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Abstract—Social recommender systems face challenges in
modeling complex user preferences due to underexplored item
semantic relatedness, ignored connections are driven by
complex factors, and noise may be introduced by social relation
data. To address these limitations, we propose DDGNN4Rec
(Disentangled and Diffusion-Denoising Graph Neural Networks
for Social Recommendation), a novel framework that integrates
disentangled representation learning with diffusion-denoising
techniques. First, a collaborative heterogeneous graph is built,
incorporating social connections between users, interactions
between users and items, and relationships among items.
Furthermore, we design novel memory enhancement
mechanisms for message propagation and aggregation within
the framework of graph neural networks, enabling the
automatic and iterative distillation of semantic relationships
into the representations of both users and items. Second, a
latent-space diffusion-denoising module is introduced to
improve the robustness of social relation data through multi-
step forward noise propagation and reverse denoising training
in the latent space. Experiments on three real-world datasets
(Ciao, Epinions, Yelp) demonstrate that that DDGNN4Rec
achieves advanced performance. Ablation studies validate the

necessity of disentangled memory mechanisms, layer
normalization, and diffusion-denoising.

Index Terms—Graph Neural Network; Social
Recommendation; Memory-Enhanced Network; Diffusion-
Denoising

I. INTRODUCTION

T raditional ~ recommendation  algorithms  (e.g.,
collaborative filtering) rely on user-item interaction data
but suffer from significant performance degradation in data-
sparse or cold-start scenarios. Social recommendation
mitigates these issues by incorporating user social relations,
leveraging social network homophily to enhance user
preference modeling. Early social recommendation models
(e.g., SocialMF!") integrated social trust relations through
matrix factorization but struggled to model complex high-
order interactions. Recently, Graph Neural Networks (GNNs)
have emerged as a research focus in social recommendation
due to their powerful representation learning capabilities for
graph-structured data. Through message passing mechanisms,
GNNs aggregate neighborhood information from both user-
item interaction graphs and social graphs, simultaneously
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capturing  collaborative filtering signals  (user-item
interactions) and social homophily (user-user associations)?!.
For instance, GraphRecl’! first applied GNNs to social
recommendation with a dual aggregation framework
encoding user-item interactions and social influence
separately; DiffNet™ simulated dynamic social influence
propagation through deep influence diffusion; DANSERP!
introduced dual attention mechanisms to distinguish explicit
(e.g., direct following) and implicit (e.g., shared communities)
social influences in user-user graphs, dynamically fusing
multi-source information.

However, existing social recommendation models
typically couple social relations with user behaviors into a
single graph structure, leading to three limitations:
® The semantic correlations among projects are rich, but this

is something that most existing learning solutions have yet

to explore. In real life, items often exhibit inherent relations

(e.g., product types/functionalities, spatial proximity of

venues). Such semantic correlations help reveal latent

dependencies crucial for understanding complex user
interests.

® The driving force of connection is influenced by complex
factors, but most current social recommendation systems

ignore this point. User-item interactions (e.g.,

clicks/purchases) may be driven by diverse item attributes

(brand/color for products, director for movies). Similarly,

social connections form through multifaceted motivations

(interest-based communities, colleagues, family). If no

distinction is made when representing inter-user influence,

it is difficult for the learned user preferences to reflect
multiple social contexts.

® Social relations may contain irrelevant interactions (e.g.,
off-topic communications) contradicting preference
similarity. While social data captures interest-aligned
relations, noise from spurious connections could mislead
recommendations—overemphasizing similarities between
socially connected users with limited shared interests.

GNN-based methods are particularly vulnerable as their

message passing amplifies biases from noisy social edges.

To address these challenges, we propose a Disentangled
and Diffusion-Denoising Graph Neural Networks for Social
Recommendation (DDGNN4Rec), investigating social
recommendation  through disentangled learning of
heterogeneous latent factors. We designed a memory network
based on node type and edge type to solve the problem of
relational heterogeneity and implement Disentangled
relational modeling, which preserves independent feature
representations for distinct interaction types (user-user, item-
item, user-item). The algorithm makes use of external
memory units that incorporate different embedding
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propagation operators. This approach allows graph
architectures to directly model the different relationships
between social data and user project data. Instead of
separately parameterizing each relation type, our method
encodes relation heterogeneity in disentangled latent spaces
through memory neural network layers, operating in a fully
automated and interactive manner without relying on
handcrafted meta-paths. Second, we integrate the
discriminative power of generative diffusion models with
denoising training objectives, implementing refined noise
diffusion and removal processes to help social recommender
systems effectively handle connection noise. Finally,
recommendation lists are predicted using learned node
embeddings.
Our key contributions include:
® We propose DDGNN4Rec (Disentangled and Diffusion-
Denoising  Graph  Neural Networks for Social
Recommendation), a novel framework achieving
generalized encoding of relation heterogeneity through
relation-aware disentangled representations.
® We used an efficient latent space diffusion-denoising
module. Through multi-step noise propagation and
denoising training, the algorithm gains robust noise-
handling capabilities to process diverse social connections
and generate accurate user preference representations.
® Our method and baseline model were placed on the dataset
for experiments to obtain the experimental results. Detailed
ablation studies validate the framework's effectiveness and
quantify each component's contribution to performance
improvement.

