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Abstract—Lithium-ion batteries have problems such as
capacity decline during long-term use, which affects the safety
of the system. Achieving high-precision capacity prediction is
a key challenge for battery management systems. A fusion
prediction framework based on chao improved arithmetic
optimization algorithm (AOA) and long short-term memory
(LSTM) network is proposed. The core innovation of the
algorithm is that the key parameters of the algorithm are
dynamically reconstructed through two-dimensional circle
chaotic map, and the random adjustment factor is combined
to improve the global exploration ability of the algorithm,
which is named CRAOA. Breaking through the limitations of
traditional gradient descent methods, CRAOA is used to
directly optimize the LSTM weight and bias parameters,
which is named CRAOA-LSTM. Experiments show that the
CRAOA-LSTM model is superior to other neural networks in
terms of prediction accuracy on the NASA battery data set,
and the RMSE prediction index of the B0005 and B0006 is
reduced by 2.5% ~ 15.2% and 0.87% ~ 21.2%, which provides
an effective solution for real-time battery health monitoring.

Index Terms—arithmetic optimization algorithm, long
short-term memory neural network, lithium-ion battery
capacity

I. INTRODUCTION
ith the gradual phase-out of internal combustion

engine vehicles by new energy vehicles (NEVs),
lithium-ion batteries have emerged as a pivotal research
focus as the primary power source [1]. Battery degradation
directly compromises both useful life and operational safety,
where capacity fade serves as the critical indicator for
evaluating state of health (SOH). Accurate SOH prediction
not only ensures long-term reliable operation of battery
systems by mitigating potential safety risks, but also
enables optimized replacement strategies and reduced
maintenance costs.
SOH prediction methods for lithium-ion batteries are

primarily categorized into physics-based models and
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data-driven approaches. Physics-based methodologies,
including electrochemical models and equivalent circuit
models, require precise physical parameters and
theoretically achieve high accuracy, while suffering from
substantial modeling complexity [2]. In contrast,
data-driven approaches implement state prediction through
analysis of historical operational data, circumventing
intricate physical modeling processes. However, their
predictive performance is significantly influenced by data
quality and sample diversity [3]. Current research focuses
predominantly on two aspects: SOH estimation and
remaining useful life (RUL) prediction, where both
methodological categories find extensive application in
these domains.
Electrochemical models are constructed based on

internal physicochemical mechanisms of batteries,
systematically characterizing operational behaviors through
fundamental processes including electrode reaction kinetics,
mass transport phenomena, and thermodynamic properties
[4]. These models integrate multi-physics characteristics
(electrical, thermal, and mechanical properties) of materials,
providing theoretical foundations for battery behavior
analysis. Regarding electrochemical modeling, Li et al. [5]
developed a simplified pseudo-two-dimensional (P2D)
model using finite difference method for spatial
discretization. Building upon degradation mechanisms
induced by electrode side reactions, researchers have
further proposed the Advanced Degradation Model for
Electrochemical systems (ADME). Experimental validation
demonstrates that this model significantly reduces
maximum prediction error while maintaining computational
efficiency, offering an effective approach for lithium-ion
battery aging modeling.
Deng et al. [6] introduced a polynomial

approximation-based P2D model simplification method,
employing distinct polynomial orders to characterize
electrolyte phase concentration distribution, solid-phase
concentration profile, and heterogeneous reaction flux
distribution. Comparative analysis reveals that higher-order
polynomials (third-order) provide enhanced robustness and
accuracy in reaction flux estimation, establishing an
effective simplification strategy for lithium-ion battery
modeling.Sadabadi et al. [7] developed a remaining useful
life (RUL) prediction algorithm using a single-particle
model framework. This approach innovatively utilizes
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cyclable lithium mole quantity and internal resistance as
dual SOH indicators. The study demonstrates that enhanced
SOH estimation precision substantially improves RUL
prediction accuracy.
Li et al. [8] established an electrochemical-thermal

coupled (ECT) model for LiCoO₂ batteries, achieving
reduced computational complexity through mechanistic
parameter optimization and thermal dissipation analysis.
The research implements parameter sensitivity analysis for
rational model simplification, integrates comprehensive
thermodynamic descriptions, and enables accurate
identification of critical parameters based on stimulus
response characteristics.
Equivalent circuit models (ECMs) characterize battery

