between 

socially connected users with limited shared interests. 

GNN-based methods are particularly vulnerable as their 

message passing amplifies biases from noisy social edges. 

To address these challenges, we propose a Disentangled 

and Diffusion-Denoising Graph Neural Networks for Social 

Recommendation (DDGNN4Rec), investigating social 

recommendation through disentangled learning of 

heterogeneous latent factors. We designed a memory network 

based on node type and edge type to solve the problem of 

relational heterogeneity and implement Disentangled 

relational modeling, which preserves independent feature 

representations for distinct interaction types (user-user, item-

item, user-item). The algorithm makes use of external 

memory units that incorporate different embedding 
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propagation operators. This approach allows graph 

architectures to directly model the different relationships 

between social data and user project data. Instead of 

separately parameterizing each relation type, our method 

encodes relation heterogeneity in disentangled latent spaces 

through memory neural network layers, operating in a fully 

automated and interactive manner without relying on 

handcrafted meta-paths. Second, we integrate the 

discriminative power of generative diffusion models with 

denoising training objectives, implementing refined noise 

diffusion and removal processes to help social recommender 

systems effectively handle connection noise. Finally, 

recommendation lists are predicted using learned node 

embeddings. 

Our key contributions include: 

⚫ We propose DDGNN4Rec (Disentangled and Diffusion-

Denoising Graph Neural Networks for Social 

Recommendation), a novel framework achieving 

generalized encoding of relation heterogeneity through 

relation-aware disentangled representations.  

⚫ We used an efficient latent space diffusion-denoising 

module. Through multi-step noise propagation and 

denoising training, the algorithm gains robust noise-

handling capabilities to process diverse social connections 

and generate accurate user preference representations. 

⚫ Our method and baseline model were placed on the dataset 

for experiments to obtain the experimental results. Detailed 

ablation studies validate the framework's effectiveness and 

quantify each component's contribution to performance 

improvement.  

II. RELATED WORK 

This section introduces four categories of recommendation 

algorithms: social relation-based, graph neural network-

based, disentangled-based, and context-aware 

recommendation methods. 

A. Classic Social Recommendation Algorithms 

To enhance recommendation performance, numerous 

social recommendation approaches have been developed that 

incorporate online social relationships as supplementary data 

within recommendation systems [6]. Conventional 

techniques such as Sorec [7] and TrustMF [8] typically rely 

on matrix factorization, projecting users into a latent factor 

space. These methods are generally motivated by the 

assumption that users tend to exhibit similar item preferences 

to their friends within social networks [9]. Owing to the 

strong capability of neural networks in representing 

knowledge, social recommendation models based on deep 

learning [10] have attracted growing interest. In particular, 

several works utilize graph convolutional networks to jointly 

capture user–user and user–item interactions, as evidenced by 

DiffNet [4], RecoGCN [11], and KCGN [12]. Moreover, 

attention mechanisms have been incorporated to model 

varying degrees of social influence during preference 

learning, exemplified by SAMN [9] and GraphRec [3]. For 

instance, GraphRec accounts for differential strength in social 

relations when integrating information from both social and 

interaction graphs. Recent methods, inspired by self-

supervised learning, have also adopted data augmentation 

strategies; examples include MHCN [14] and SMIN [15]. 

B. Graph Neural Network-Based Recommendation 

Algorithms 

Owing to the benefits of graph-structured data for 

representation learning, numerous studies in recommendation 

have concentrated on improving the modeling of user-item 

interactions by employing architectures based on graph 

neural networks (GNN) [16]. Building upon the success of 

spectral graph convolutional networks, NGCF [17] 

introduces an approach to capture high-order user-item 

relations through the use of convolutional operations. 

Another GNN-based recommendation research explores 

spatial GNNs for targeted aggregation of neighborhood 

information, such as KGAT[18] and DGRec[19]. 

Furthermore, heterogeneous graph representation has 

emerged as a promising solution in GNN research for 

integrating diverse relation contexts into node 

embeddings[20]. For example, HERec[21] incorporates 

auxiliary information through meta-path-based connections 

to enhance user preference learning. Encode different 

relationships by leveraging various types of user-item 

interactions (for example, clicks, purchases) [22]. Unlike 

these methods, the proposed DDGNN4Rec model 

automatically captures heterogeneous relations across users 

and items. Moreover, existing encoders for heterogeneous 

contexts have not explored latent factor encoding with 

disentangled representations. 