II. RELATED WORK

This section introduces four categories of recommendation
algorithms: social relation-based, graph neural network-
based, disentangled-based, and context-aware
recommendation methods.

A.  Classic Social Recommendation Algorithms

To enhance recommendation performance, numerous
social recommendation approaches have been developed that
incorporate online social relationships as supplementary data
within recommendation systems [6]. Conventional
techniques such as Sorec [7] and TrustMF [8] typically rely
on matrix factorization, projecting users into a latent factor
space. These methods are generally motivated by the
assumption that users tend to exhibit similar item preferences
to their friends within social networks [9]. Owing to the
strong capability of neural networks in representing
knowledge, social recommendation models based on deep
learning [10] have attracted growing interest. In particular,
several works utilize graph convolutional networks to jointly
capture user—user and user—item interactions, as evidenced by
DiffNet [4], RecoGCN [11], and KCGN [12]. Moreover,
attention mechanisms have been incorporated to model
varying degrees of social influence during preference
learning, exemplified by SAMN [9] and GraphRec [3]. For
instance, GraphRec accounts for differential strength in social
relations when integrating information from both social and
interaction graphs. Recent methods, inspired by self-
supervised learning, have also adopted data augmentation
strategies; examples include MHCN [14] and SMIN [15].

B.  Graph Neural Network-Based Recommendation

Algorithms

Owing to the benefits of graph-structured data for
representation learning, numerous studies in recommendation
have concentrated on improving the modeling of user-item
interactions by employing architectures based on graph
neural networks (GNN) [16]. Building upon the success of
spectral graph convolutional networks, NGCF [17]
introduces an approach to capture high-order user-item
relations through the use of convolutional operations.
Another GNN-based recommendation research explores
spatial GNNs for targeted aggregation of neighborhood
information, such as KGAT[18] and DGRec[19].
Furthermore, heterogeneous graph representation has
emerged as a promising solution in GNN research for
integrating  diverse  relation contexts into  node
embeddings[20]. For example, HERec[21] incorporates
auxiliary information through meta-path-based connections
to enhance user preference learning. Encode different
relationships by leveraging various types of user-item
interactions (for example, clicks, purchases) [22]. Unlike
these methods, the proposed DDGNN4Rec model
automatically captures heterogeneous relations across users
and items. Moreover, existing encoders for heterogencous
contexts have not explored latent factor encoding with
disentangled representations.

C. Context-Aware Recommendation Algorithms

Several studies have focused on developing context-aware
recommendation algorithms[23] by incorporating various
contextual signals in different scenarios. From the user
perspective, user-user relations derived from online social
networks are integrated with certain user and the user's
context in STARS [24] to enhance collaborative filtering.
LBSNs[25] improves point-of-interest recommendations by
learning mappings between item contextual features and user
preference tags. CARL[26] fuses textual context information
of items with interaction-based embeddings for enhanced
representation learning. Additionally, knowledge graphs are
regarded as valuable contextual signals for integration into
recommendation systems, boosting the performance of
knowledge-aware methods such as KGIN[27], CASR[28]
and KGCL[29].

D. Disentangled Recommendation Algorithms

Recent studies have explored learning disentangled
representations from user-item interactions[30]. For example,
DGCF[31] designs a capsule network-based routing
mechanism to model disentangled user-item relations. A
curriculum learning-based approach is proposed in Work [32]
to disentangle multi-type user feedback. In multimedia
recommendation,  weakly  supervised  disentangled
representation learning is adopted for multi-modal
features[33]. In contrast, the DDGNN4Rec method leverages
different memory networks to capture latent factor-wise
interdependencies across multiple disentangled
representation spaces. Through this process, the relation-
aware latent factors are thus capable of retaining distinct
heterogeneous semantics.
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items, and item relationship nodes.. Through this step, the
III. SoCIAL RECOMMENDATION FRAMEWORK heterogeneous graph is unified into three types of relationship

DDGNN4REC

This section proposes a disentangled Graph Neural
Network to perform disentangled representation learning for
heterogeneous relations in social recommendation. By
introducing item-wise relations, we extend the data
information utilized by the collaborative filtering framework.
To achieve disentangled representation learning on
heterogeneous relation data, we construct a memory-
augmented network tailored to different node types and edge
types, enabling distinct representation space decomposition
for heterogeneous nodes and edges. A diffusion-denoising
module is incorporated to enhance social recommendation
performance by denoising social relations between users. The
overall framework is illustrated in Figure 1.