external characteristics through electrical component
networks, establishing coupled relationships between state
of charge (SOC) and multiple influencing factors,
demonstrating significant application value in engineering
practice. Hossain [9] developed a temperature-compensated
parameter identification method enabling precise parameter
extraction across an extended temperature range (-5°C to
45°C). Nikohan et al. [10] proposed a smoothed adaptive
estimation algorithm that effectively enhances model
prediction robustness under varying thermal and load
conditions. Ding et al. [11] significantly improved
Thevenin model terminal voltage calculation accuracy by
introducing a temperature-dependent open-circuit voltage
correction term, achieving this enhancement through
mathematical characterization of SOC-OCV relationships
without increasing model complexity. These methods
collectively advance ECM performance in practical
applications.
Yuyang et al. [12] introduced an improved 2RC-PNGV

battery model featuring an organic light-emitting resistor
parallel circuit replacing conventional internal resistance,
while employing RC networks to characterize both
dynamic and static battery properties. The study
innovatively accounts for differences between
charge/discharge processes, implementing online parameter
identification through a forgetting factor recursive least
squares (FFRLS) method.
Recent advancements in machine learning have

propelled the widespread application of data-driven
approaches in battery state prediction. These methods learn
nonlinear mapping relationships directly from historical
data, circumventing the reliance on mechanistic parameters
inherent to traditional physical models, while
demonstrating superior prediction accuracy and adaptability.
Xiong et al. [13] innovatively combined correlation
coefficient analysis, LASSO regression, Neighborhood
Component Analysis (NCA) and ReliefF algorithm to
construct a hybrid feature selection framework, and
extracted the most representative health status indicators
from the measured parameters and derived features of the
battery system through the multi-dimensional statistical
analysis method. Qian et al. [14] innovatively developed a
dynamic operating condition prediction framework
combining historical states and future load information.
Their approach employs an attention-mechanism-based
multi-source sequence-to-sequence (AM-seq2seq) model
with a dual-encoder-single-decoder architecture, where

attention layers effectively capture complex dependencies
between prediction targets and multi-source inputs.
Ma et al. [15] introduced a SOH estimation method

combining enhanced LSTM networks with health
indicators derived from charge/discharge processes. Health
indicators are constructed using external features including
voltage, current, and temperature profiles during cycling.
Key capacity-correlated features are selected through
Pearson correlation coefficient analysis, while redundant
information is eliminated via neighborhood component
analysis (NCA) to reduce computational complexity. The
study further implements a differential evolution grey wolf
optimizer (DEGWO) for LSTM hyperparameter
optimization.
Ren et al. [16] developed an Auto-CNN-LSTM

prediction framework integrating improved convolutional
neural networks (CNN) and LSTM architectures. This
method enhances feature dimensions of limited data
through autoencoder techniques, combines deep CNN and
LSTM networks to extract latent degradation patterns, and
incorporates filtering algorithms to smooth prediction
outputs.
Chen et al. [17] designed a hybrid neural network

architecture fusing multi-channel CNN, bidirectional
LSTM, and gated recurrent unit (GRU) with attention
mechanisms for precise SOH and RUL assessment. The
methodology first applies the Pauta criterion to eliminate
abnormal data for capacity trajectory smoothing,
subsequently extracts multidimensional health features
from charging profiles, and selects critical degradation
indicators through correlation analysis. Comparative
experiments demonstrate exceptional prediction accuracy
and generalization capabilities.
A novel optimization methodology for Long LSTM

networks is proposed, utilizing a metaheuristic algorithm
enhanced with two-dimensional circle chaotic mapping and
random adjustment factors. Departing from conventional
gradient descent-based weight and bias optimization, the
AOA is fundamentally improved through chaotic
initialization and adaptive parameter control mechanisms,
the search space of the algorithm was increased. In this
study, the proposed CRAOA-LSTM model is
systematically verified based on NASA standard
lithium-ion battery datasets (Battery #5 and Battery #6).
The experimental results show that the framework shows
excellent accuracy and robustness in battery capacity
prediction, which fully verifies its effectiveness in practical
applications.
The sections of the manuscript are structured as follows.