C. Context-Aware Recommendation Algorithms 

Several studies have focused on developing context-aware 

recommendation algorithms[23] by incorporating various 

contextual signals in different scenarios. From the user 

perspective, user-user relations derived from online social 

networks are integrated with certain user and the user's 

context in STARS [24] to enhance collaborative filtering. 

LBSNs[25] improves point-of-interest recommendations by 

learning mappings between item contextual features and user 

preference tags. CARL[26] fuses textual context information 

of items with interaction-based embeddings for enhanced 

representation learning. Additionally, knowledge graphs are 

regarded as valuable contextual signals for integration into 

recommendation systems, boosting the performance of 

knowledge-aware methods such as KGIN[27], CASR[28] 

and KGCL[29]. 

D. Disentangled Recommendation Algorithms 

Recent studies have explored learning disentangled 

representations from user-item interactions[30]. For example, 

DGCF[31] designs a capsule network-based routing 

mechanism to model disentangled user-item relations. A 

curriculum learning-based approach is proposed in Work [32] 

to disentangle multi-type user feedback. In multimedia 

recommendation, weakly supervised disentangled 

representation learning is adopted for multi-modal 

features[33]. In contrast, the DDGNN4Rec method leverages 

different memory networks to capture latent factor-wise 

interdependencies across multiple disentangled 

representation spaces. Through this process, the relation-

aware latent factors are thus capable of retaining distinct 

heterogeneous semantics. 
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III. SOCIAL RECOMMENDATION FRAMEWORK 

DDGNN4REC  

This section proposes a disentangled Graph Neural 

Network to perform disentangled representation learning for 

heterogeneous relations in social recommendation. By 

introducing item-wise relations, we extend the data 

information utilized by the collaborative filtering framework. 

To achieve disentangled representation learning on 

heterogeneous relation data, we construct a memory-

augmented network tailored to different node types and edge 

types, enabling distinct representation space decomposition 

for heterogeneous nodes and edges. A diffusion-denoising 

module is incorporated to enhance social recommendation 

performance by denoising social relations between users. The 

overall framework is illustrated in Figure 1.  

A. Collaborative Heterogeneous Graph Construction 

To comprehensively integrate social connections, user-

item interactions, and item-wise relations. we combine these 

three types of data to construct a collaborative heterogeneous 

graph. Item-wise relations data are organized according to 

relation types. This graph contains user nodes, item nodes, 

and relation nodes, where edges between users and items 

represent user-item interactions, edges between users denote 

social connections, and item-wise relations are expressed via 

"item-relation-item" triples. 

We use Y to represent interactions. Similarly, we use S and 

T to represent social connections and item-wise relations. To 

store Y, S and T, we define a graph structure 

( , , , )G D E I J= , using the nodes and edges in graph G to 

store Y, S and T. We use I and J to represent the set of nodes 

and the set of edges. In Graph G, the mapping functions of 

nodes and edges are D I→  and E J→  respectively. The 

formula for describing the different relationships represented 

by different connections between nodes in Graph G is as 

follows: 

D U V R=   ; E S T Y=         (1) 

In the formula, U, V, and R respectively represent users,  

 

items, and item relationship nodes.. Through this step, the 

heterogeneous graph is unified into three types of relationship 

nodes and the connections between nodes. 

B. Disentangled Memory Network 

Most current methods for heterogeneous graph analysis 

rarely explicitly model the underlying factors that generate 

complex semantics. Leveraging the capability of memory 

neural networks in learning disentangled representations, we 

enhance graph neural networks with specialized memory 

modules that operate over multiple latent spaces to learn 

representations. By adaptively mapping node and edge types 

to latent factors, the disentangled heterogeneous semantics 

are more effectively retained. 

Throughout message passing, we first apply localized 

feature transformation and nonlinear activation, then 

proceed with the integration of relation-aware contextual 

representations. Formally, this process can be described as 

(from layer l to l+1): 

( )( )( 1) ( ) ( )

,
( )

[ ] [ ], [ ],l l l

s t
s N t

H t Aggre H t H s e+

 

  (2) 

In the formula, H(l)[t] denotes the latent representation of 

target node t at the l-th layer, and N(t) represents the set of 

neighboring nodes (source nodes s) connected to t via edges 

es,t.  