A.  Collaborative Heterogeneous Graph Construction

To comprehensively integrate social connections, user-
item interactions, and item-wise relations. we combine these
three types of data to construct a collaborative heterogeneous
graph. Item-wise relations data are organized according to
relation types. This graph contains user nodes, item nodes,
and relation nodes, where edges between users and items
represent user-item interactions, edges between users denote
social connections, and item-wise relations are expressed via
"item-relation-item" triples.

We use Y to represent interactions. Similarly, we use § and
T to represent social connections and item-wise relations. To
store ¥, § and T, we define a graph structure
G=(D,E,I,J), using the nodes and edges in graph G to
store ¥, § and 7. We use I and J to represent the set of nodes
and the set of edges. In Graph G, the mapping functions of
nodes and edges are D —/ and E —J respectively. The
formula for describing the different relationships represented
by different connections between nodes in Graph G is as
follows:

D=UUVUR; E=SUTUY )

In the formula, U, V, and R respectively represent users,

nodes and the connections between nodes.

B.  Disentangled Memory Network

Most current methods for heterogeneous graph analysis
rarely explicitly model the underlying factors that generate
complex semantics. Leveraging the capability of memory
neural networks in learning disentangled representations, we
enhance graph neural networks with specialized memory
modules that operate over multiple latent spaces to learn
representations. By adaptively mapping node and edge types
to latent factors, the disentangled heterogeneous semantics
are more effectively retained.

Throughout message passing, we first apply localized
feature transformation and nonlinear activation, then
proceed with the integration of relation-aware contextual
representations. Formally, this process can be described as

(from layer 1 to 1+1):
e,.)) @

H™[1] « Aggre(p(H"[], H"[s],
VseN(t)

In the formula, H?[t] denotes the latent representation of
target node ¢ at the /-th layer, and N(#) represents the set of
neighboring nodes (source nodes s) connected to ¢ via edges
€.t

1) Relation Heterogeneity Encoder

For a collaborative graph with three heterogeneous
relationships, we model the relationship heterogeneity by
using specific embedded projections of vertex and edge types
through external storage units. Each edge type (i.e. social
relation, item relation and interaction relation) propagates
information independently through node type and edge type
dependent embedding projections. Specifically, we define M
as a collection of memory units corresponding to latent
factors. The prototype learning function ¢() for relation-
specific semantics is formulated as:

o115 = S e m 11 )
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n(H"[t).m)=c(H"[]-W, +B,) )

In the formula, #(-) refers to an embedding function
specific to the target node. Trainable transformation matrices

and biases are W,; e R™ er e R? and b,eR

while H"[s]eR? and H"[t] € R represent
encoded feature embeddings of the source nodes and target
nodes, respectively.
2) Embedding Aggregation Function

After encoding heterogeneous relation attributes from local
neighbors, we aggregate propagated messages for each node:

a. For user nodes, we aggregate messages from social
relations and interactions, the procedure can be formalized as:

M|
)= \NSH\N’ Z’/’( Hm”]) Z[Z'J( )Wﬁl’jH“)[uJJ

(6))

In the formula, |N5 | and |NuY | are the number of

neighbors in the social graph and interaction graph for user u;,

wml e R

iy is a mapping matrix from the

respectively.
item representation space to the user space for the m-th
disentangled latent factors.

b. For item nodes, we aggregate messages from item-wise

relations and user-item interactions, the procedure can be
formalized as:

H"v]=p, | D, Megl , + > Meg!' , |(©)

v; EN{, reN\,T.
SV J

In the formula, pi; is a normalization term

!
P, =1 NVY/ | +| NVT/ | . Propagated messages (Megéfl—“, ,
Meg(” ) are determined by the memory-based encoding
function ¢().

c. For relation nodes a similar approach is adopted, the
procedure can be formalized as:

H"[r]= |N E [Zﬂ(H(”[v 1, m)W,'ZI,JH”)[ 7 D

In the formula, Nr is the neighbor set of meta-relation node

1 dxd . .
r, and W;’l y e R is the m-th memory-specific
transformation from the item space to the meta-relation node
space.