The enhanced AOA is elaborated in Section II. The
foundational architecture of LSTM networks is presented in
Section III. The CRAOA-LSTM optimization methodology
is systematically described in Section IV. Comprehensive
experimental simulations and comparative analyses are
provided in Section V. Finally, conclusive findings and
future research directions are discussed in Section VI.

II. THE PROPOSED AOA
This subsection provides a more detailed description of

standard equivalent circuit models and gives the
second-order RC model used; it introduces the basic theory
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of KF, with an emphasis on the extended Kalman filter and
AEKF. This paper aims to establish a battery SOC
estimation model through comparison of various estimation
methods. The SOC is then estimated using the adaptive
extended Kalman filter method and the SORC equivalent
circuit model. Finally, the model’s accuracy is verified
through simulation using MATLAB.

A. AOA
Arithmetic is the foundation of number theory and also

one of the core branches of modern mathematics. Its basic
operators include: Addition (A “+”), Subtraction (S “－”),
Multiplication (M “× ”), and Division (D “÷ ”). These
operators serve not only as fundamental tools for numerical
analysis but also facilitate mathematical optimization by
identifying optimal solutions from candidate sets. The
AOA framework is constructed based on the dynamic
interactions of arithmetic operators. This algorithm
establishes a mathematical model to capture the dynamic
behavior of arithmetic operators during optimization. It has
extensive application potential in fields such as engineering
and computer science. In the following sections, the
specific influence of arithmetic operators on AOA will be
specifically discussed [18]. Fig. 1 shows the search strategy
of the AOA.

(1) Initialization phase
The optimization process of the AOA starts with a

randomly generated initial set of candidate solutions . In the
iterative process, the population is dynamically evaluated
and updated, where the best solution of each generation
will be used as the candidate of the current global optimal
solution, and the optimal solution of the problem is
gradually approximated by continuous optimization.

Fig. 1 Schematic diagram of the Rint model.

( , ) ( )X i j rand Ub Lb Lb    (1)
Before initiating the AOA, the Mathematical

Optimization Accelerator (MOA) selects the search phase
(exploration or exploitation) based on Eq. (2).

 _ _
_

Max MinMOA C Iter Min C Iter
M Iter

 
    

 
(2)

Where, the parameter ( _ )MOA C Iter denotes the
function value at the _C Iter iteration, while _C Iter
indicates the current iteration count (bounded between 1
and the maximum iteration limit _M Iter ). A random
number 1r ∈ (0,1) is generated. The algorithm switches to
exploration if 1r > MOA, otherwise continues exploitation.

(2) Exploration phase
The exploration phase of AOA is performed using either

the division operator (D) or the multiplication operator (M).
This operator has been used to generate widely distributed
candidate solutions due to its high dispersion. The search
space can be efficiently explored and premature
convergence avoided by this property, while gradually
approaching the potential optimal solution through multiple
iterations. Its position update formula is shown in Eq. (3).

  
2

,

( ) ( ) , 0.5

( )

j j

i j
j j j j

best x MOP LB r
X

best x MOP UB LB LB





    
    

＜
(3)

Where 2r represents a random number between (0,1).
, ( _ )i jX C Iter denotes the j th position of the i th

solution in the current iteration. ( )jbest x denotes the
j th position of the best solution so far.  is a small
integer and  is a control parameter that regulates the
search process,  =0.5.。

1/

1/

_( _ ) 1
_

C IterMOP C Iter
M Iter



  (4)

In Eq. (4), MOP is the mathematical optimization
probability and  represents a fixed value, which is 5.
Fig. 2 shows the dynamic evolution law of MOA and MOP
with the iterative process.

(3) Exploitation phase
In the development stage of AOA algorithm, the local

refinement search of solutions is realized by Subtraction
operator (S) and Addition operator (A) with low dispersion
characteristics. The synergy of these two operators can
effectively guide the search individual to quickly converge
to the optimal solution neighborhood, and the specific
position update mechanism is given by Eq. (5).
Among them, 3r represents a random number between

(0,1). ,i jX indicates the j th position of the i th
solution in the current iteration.  is the control parameter
for adjusting the search process, and  = 0.5.