1) Relation Heterogeneity Encoder 

For a collaborative graph with three heterogeneous 

relationships, we model the relationship heterogeneity by 

using specific embedded projections of vertex and edge types 

through external storage units. Each edge type (i.e. social 

relation, item relation and interaction relation) propagates 

information independently through node type and edge type 

dependent embedding projections. Specifically, we define M 

as a collection of memory units corresponding to latent 

factors. The prototype learning function ϕ(⋅) for relation-

specific semantics is formulated as: 

  ( ) ( )
| |

( ) ( ) ( ) 1 ( )

m

1

[ ], [ ] [ ], [ ]
M

l l L l

m

H t H s H t m W H s 
=

 
=  
 
  (3) 

 

Fig. 1. Framework of DDGNN4REC 
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( ) ( )( ) ( ) 2[ ], [ ]l l

m mH t m H t W b =  +       (4) 

In the formula, η(⋅) refers to an embedding function 

specific to the target node. Trainable transformation matrices 

and biases are 
1 d d

mW  , 
2 d

mW  ,and mb 

while 
( )[ ]l dH s   and 

( )[ ]l dH t  represent 

encoded feature embeddings of the source nodes and target 

nodes, respectively. 

2) Embedding Aggregation Function 

After encoding heterogeneous relation attributes from local 

neighbors, we aggregate propagated messages for each node: 

a．For user nodes, we aggregate messages from social 

relations and interactions, the procedure can be formalized as:  

( ) ( )
| |

( 1) ( ) ( ) ( ) ,1 ( )

1

1
[ ] [ ], [ ] [ ], [ ]

| | | | YS
i ui i i u ii

M
l l l l m l

i i i j i j iS Y
mv Nu u u N

H u H u H u H v m W H u
N N

 +



= 

   = +   +   
  

            

(5) 

In the formula, | |
i

S

uN and | |
i

Y

uN are the number of 

neighbors in the social graph and interaction graph for user ui, 

respectively. 
,1m d d

i jW 

  is a mapping matrix from the 

item representation space to the user space for the m-th 

disentangled latent factors. 

b．For item nodes, we aggregate messages from item-wise 

relations and user-item interactions, the procedure can be 

formalized as: 

( 1) ( ) ( )

,[ ]
j i j

Y T
j v vj j

l l l

i i j v u v r

v N r N

H v Meg Meg+

 

 

 
 = +
 
 

  (6) 

In the formula, ρi,j is a normalization term

, 1/ | | | |
j j

Y T

i j v vN N = +  . rropagated messages ( ( )

j i

l

v uMeg 
 , 

( )

j

l

v rMeg 
 ) are determined by the memory-based encoding 

function ϕ(⋅). 
c．For relation nodes a similar approach is adopted, the 

procedure can be formalized as: 

( )
| |

( 1) ( ) ,1 ( )

1

1
[ ] [ ], [ ]

| |
j r

M
l l m l

j r j

v N mr

H r H v m W H r
N

+



 =

 
=  

 
    (7) 

In the formula, Nr is the neighbor set of meta-relation node 

r, and 
,1m d d

r jW 

    is the m-th memory-specific 

transformation from the item space to the meta-relation node 

space. 

3) Self-Loop Propagation and Layer Normalization 

To stabilize training, DDGNN4Rec generalizes the 

heterogeneous graph message aggregation mechanism by 

integrating self-loop propagation and layer normalization, the 

formula is shown below: 
( 1)

( 1) ( )

1 2
2

[ ]
[ ] ( ) ( [ ])

l
l lH v

H v H v


   
 

+
+ −

= + +
+

 

(8) 

In the formula, 1 and 2 are learnable scaling and bias 

terms,  and represent the mean and variance of input

( 1)[ ]lH v+
, and ⊙ is element-wise multiplication. For self-

loop connections, DDGNN4Rec applies the relation 

heterogeneity encoder ϕ(⋅) instead of directly adding 

embeddings from previous layers. 

To leverage multi-layer node embeddings, we perform 

cross-layer (L-step) aggregation of higher-order embeddings: 
* (0) ( )[ ] ( [ ] || ... || [ ])LH v LN H v H v=        (9) 

In the formula,
*[ ] dH v  is the final embedding of 

node v, LN(⋅) denotes layer normalization, and || represents 

vector concatenation.. 

C. Social Relation Denoising via Diffusion Models 

Inspired by the success of diffusion models in generating 

noise-free data across domains, we use a diffusion model to 

produce denoised social relation data. To address the inherent 

sparsity of social graph data, we implement an approach that 

enables efficient and effective social diffusion by conducting 

forward and reverse diffusion processes in the latent space, 

rather than the graph data space. 