3) Self-Loop Propagation and Layer Normalization
To stabilize training, DDGNN4Rec generalizes the
heterogeneous graph message aggregation mechanism by
integrating self-loop propagation and layer normalization, the
formula is shown below:

H ]

o +¢

]:1(l+1)[v] _ O'(a)l o + a)z) + (o(H(”[v])

®)
In the formula, @, and @, are learnable scaling and bias
terms, £ and O represent the mean and variance of input

H"P[v], and O is element-wise multiplication. For self-

loop connections, DDGNN4Rec applies the relation
heterogeneity encoder ¢(+) instead of directly adding
embeddings from previous layers.

To leverage multi-layer node embeddings, we perform
cross-layer (L-step) aggregation of higher-order embeddings:

H'[v]=LNHOV|...| H"[v]) )

In the formula, H [v] € R%is the final embedding of

node v, LN() denotes layer normalization, and || represents
vector concatenation..

C. Social Relation Denoising via Diffusion Models

Inspired by the success of diffusion models in generating
noise-free data across domains, we use a diffusion model to
produce denoised social relation data. To address the inherent
sparsity of social graph data, we implement an approach that
enables efficient and effective social diffusion by conducting
forward and reverse diffusion processes in the latent space,
rather than the graph data space.
® Forward Process: Gaussian noise is incrementally added

to the original social relation data Es, gradually

transforming it into pure Gaussian noise.
® Reverse Process: A trainable neural network is leveraged
to eliminate noise, generating refined social graph data.

The den01smg process is  formalized  as
G, —2 yE — VY sE ¥ yES_ ¥ G5 where ¢ and ¢’
denote bidirectional projection functions between the graph
data domain (Gs) and the latent embedding domain (Es).¥
and y' represent the forward and reverse diffusion processes.
Specifically, w introduces noise to Gs, while y' is optimized
in the latent space to remove noise.

D. Top-N Recommendation Prediction

To inject social influence into the prediction stage,
DDGNN4Rec refines the learned user embeddings via a
representation recalibration function z(-). The mathematical
expression of 7(+) is:

r(H[ui)) = ——| > H*[u]+H[y] |(10)

| N | +1 u;-eN,f;

This function averages the embeddings of socially
connected users, directly incorporating social information
into subsequent predictions. Formally:

* * T *
S, v,)=(H [u]+z(H [w])) -H[v,] (1)
Optimization Objective: The training objective is defined

as a composite loss integrating pairwise BPR loss and weight
decay regularization terms:
L= % -logd(&(i,j)~&G,j N+AQ L (12)
(i,j",J7)e0 !
In the formula, L; denotes the diffusion loss, and ¢

represents the sampled diffusion step for user u.

IV. EXPERIMENTS AND EVALUATION

A.  Dataset

Three real-world benchmark datasets that are widely used
in social recommendation were selected for the experiment:
Ciao, Epinions and Yelp. Table I summarizes the statistical
details of the three datasets.
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Table I
Statistics of the Experimental Datasets
. Number Number .
Dataset Numb - Numb 'User-ltgn of of social Soqal
cr Of er Of interaction . . . relation
S . density interacti connectio density
users 1tems ons ns
Ciao 1925 15053 0.1048% 30370 65084 1'70364
0
Epinion 18081 25172 0.0157% 71582 572784 0.1752
s 2 1 %
vep 99262 'O o00ran 7% aaessn 002
0

® Yelp: This dataset originates from the Yelp platform,
capturing users feedback on venues. It includes social
relations between users, with a focus on social networks
formed by individuals with shared interests.

® Ciao: The Ciao dataset is derived from the Ciao platform,
which records user reviews and ratings for various
products and services. It details social interaction
information between users, particularly emphasizing social
networks shaped by common preferences and interactive
engagement.

® Epinions: The Epinions dataset is collected from the
Epinions platform, a social network-based review system,
and includes user evaluations of diverse products. Its
unique feature lies in subdividing the 1-to-5 rating system
into five explicit interaction categories: Negative, Below
Average, Neutral, Above Average, and Positive.

B.  Evaluation Metrics

The experimental results focus on the Top-N
recommendations and adopt two evaluation indicators that
are widely used in the research of social recommendations:
Hit Rate (HR) and Normalized Discounted Cumulative Gain
(NDCG), both measuring recommendation accuracy based
on Top-N ranked positions. For each target user during
evaluation, 100 non-interacted items are selected as negative
samples and combined with interacted items. The evaluation
metrics are formalized as:

M N
HR% "

N
M ~r./log,(j+1)
=1 1,] 2
NDCG =2, = M-IDCG
i=1 i

In the formula, M is the number of test users. For the i-th

(14)

=1, D . . o "
user, i if the j-th item in their ranked list is a positive

sample; otherwise, T = 0. The numerator of NDCG@N is
the Discounted Cumulative Gain (DCG)@N, while IDCG
represents the maximum possible DCG@N value for the i-th
test user.