  
  ,

( )

( )

j j j j

i j

j j j j

best x MOP UB LB LB
X

best x MOP UB LB LB





      
    

(5)

B. Two-dimensional circle chaotic mapping AOA
As a random like method with deterministic

characteristics, the essence of chaotic system is to generate
pseudo-random sequences through nonlinear equations.
Different from traditional random variables, chaotic
variables can show complex random behaviors while
maintaining the certainty of the system. Although
one-dimensional chaotic maps have been widely used in
function optimization and other fields, two-dimensional
chaotic maps are currently mainly concentrated in security
fields such as image encryption, and their application in
optimization algorithms is still in the exploratory stage [19].
The one-dimensional circle chaotic map has the advantages
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of uniform traversal, low correlation and low
computational complexity, so it is constructed as a
two-dimensional circle chaotic map and applied in AOA
algorithm. The formula of two-dimensional circle chaotic
map is as follows:

 

 

1

2
1

mod sin 2 ,1
2

mod sin 2 ( ,) 1
2

k

k

k k

k k
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
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

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
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



   
 
  






(6)

Eq. (6) reveals the coupling characteristics of the X-axis
and Y-axis chaotic sequences in the two-dimensional circle
map, which is represented by the nonlinear interaction
between two variables. As shown in Fig. 3, the chaotic
trajectory generated by the mapping in the phase space
shows typical ergodicity and pseudo-random characteristics,
and this bidirectional dynamic coupling mechanism
provides a rich chaotic source for parameter perturbation.

1 _
_

m

k
Max MinMOA x Min C Iter
M Iter

  
     

  
(7)

1/

1 1/

_y 1
_k

C IterMOP
M Iter





 
   

 
(8)

Where  1 0,1x  ,  1 0,1y  , k is the current iteration
number. m denotes the order of the MOA. 0m  , and
the value of m is 2. Fig. 4 shows the dynamic adjustment
process of two key parameters of MOA and MOP by
two-dimensional chaotic interference factors, in which the
random sequence generated by chaotic mapping acts on the
parameter update mechanism through nonlinear
transformation, which intuitively shows the control effect
of chaotic disturbance on the search behavior of the
algorithm.
Where 1r represents a random number between (0,1).
When 1r >MOA, the algorithm is in the exploration phase,
otherwise the algorithm is in the exploitation phase. By
observing the comparison between the improved MOA
image and the original MOA image in Fig. 4, it can be
found that the value of the improved MOA is smaller than
the value of the original MOA in the early stage of the
search. When 1r >MOA, the algorithm is in the exploration
stage, so this expands the ability and scope of the global
search, and well balances the global search ability and local
search ability of the algorithm. By accelerating the
downward trend of MOP and adding random fluctuations,
the convergence speed and accuracy of the algorithm can
be improved.

(a) MOA (b) MOP

Fig. 2 Images of the MOA and the MOP.

(a) X-axis (b) Y-axis

Fig. 3 Two-dimensional circle mapping X-axis and Y-axis chaotic mapping maps.
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(a) MOA (b) MOP

Fig. 4 Images of the MOA and the MOP.

C. AOA with random adjustment Factor
The search core strategy of AOA algorithm is reflected

in the position update Eq. (3) and Eq. (5). In addition to the
Addition, Subtraction and Multiplication and division
operators, there is a most important adjustment factor  .
The original algorithm is set to a constant value of 0.5,
which will affect the search space of the algorithm and lead
to a local optimum. Therefore, a random adjustment factor
is proposed, as shown in Eq. (9), where r is a random
number between  0,1 . The value fluctuates around 0.5,
which enhances the search space of the original algorithm
and improves the ability of global search and local search.

0.499 0.01 r    (9)

Fig. 5 The random adjustment result of the  value.

III. LONG SHORT-TERMMEMORY NEURAL NETWORK

As an improved architecture of Recurrent Neural
Network (RNN), LSTM replaces the hidden neuron
structure of traditional RNN by a unique memory cell unit,
and its core innovation is to introduce a gating mechanism
to solve the long-term dependence problem. In the cell

structure shown in Fig. 6, the cooperative operation of input
gate, forget gate and output gate enables the network to
selectively store and update time series information, thus
significantly improving the modeling ability of long
sequence data [20]. Three gate controllers are placed in the
LSTM cell, which are the input gate corresponding to the
red dashed box, the forget gate corresponding to the blue
dashed box, and the output gate corresponding to the
orange dashed box. The corresponding parameters of each
gate in Fig. 6 are calculated as follows.