⚫ Forward Process: Gaussian noise is incrementally added 

to the original social relation data E𝑠, gradually 

transforming it into pure Gaussian noise. 

⚫ Reverse Process: A trainable neural network is leveraged 

to eliminate noise, generating refined social graph data. 

The denoising process is formalized as 

ˆˆS S S S

SG E E E G    
⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→  where ϕ and ϕ′ 

denote bidirectional projection functions between the graph 

data domain (Gs) and the latent embedding domain (Es).Ψ 

and ψ′ represent the forward and reverse diffusion processes. 

Specifically, ψ introduces noise to Gs, while ψ′ is optimized 

in the latent space to remove noise. 

D. Top-N Recommendation Prediction 

To inject social influence into the prediction stage, 

DDGNN4Rec refines the learned user embeddings via a 

representation recalibration function τ(⋅). The mathematical 

expression of τ(⋅) is: 

'

'( [ ]) [ ]
| 1

[ ]
1

 
| S

i ui i

i iS

u Nu

ui u u
N

  



 
 =  +
 +
 
H H H (10) 

This function averages the embeddings of socially 

connected users, directly incorporating social information 

into subsequent predictions. Formally: 
* * *( , ) ( [ ] ( [ ])) [ ]T

i j i i ju v H u H u H v = +    (11) 

Optimization Objective: The training objective is defined 

as a composite loss integrating pairwise BrR loss and weight 

decay regularization terms: 
'

( , , )

log ( ( , ) ( , )) t

ti j j O

L i j i j L   
+ −

+ −



= − − +  (12) 

In the formula, 
'

tL  denotes the diffusion loss, and t 

represents the sampled diffusion step for user u. 

IV. EXPERIMENTS AND EVALUATION 

A. Dataset 

Three real-world benchmark datasets that are widely used 

in social recommendation were selected for the experiment: 

Ciao, Epinions and Yelp. Table I summarizes the statistical 

details of the three datasets. 
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Table I  
Statistics of the Experimental Datasets 

Dataset

s 

Numb

er of 

users 

Numb

er of 

items 

User-item 

interaction 

density 

Number 

of 

interacti

ons 

Number 

of social 

connectio

ns 

Social 

relation 

density 

 Ciao 1925 15053 0.1048% 30370 65084 
1.7564

% 

Epinion

s 
18081 

25172

2 
0.0157% 

71582

1 
572784 

0.1752

% 

Yelp 99262 
10514

2 
0.0074% 

76992

9 
1298522 

0.0132

% 

⚫ Yelp: This dataset originates from the Yelp platform, 

capturing users feedback on venues. It includes social 

relations between users, with a focus on social networks 

formed by individuals with shared interests. 

⚫ Ciao: The Ciao dataset is derived from the Ciao platform, 

which records user reviews and ratings for various 

products and services. It details social interaction 

information between users, particularly emphasizing social 

networks shaped by common preferences and interactive 

engagement. 

⚫ Epinions: The Epinions dataset is collected from the 

Epinions platform, a social network-based review system, 

and includes user evaluations of diverse products. Its 

unique feature lies in subdividing the 1-to-5 rating system 

into five explicit interaction categories: Negative, Below 

Average, Neutral, Above Average, and rositive. 

B. Evaluation Metrics 

The experimental results focus on the Top-N 

recommendations and adopt two evaluation indicators that 

are widely used in the research of social recommendations: 

Hit Rate (HR) and Normalized Discounted Cumulative Gain 

(NDCG), both measuring recommendation accuracy based 

on Top-N ranked positions. For each target user during 

evaluation, 100 non-interacted items are selected as negative 

samples and combined with interacted items. The evaluation 

metrics are formalized as: 

   
,1 1

M N

i ji j
r

HR
M

= =
=
 

              (13) 

, 21

1

/ log ( 1)
N

M
i jj

i i

r j
NDCG

M IDCG

=

=

+
=




      (14) 

In the formula, M is the number of test users. For the i-th 

user, , 1i jr =
 if the j-th item in their ranked list is a positive 

sample; otherwise, , 0i jr =
. The numerator of NDCG@N is 

the Discounted Cumulative Gain (DCG)@N, while IDCG 

represents the maximum possible DCG@N value for the i-th 

test user. 