C. Baselines

To comprehensively evaluate the performance of this
algorithm, we compares it with the latest methods from
different research directions, including the following
categories:

Attentive Social Recommender Systems: Attention
mechanisms are effective techniques for identifying critical
relations in social recommendations.
® SAMNP!I:  Utilizes a two-stage attention network,

incorporating a friend-wise attention mechanism, to

capture social influence from relevant friends for enhanced

user preference modeling..
® EATNNP4: Employs attention mechanisms within a

transfer learning framework to fuse interaction and social
data, utilizing a multi-task optimization scheme.

GNN-based Social Recommendation Models: The social
recommendation system that utilizes graph neural networks
(GNNYS) integrates user-item interaction data with user-user
social connections. By propagating information in this
unified graph structure, GNN learns the overall node
representation to improve recommendation performance.
® DiffNet!*l: Uses a hierarchical diffusion architecture to

model social relations. Simulates recursive social influence

via dynamic social diffusion.

® GraphRecP!: Propagates embeddings on social networks
using graph attention networks. Aggregates social
connections and item interactions into latent user
representations via attention.

® MHCN™I: A self-supervised multi-channel hypergraph
neural network that captures user relations. Maximizes
mutual information between node-level and subgraph-
level embeddings as an auxiliary task.

Graph Collaborative Filtering Models: Graph
collaborative filtering captures collaborative effects through
user-item interaction graphs.
® GCCFPl: A simplified GNN-based model using

convolutional message passing. Removes non-linear

transformations to mitigate overfitting.

® NGCF""I: A graph convolution-based model that injects
collaborative signals by modeling high-order connectivity
with recursively applying graph propagation functions.

Temporal-aware Social Recommendation: Methods
incorporating temporal contexts into social influence
modeling.
® DGRec!": Integrates temporal dynamics using recurrent

units and GNNs. Embeds social connections into dynamic

user interest representations.

Disentangled Graph Recommender Systems: Compared
with methods using disentangled learning techniques
® DisenHANPS: Encodes disentangled embeddings via

graph attention, distinguishing user-item connections for

propagation
® DGCFP!l; Partitions user embeddings into disentangled
intents and performs intent-aware message passing on

GNNEs.

Knowledge-aware Recommender System: Leverages
knowledge graphs (KGs) for item semantic relevance.
® KGAT[18]: A knowledge-enhanced model aggregating

information from user-item interactions and KGs via

attention.:

Heterogeneous Graph Representation for
Recommendation:
® HANP7l:  Encodes heterogeneous graphs through a

hierarchical attention network (node & semantic levels)
guided by meta-paths.

® HGTP"l: A heterogeneous graph transformer with edge-
specific attention and transformations.

® HERecP¥: A heterogeneous embedding method
combining fusion functions and meta-path random walks.
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TABLE II
PERFORMANCE COMPARISON OF ALL METHODS ON THE HR@10 AND NDCG@,0 METRICS

Datasets Metrics E‘?\ITN SAMN GfighR DiffNet GCCF NGCF KGAT DGRec Di/i‘;f]lH DGCF HGT HAN MHCN HERec DI:SEI‘CIN
HR 04130 04677 04594 05202 04926 04843 04907 0.5086 0.4856 0.5189 04933 0.4856 0.5080 0.5298  0.5591
. Imp 3537% 19.54% 21.70% 7.47% 13.49% 15.44% 13.93% 9.92% 15.13% 7.74% 1333% 15.13% 10.05% 5.53% -
e NDCG 02520 02838 02670 03201 03070 03088 02977 03113 02894 03166 03062 02608 03118 03104 0.3493
Imp 3861% 23.07% 30.82% 9.12% 13.77% 13.11% 17.33% 12.20% 20.69% 10.32% 14.07% 33.93% 12.02% 12.53% -
HR  0.6422 0.6390 0.6865 0.6323 0.6779 0.6944 0.6756 0.6268 0.6825 0.6635 0.7001 0.6673 0.6411 0.6767 0.7425
Imp 1561% 16.19% 8.15% 17.42% 9.52% 6.92% 9.90% 1845% 8.79% 11.90% 6.05% 11.26% 1581% 9.72% -
Fpinons NDCG 04483 04259 04786 04160 04783 04763 04708 04127 04627 04594 04812 04371 04261 04572  0.5272
Imp 17.59% 23.78% 10.15% 26.73% 10.22% 10.68% 11.97% 27.74% 13.93% 14.75% 9.55% 20.61% 23.72% 15.31% -
HR 07273 0.7971 0.8019 0.8222 0.8130 0.8204 0.7737 0.7830 0.8159 0.7956 0.8185 0.8169 0.8019 0.7047  0.8381
Imp 1523% 5.14% 4.51% 193% 3.08% 2.15% 832% 7.03% 272% 534% 239% 259% 4.51% 18.93% -
v NDCG 0.5289 0.5293 0.5372 0.5524 0.5585 0.5651 0.5386 0.5386 0.5403 0.5410 0.5547 0.5511 0.5348 0.4990  0.5895
Imp 1145% 1137% 9.73% 6.71% 5.55% 431% 9.45% 945% 9.10% 8.96% 627% 6.96% 10.22% 18.13% -
D, Parameter Setting 0.58 Ciao-HR 0.75] Epinions-HR  |g85 Yelp-HR
0.55 0.74| 0.84
We implements the proposed DDGNN4Rec based on the 54 I st I0_33 I I
PyTorch framework, utilizing the Adam optimizer for model 0.53 072 . I 0.82 .
0.5 -M - DN 0?1 -\ DN 0.81 -M DN