C. Baselines 

To comprehensively evaluate the performance of this 

algorithm, we compares it with the latest methods from 

different research directions, including the following 

categories: 

Attentive Social Recommender Systems: Attention 

mechanisms are effective techniques for identifying critical 

relations in social recommendations. 

⚫ SAMN[9]: Utilizes a two-stage attention network, 

incorporating a friend-wise attention mechanism, to 

capture social influence from relevant friends for enhanced 

user preference modeling.. 

⚫ EATNN[34]: Employs attention mechanisms within a 

transfer learning framework to fuse interaction and social 

data, utilizing a multi-task optimization scheme. 

GNN-based Social Recommendation Models: The social 

recommendation system that utilizes graph neural networks 

(GNNS) integrates user-item interaction data with user-user 

social connections. By propagating information in this 

unified graph structure, GNN learns the overall node 

representation to improve recommendation performance. 

⚫ DiffNet[4]: Uses a hierarchical diffusion architecture to 

model social relations. Simulates recursive social influence 

via dynamic social diffusion. 

⚫ GraphRec[3]: rropagates embeddings on social networks 

using graph attention networks. Aggregates social 

connections and item interactions into latent user 

representations via attention. 

⚫ MHCN[14]: A self-supervised multi-channel hypergraph 

neural network that captures user relations. Maximizes 

mutual information between node-level and subgraph-

level embeddings as an auxiliary task. 

Graph Collaborative Filtering Models: Graph 

collaborative filtering captures collaborative effects through 

user-item interaction graphs. 

⚫ GCCF[35]: A simplified GNN-based model using 

convolutional message passing. Removes non-linear 

transformations to mitigate overfitting. 

⚫ NGCF[17]: A graph convolution-based model that injects 

collaborative signals by modeling high-order connectivity 

with recursively applying graph propagation functions. 

Temporal-aware Social Recommendation: Methods 

incorporating temporal contexts into social influence 

modeling. 

⚫ DGRec[19]: Integrates temporal dynamics using recurrent 

units and GNNs. Embeds social connections into dynamic 

user interest representations. 

Disentangled Graph Recommender Systems: Compared 

with methods using disentangled learning techniques 

⚫ DisenHAN[36]: Encodes disentangled embeddings via 

graph attention, distinguishing user-item connections for 

propagation 

⚫ DGCF[31]: rartitions user embeddings into disentangled 

intents and performs intent-aware message passing on 

GNNs. 

Knowledge-aware Recommender System: Leverages 

knowledge graphs (KGs) for item semantic relevance. 

⚫ KGAT[18]: A knowledge-enhanced model aggregating 

information from user-item interactions and KGs via 

attention.: 

Heterogeneous Graph Representation for 

Recommendation:  

⚫ HAN[37]: Encodes heterogeneous graphs through a 

hierarchical attention network (node & semantic levels) 

guided by meta-paths. 

⚫ HGT[37]: A heterogeneous graph transformer with edge-

specific attention and transformations. 

⚫ HERec[38]: A heterogeneous embedding method 

combining fusion functions and meta-path random walks. 
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D. Parameter Setting 

We implements the proposed DDGNN4Rec based on the 

PyTorch framework, utilizing the Adam optimizer for model 

training. The key hyperparameter settings for DDGNN4Rec 

are as follows: the embedding dimension is tuned in the range 

of {4, 8, 16, 32}; the learning rate is fixed at 0.01; the batch 

size is adjusted in the range of [512 ,4096]; the regularization 

term coefficient λ is set in the range of {10⁻³, 10⁻⁴, 10⁻⁵}; and 

the number of memory units is configured as 8 to balance the 

relation heterogeneity encoding capability and model 

complexity. 

E. Experimental Results and Analysis 

Table II presents the experimental results of the selected 

baseline method and DDGNN4Rec on the three different 

selected datasets. 

The following main findings can be summarized: 

Experiments on three datasets show that DDGNN4Rec 

achieves improvement on HR@10 and NDCG@10 metrics, 

and significantly outperforms the baseline models such as 

GraphRec and DiffNet. Compared with all baseline models, 

DDGNN4Rec achieves the best performance, which proves 

the superiority of DDGNN4Rec in performance. This 

performance improvement is attributed to the following 

model designs:  

⚫ DDGNN4Rec can retain comprehensive relation semantics 

while disentangling latent factors, thereby effectively 

integrating disentangled social and knowledge-aware 

collaborative signals.  

⚫ Through the integration of knowledge-aware item relations 

into the social recommendation framework, DDGNN4Rec 

improves the modeling of heterogeneous user-item 

relations, resulting in enhanced representational capacity 

for (user-item) interactions.  

⚫ Through multi-step noise propagation and removal 

training, DDGNN4Rec obtains strong denoising 

capabilities, effectively handling diverse social 

connections among users and generating accurate user 

preference representations. 

The performance gap between DDGNN4Rec and other 

GNN methods indicates that neglecting item relations 

restricts the performance of social recommendation systems, 

while validating DDGNN4Rec 's capability to fully exploit 

latent factors in user and item domains through its graph 

neural structures that enhance memory. As observed in Table 

III, DDGNN4Rec outperforms other methods in performance 

improvements across different Top-N ranking positions, 

further verifying its superior ranking capability. Additionally, 

the recommendation accuracy improves as the N value 

increases. 

F. Model Ablation Study 

In this section, we examined the design rationality of the 

modules in the DDGNN4Rec framework. To this end, three 

model variants corresponding to DDGNN4Rec’s three core 

technical components are constructed by removing key 

modules: 

⚫ "-M": DDGNN4Rec excluding the disentangled memory-

enhanced relation heterogeneity encoder. 

⚫ "-LN": DDGNN4Rec that removes layer normalization in 

propagation layers to validate its role in stabilizing node 

embedding training; 

⚫ "-DN": DDGNN4Rec without the generative diffusion-

denoising module. 

TABLE II 
PERFORMANCE COMPARISON OF ALL METHODS ON THE HR@10 AND NDCG@10 METRICS 

Datasets Metrics EATN

N 
SAMN GraphR

ec 
DiffNet GCCF NGCF KGAT DGRec DisenH

AN 
DGCF HGT HAN MHCN HERec DDGNN

4Rec 

   
Ciao 

HR 0.4130 0.4677 0.4594 0.5202 0.4926 0.4843 0.4907 0.5086 0.4856 0.5189 0.4933 0.4856 0.5080 0.5298 0.5591 

Imp 35.37% 19.54% 21.70% 7.47% 13.49% 15.44% 13.93% 9.92% 15.13% 7.74% 13.33% 15.13% 10.05% 5.53% – 

NDCG 0.2520 0.2838 0.2670 0.3201 0.3070 0.3088 0.2977 0.3113 0.2894 0.3166 0.3062 0.2608 0.3118 0.3104 0.3493 

Imp 38.61% 23.07% 30.82% 9.12% 13.77% 13.11% 17.33% 12.20% 20.69% 10.32% 14.07% 33.93% 12.02% 12.53% – 

         
Epinions 

HR 0.6422 0.6390 0.6865 0.6323 0.6779 0.6944 0.6756 0.6268 0.6825 0.6635 0.7001 0.6673 0.6411 0.6767 0.7425 

Imp 15.61% 16.19% 8.15% 17.42% 9.52% 6.92% 9.90% 18.45% 8.79% 11.90% 6.05% 11.26% 15.81% 9.72% – 

NDCG 0.4483 0.4259 0.4786 0.4160 0.4783 0.4763 0.4708 0.4127 0.4627 0.4594 0.4812 0.4371 0.4261 0.4572 0.5272 

Imp 17.59% 23.78% 10.15% 26.73% 10.22% 10.68% 11.97% 27.74% 13.93% 14.75% 9.55% 20.61% 23.72% 15.31% – 

 
Yelp 

HR 0.7273 0.7971 0.8019 0.8222 0.8130 0.8204 0.7737 0.7830 0.8159 0.7956 0.8185 0.8169 0.8019 0.7047 0.8381 

Imp 15.23% 5.14% 4.51% 1.93% 3.08% 2.15% 8.32% 7.03% 2.72% 5.34% 2.39% 2.59% 4.51% 18.93% – 

NDCG 0.5289 0.5293 0.5372 0.5524 0.5585 0.5651 0.5386 0.5386 0.5403 0.5410 0.5547 0.5511 0.5348 0.4990 0.5895 

Imp 11.45% 11.37% 9.73% 6.71% 5.55% 4.31% 9.45% 9.45% 9.10% 8.96% 6.27% 6.96% 10.22% 18.13% – 

 

 
Fig. 2. Ablation Studies of different submodules 
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These ablation studies aim to verify the effectiveness of 

each module in capturing user social influence, handling 

relation heterogeneity, and stabilizing the training process. 