training. The key hyperparameter settings for DDGNN4Rec
are as follows: the embedding dimension is tuned in the range
of {4, 8, 16, 32}; the learning rate is fixed at 0.01; the batch
size is adjusted in the range of [512 ,4096]; the regularization
term coefficient A is set in the range of {1073, 107, 107°}; and
the number of memory units is configured as 8 to balance the
relation heterogeneity encoding capability and model
complexity.

E.  Experimental Results and Analysis

Table II presents the experimental results of the selected
baseline method and DDGNN4Rec on the three different
selected datasets.

The following main findings can be summarized:
Experiments on three datasets show that DDGNN4Rec
achieves improvement on HR@10 and NDCG@ 10 metrics,
and significantly outperforms the baseline models such as
GraphRec and DiffNet. Compared with all baseline models,
DDGNN4Rec achieves the best performance, which proves
the superiority of DDGNN4Rec in performance. This
performance improvement is attributed to the following
model designs:
® DDGNN4Rec can retain comprehensive relation semantics

while disentangling latent factors, thereby effectively

integrating disentangled social and knowledge-aware
collaborative signals.

® Through the integration of knowledge-aware item relations
into the social recommendation framework, DDGNN4Rec
improves the modeling of heterogeneous user-item
relations, resulting in enhanced representational capacity
for (user-item) interactions.

® Through multi-step noise propagation and removal
training, DDGNN4Rec obtains strong denoising
capabilities, effectively handling diverse social
connections among users and generating accurate user
preference representations.

The performance gap between DDGNN4Rec and other

051 | ™ -LN w— DDGN 0.70 _—-LN — -DDGNNOBO

-LN -DN -DDGNN -M

— N e -DDGNN

-M -LN -DN -DDGNN -M -LN -DN -DDGNN

0.35 Ciao-NDCG 0.54 Epinions-NDCG 0.60 Yelp-NDCG
0.34 053 0.59

0.33 052 058 I I
0.32 0.51 . 0.57

0.31 M w—_DN 'JDEO L -M =mm.DN  |0.56 — -DN
0.3d _—-LN == -DDGN 0.49 - N -'DDGNN0.55 _—-LN = -DDGNI

-M  -LN -DN -DDGNN -M  -LN -DN -DDGNN -M  -LN -DN -DDGNN

Fig. 2. Ablation Studies of different submodules

GNN methods indicates that neglecting item relations
restricts the performance of social recommendation systems,
while validating DDGNN4Rec 's capability to fully exploit
latent factors in user and item domains through its graph
neural structures that enhance memory. As observed in Table
III, DDGNN4Rec outperforms other methods in performance
improvements across different Top-N ranking positions,
further verifying its superior ranking capability. Additionally,
the recommendation accuracy improves as the N value
increases.

F. Model Ablation Study

In this section, we examined the design rationality of the
modules in the DDGNN4Rec framework. To this end, three
model variants corresponding to DDGNN4Rec’s three core
technical components are constructed by removing key
modules:
® "-M": DDGNN4Rec excluding the disentangled memory-
enhanced relation heterogeneity encoder.
® "-LN": DDGNN4Rec that removes layer normalization in
propagation layers to validate its role in stabilizing node
embedding training;