The performance of the above variants and the full 

DDGNN4Rec is evaluated on the three datasets, as shown in 

Figure 2. DDGNN4Rec consistently outperforms all 

variants. By analyzing the results, the following conclusions 

are drawn: 

⚫ Impact of the Memory Mechanism: The removal of the 

memory-enhanced relation heterogeneity encoder (the “-

M” variant) results in a considerable drop in performance, 

which confirms the efficacy of disentangling latent factors 

across heterogeneous relation types.. 

⚫ Role of Layer Normalization: Comparing the "-LN" 

variant with DDGNN4Rec reveals that layer 

normalization critically contributes to training stability. 

This improvement is attributed to stable gradients induced 

by normalization, mitigating fluctuations in node 

embeddings. 

⚫ Denoising Module Necessity: Removing the generative 

diffusion-denoising module (i.e., the "-DN" variant) 

causes notable performance decline, confirming the 

necessity of denoising social relation embeddings. 

These findings underscore the necessity of 

DDGNN4Rec’s core designs: the memory mechanism 

(disentangling heterogeneous relations), layer normalization, 

and diffusion-based denoising jointly ensure robustness and 

expressive power in complex interaction scenarios. 

G. Effect of Heterogeneous Relationships 

In this section, we further investigate the influence of 

TABLE III  

PERFORMANCE EVALUATION OF HR@N AND NDCG@N ACROSS DIFFERENT TOP-N VALUES 

Datasets Metrics SAMN EATNN GraphRec DiffNet GCCF NGCF DGRec DGCF 

Ciao 

HR@5 0.3465 0.2972 0.3059 0.3943 0.3683 0.3571 0.3725 0.3876 

NDCG@5 0.2463 0.2122 0.2234 0.2813 0.2666 0.2362 0.2646 0.2783 

HR@20 0.7497 0.7504 0.8006 0.7369 0.7908 0.8013 0.73 0.7777 

NDCG@20 0.4558 0.4558 0.5014 0.4476 0.4854 0.5008 0.4422 0.4814 

Epinions 

HR@5 0.5175 0.5284 0.5681 0.5104 0.5537 0.5613 0.5054 0.5475 

NDCG@5 0.3863 0.3921 0.4323 0.3822 0.4163 0.4315 0.3774 0.4143 

HR@20 0.7493 0.7509 0.8006 0.7364 0.7907 0.8015 0.7306 0.7778 

NDCG@20 0.4554 0.4553 0.5016 0.4474 0.4853 0.5008 0.4424 0.4814 

Yelp 

HR@5 0.6358 0.6426 0.6632 0.6703 0.6704 0.6744 0.6513 0.6563 

NDCG@5 0.4667 0.4863 0.4901 0.5126 0.5135 0.5194 0.4891 0.4953 

HR@20 0.9007 0.8068 0.8945 0.9056 0.9013 0.9012 0.8825 0.9012 

NDCG@20 0.5409 0.546 0.5653 0.5702 0.5504 0.5687 0.5618 0.5674 

Datasets Metrics KGAT HAN DisenHAN HERec HGT MHCN DDGNN4Rec 

Ciao 

HR@5 0.3393 0.2939 0.3495 0.3833 0.3416 0.3868 0.4171 

NDCG@5 0.2421 0.1896 0.2489 0.2678 0.2373 0.2796 0.2982 

HR@20 0.7884 0.7762 0.7899 0.7798 0.8057 0.7494 0.8359 

NDCG@20 0.4832 0.4807 0.4914 0.4833 0.5026 0.4558 0.5426 

Epinions 

HR@5 0.5486 0.5402 0.5608 0.5517 0.5758 0.5198 0.6255 

NDCG@5 0.4136 0.4104 0.4248 0.4178 0.4362 0.3884 0.4856 

HR@20 0.7884 0.7765 0.7896 0.7793 0.8051 0.7494 0.8359 

NDCG@20 0.4831 0.4803 0.4911 0.4838 0.5025 0.4555 0.5426 

Yelp 

HR@5 0.6502 0.6634 0.6512 0.5831 0.6884 0.6606 0.7052 

NDCG@5 0.49 0.5088 0.4941 0.4503 0.5132 0.4914 0.5378 

HR@20 0.8796 0.8974 0.9048 0.8127 0.9069 0.8956 0.9293 

NDCG@20 0.5526 0.5527 0.5654 0.5036 0.5806 0.5673 0.6043 

 

 
Fig. 3. Ablation studies on different input. 
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different auxiliary relational data on the performance of our 

DDGNN4Rec.  To this end, the following three model 

variants are considered: 

⚫ "-T": DDGNN4Rec removes the item relation matrix 
J R

T


 ; 

⚫ "-S": DDGNN4Rec without the user-user social relation 

matrix 
I IS  ; 

⚫ "-ST": DDGNN4Rec only uses the user-item relationship 

as input. 

The performance is evaluated under varying top-N settings. 

The outcomes are presented in Figure 3, from which the 

following key findings can be observed: 

⚫ The inclusion of auxiliary heterogeneous relations 

consistently contributes positively to model performance, 

owing to the integration of different contents into the 

representations. 

⚫ The relatively lower performance of the “-S” variant 

underscores the value of incorporating social contextual 

signals to enhance user preference learning. 

⚫ DDGNN4Rec consistently outperforms “-T” across all 

scenarios. We attribute this gain to the model's ability to 

capture rich itemized dependencies through memory-

enhanced relational heterogeneous encoders. 

⚫ The “-ST” variant consistently produced the worst results 

on both datasets, proving different data from users or 

projects is helpful for the accuracy of the model.. 

H. Parameter Analysis 

This section studies the sensitivity of hyperparameter 

Settings by exploring the impact of each parameter used in 

DDGNN4Rec on model performance. Experimental results 

are shown in Figure 4. 

The experiments reveal the following: 

 
Fig 4. Hyperparameter studies of DDGNN4Rec 

 
Fig. 5. Model Efficiency Study of DDGNN4Rec 
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⚫ Hidden State Dimension d: Tested with values in the range 

of {4,8,16,32} (i.e., {2², 2³, 2⁴, 2⁵}), DDGNN4Rec 

achieves peak performance at d=16 due to its fusion of 

user-item dual-domain semantic correlations. Increasing d 

to 32 leads to performance degradation from parameter 

redundancy, confirming that smaller dimensions ensure 

model efficiency and practicality for real-world 

recommendation systems. 

⚫ Number of GNN Layers L: For 1≤L≤3, two-hop 

neighborhood message passing (L=2) significantly 

improves performance by capturing high-order user-

item relations. However, stacking to three layers (L=3) 

causes minor performance decline due to over-

smoothing, while compare with the non-propagation 

variant (L=0) eliminates critical relation modeling 

capability. 

⚫ Number of Memory Units M: Tested in the range of 

{2,4,8,16} (i.e., {2¹, 2², 2³, 2⁴}), setting M=8 achieves 

optimal heterogeneous relation encoding by disentangling 

latent factors. Excessive units (e.g., 16) introduce noise, 

while insufficient units (e.g., 2) limit semantic capture 

capacity. 

Overall, DDGNN4Rec achieves the best balance between 

model efficiency, relation representation power, and training 

stability under the configuration d=16, L=2, and M=8. 

I. Model Efficiency Study 

This section assesses the model efficiency by monitoring 

the convergence speed throughout the training rounds. An 

experimental comparison is conducted between two baselines, 

namely DGCF and HGT. Comparison of experimental data  

reflecting the progressive improvement achieved through 

parameter optimization. The results illustrated in Figure 5 

lead to the following findings: Compared with HGT and 

DGCF, the experimental data of DDGNN4Rec performs 

better.. This underscores the efficacy of our model’s 

parameter inference optimization. The architecture of 

DDGNN4Rec attains higher recommendation accuracy and 

demonstrates greater optimization ease. We attribute this 

advantage to the mapping of edge relations into multiple 

latent spaces, which effectively incorporates relation 

heterogeneity.. 

V. CONCLUSIONS 

We introduce a Disentangled and Diffusion-Denoising 

Graph Neural Networks for Social Recommendation 

(DDGNN4Rec). In order to handle relational heterogeneity 

and complete relational modeling of disentangled, a memory-

enhanced network dependent on node and edge types is 

designed, which preserves distinct feature representations for 

various interaction types. Concurrently, the discriminative 

power of generative diffusion models is incorporated with a 

denoising training objective, employing an optimized noise 

diffusion and elimination procedure to allow social 

recommender systems to manage varied connection noises 

efficiently. Ultimately, recommendation lists are generated 

using the obtained node embeddings. Comprehensive 

assessments on three public datasets show that DDGNN4Rec 

yields competitive results against state-of-the-art approaches. 
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