® "-DN": DDGNN4Rec without the generative diffusion-
denoising module.
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PERFORMANCE EVALUATION OF HR@N A]I“\[?lgl;\l;dDHCI‘G@N ACROSS DIFFERENT TOP-N VALUES
Datasets Metrics SAMN EATNN GraphRec DiffNet GCCF NGCF DGRec DGCF
HR@5 0.3465 0.2972 0.3059 0.3943 0.3683 0.3571 0.3725 0.3876
) NDCG@5 0.2463 0.2122 0.2234 0.2813 0.2666 0.2362 0.2646 0.2783
Ciao HR@?20 0.7497 0.7504 0.8006 0.7369 0.7908 0.8013 0.73 0.7777
NDCG@20 0.4558 0.4558 0.5014 0.4476 0.4854 0.5008 0.4422 0.4814
HR@5 0.5175 0.5284 0.5681 0.5104 0.5537 0.5613 0.5054 0.5475
o NDCG@5 0.3863 0.3921 0.4323 0.3822 0.4163 0.4315 0.3774 0.4143
Epinions HR@?20 0.7493 0.7509 0.8006 0.7364 0.7907 0.8015 0.7306 0.7778
NDCG@20 0.4554 0.4553 0.5016 0.4474 0.4853 0.5008 0.4424 0.4814
HR@5 0.6358 0.6426 0.6632 0.6703 0.6704 0.6744 0.6513 0.6563
NDCG@5 0.4667 0.4863 0.4901 0.5126 0.5135 0.5194 0.4891 0.4953
Yelp HR@?20 0.9007 0.8068 0.8945 0.9056 0.9013 0.9012 0.8825 0.9012
NDCG@?20 0.5409 0.546 0.5653 0.5702 0.5504 0.5687 0.5618 0.5674
Datasets Metrics KGAT HAN DisenHAN HERec HGT MHCN DDGNN4Rec
HR@5 0.3393 0.2939 0.3495 0.3833 0.3416 0.3868 0.4171
) NDCG@5 0.2421 0.1896 0.2489 0.2678 0.2373 0.2796 0.2982
Ciao HR@20 0.7884 0.7762 0.7899 0.7798 0.8057 0.7494 0.8359
NDCG@20 0.4832 0.4807 0.4914 0.4833 0.5026 0.4558 0.5426
HR@5 0.5486 0.5402 0.5608 0.5517 0.5758 0.5198 0.6255
o NDCG@5 0.4136 0.4104 0.4248 0.4178 0.4362 0.3884 0.4856
Fpinions HR@20 0.7884 0.7765 0.7896 0.7793 0.8051 0.7494 0.8359
NDCG@20 0.4831 0.4803 0.4911 0.4838 0.5025 0.4555 0.5426
HR@5 0.6502 0.6634 0.6512 0.5831 0.6884 0.6606 0.7052
Yelp NDCG@5 0.49 0.5088 0.4941 0.4503 0.5132 0.4914 0.5378
HR@20 0.8796 0.8974 0.9048 0.8127 0.9069 0.8956 0.9293
NDCG@20 0.5526 0.5527 0.5654 0.5036 0.5806 0.5673 0.6043
These ablation studies aim to verify the effectiveness of Ciao.NDCG
each module in capturing user social influence, handling 0.4 m-DDGNN
relation heterogeneity, and stabilizing the training process. 035 =3
The performance of the above variants and the full 03
DDGNN4Rec is evaluated on the three datasets, as shown in 025

Figure 2. DDGNN4Rec consistently outperforms all

variants. By analyzing the results, the following conclusions

are drawn:

® Impact of the Memory Mechanism: The removal of the
memory-enhanced relation heterogeneity encoder (the “-

M?” variant) results in a considerable drop in performance,

which confirms the efficacy of disentangling latent factors

across heterogeneous relation types..

® Role of Layer Normalization: Comparing the "-LN"
variant with DDGNN4Rec reveals that layer
normalization critically contributes to training stability.

This improvement is attributed to stable gradients induced

by normalization, mitigating fluctuations in node

embeddings.

® Denoising Module Necessity: Removing the generative
diffusion-denoising module (i.e., the "-DN" variant)
causes notable performance decline, confirming the
necessity of denoising social relation embeddings.

These findings underscore the necessity of
DDGNN4Rec’s core designs: the memory mechanism
(disentangling heterogeneous relations), layer normalization,
and diffusion-based denoising jointly ensure robustness and
expressive power in complex interaction scenarios.

Top-5 Top-10 Top-20 Top-5 Top-10  Top-20
Epinions-HR Epinions-NDCG

09 | \um_ppGNAN 054/ o DHGNN

05| mS 052 ms

T -1 : -

0.7 0.50

06 0.48

0.5 0.46|

Top-5 Top-10 Top-20 Top-5 Top-10 Top-20
Yelp-HR Yelp-NDCG
095 \um-poGnn 060 gm DoGNY
-ST
0.85 0.58 Mm-S
-.-T
0.75] 0.56|
0.65] 0.54]
0.55| 0.52

Top-5

Top-10  Top-20

Top-5
Fig. 3. Ablation studies on different input.

Top-10  Top-20

G.  Effect of Heterogeneous Relationships
In this section, we further investigate the influence of
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Fig 4. Hyperparameter studies of DDGNN4Rec

different auxiliary relational data on the performance of our

DDGNN4Rec. To this end, the following three model

variants are considered:

® "-T": DDGNN4Rec removes the item relation matrix
T ecR’ x(R| .

® "-S": DDGNN4Rec without the user-user social relation
matrix S € R/ ;

® "-ST": DDGNN4Rec only uses the user-item relationship
as input.

The performance is evaluated under varying top-N settings.

The outcomes are presented in Figure 3, from which the

following key findings can be observed:

® The inclusion of auxiliary heterogeneous relations
consistently contributes positively to model performance,
owing to the integration of different contents into the
representations.

® The relatively lower performance of the “-S” variant
underscores the value of incorporating social contextual
signals to enhance user preference learning.

® DDGNN4Rec consistently outperforms “-T” across all
scenarios. We attribute this gain to the model's ability to
capture rich itemized dependencies through memory-
enhanced relational heterogeneous encoders.

® The “-ST” variant consistently produced the worst results
on both datasets, proving different data from users or
projects is helpful for the accuracy of the model..

H.  Parameter Analysis

This section studies the sensitivity of hyperparameter
Settings by exploring the impact of each parameter used in
DDGNN4Rec on model performance. Experimental results
are shown in Figure 4.

The experiments reveal the following:

Ciao-HR Epinions-HR Yelp-HR
0.7 4 m:::::
30. =] S0.80 1
9 ——— Ours 9 ——— Ours S%’ ——— Ours
= I0.61 = =
0.2 - —— HGT —— HGT 0.75 - —— HGT
~— DGCF —— DGCF —— DGCF
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
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o o o
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2, —— HGT 90.40 —— HGT g — her
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Fig. 5. Model Efficiency Study of DDGNN4Rec
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® Hidden State Dimension d: Tested with values in the range
of {4,8,16,32} (i.e., {22, 23, 2% 2°}), DDGNN4Rec
achieves peak performance at d=16 due to its fusion of
user-item dual-domain semantic correlations. Increasing d
to 32 leads to performance degradation from parameter
redundancy, confirming that smaller dimensions ensure
model efficiency and practicality for real-world
recommendation systems.

® Number of GNN Layers L: For 1<L<3, two-hop
neighborhood message passing (L=2) significantly
improves performance by capturing high-order user-
item relations. However, stacking to three layers (L=3)
causes minor performance decline due to over-
smoothing, while compare with the non-propagation
variant (L=0) eliminates critical relation modeling
capability.

® Number of Memory Units M: Tested in the range of
{2,4,8,16} (i.e., {2', 22, 23, 2%}), setting M=8 achieves
optimal heterogeneous relation encoding by disentangling
latent factors. Excessive units (e.g., 16) introduce noise,
while insufficient units (e.g., 2) limit semantic capture
capacity.
Overall, DDGNN4Rec achieves the best balance between

model efficiency, relation representation power, and training

stability under the configuration d=16, L=2, and M=S8.

1. Model Efficiency Study

This section assesses the model efficiency by monitoring
the convergence speed throughout the training rounds. An
experimental comparison is conducted between two baselines,
namely DGCF and HGT. Comparison of experimental data
reflecting the progressive improvement achieved through
parameter optimization. The results illustrated in Figure 5
lead to the following findings: Compared with HGT and
DGCF, the experimental data of DDGNN4Rec performs
better.. This underscores the efficacy of our model’s
parameter inference optimization. The architecture of
DDGNN4Rec attains higher recommendation accuracy and
demonstrates greater optimization ease. We attribute this
advantage to the mapping of edge relations into multiple
latent spaces, which effectively incorporates relation
heterogeneity..

V. CONCLUSIONS

We introduce a Disentangled and Diffusion-Denoising
Graph Neural Networks for Social Recommendation
(DDGNN4Rec). In order to handle relational heterogeneity
and complete relational modeling of disentangled, a memory-
enhanced network dependent on node and edge types is
designed, which preserves distinct feature representations for
various interaction types. Concurrently, the discriminative
power of generative diffusion models is incorporated with a
denoising training objective, employing an optimized noise
diffusion and elimination procedure to allow social
recommender systems to manage varied connection noises
efficiently. Ultimately, recommendation lists are generated
using the obtained node embeddings. Comprehensive
assessments on three public datasets show that DDGNN4Rec
yields competitive results against state-of-the-art approaches.
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