, , 1( )t f t t f h t ff W x W h b      (10)

, , 1( )t i x t i h t ii W x W h b      (11)

, , 1( )t c x t c h t cc tanh W x W h b       (12)

1t t t t tc f c i c     (13)

, , 1( )t o x t o h t oo W x W h b      (14)

( )t t th o tanh c  (15)

Fig. 6 LSTM cell structure diagram.

The core trainable parameters of LSTM include four
types of weights and biases, corresponding to different
gating mechanisms:
(1) Input gate parameters: ,i xW ， ,i hW ， ib . It controls the

selection and combination of new information, and adjusts
the input retention rate and information intensity through
the activation function.

(2) Parameters of forgetting gate: ,f tW ， ,f hW ， fb .
Determine the proportion of retention of historical memory
and regulates the degree of forgetting of preorder cell
states.
(3) Cell state parameters: ,c xW ， ,c hW ， cb . Update

mechanisms that manage memory information and combine
old and new information to form the current memory.
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(4) Output gate parameters: ,o xW ， ,o hW ， ob . Generate
output gate that regulates the final output and calculates the
output value based on the cell state and hidden state. The
execution schematic of the LSTM is represented in Fig. 7.

Fig. 7 LSTM execution schematic.

IV. OPTIMIZED LSTM BASED ON THE PROPOSED AOA
The problem of gradient disappearance in the parameter

optimization process of deep neural networks can be traced
back to the differential attenuation effect caused by the
chain rule of the back propagation algorithm. The
pioneering work of Hochreiter S. and his team in the field
of recurrent neural networks was the first to theoretically
prove that in time series modeling tasks, the learning
framework based on gradient descent will cause the error
gradient to decay exponentially with the time step, which
seriously restricts the ability of the model to capture
long-range dependencies [21].
Although advanced architectures such as LSTM alleviate

the gradient decay problem in deep temporal modeling to
some extent through the co-design of gating mechanism
and cell state memory unit, their essential limitation still
stems from the gradient backpropagation mechanism itself.
Specifically, all deep learning models based on gradient
descent are restricted by the topology of parameter space.
Such optimization paradigms that rely on local gradient
information are difficult to avoid the progressive
weakening of gradient signals in deep networks or long
sequences. Empirical studies show that although the joint
application of regularization techniques such as residual
connection and gradient clipping with adaptive optimizers
can significantly improve the optimization effect, this
problem has not been fundamentally solved at the
theoretical level.
Based on this problem, a method of optimizing LSTM

neural network by CRAOA is proposed, which is named
CRAOA-LSTM. The gradient descent method used to
update weights and biases is abandoned, and the swarm
intelligence optimization algorithm that is popular and
performs well in recent years is used instead.
In CRAOA-LSTM, each individual vector position

represents a set of weight bias combinations. In the LSTM
architecture, the dimension of each optimization vector is
determined by the total number of network parameters,
which is expressed as the sum of the weight matrix and the
bias term.
Let the input variable dimension be n and the number

of hidden layer neurons be m , then the trainable

parameters of LSTM can be expressed as follows: (1) Input
weights: 8, m nU U R 

 
; (2) Cycle weight: 8, m mW W R 

 
;

(3) Full connection weight: 1 2mV R  ; (4) Deviation:
(8 1) 1, , mb b c R  

 
. The total number of trainable parameters

of the LSTM network can be calculated by the following
formula, which is determined by the weight matrix from the
input layer to the hidden layer, the recurrent weight, and the
bias term.

28 8 8 2 1x mn m m m     (16)

To select the appropriate fitness value to test each
CRAOA search agent, RMSE is used as the fitness
function, which represents the dissimilarity between the
measured and predicted values, and a smaller value proves
that the network predicts better. RMSE is shown in Eq.
(17), where iy is the actual value, ˆiy is the predicted
value, and n is the number of training data set.

1

1 ˆ
n

i i
i

RMSE y y
n 

  (17)

Fig. 8 represents the assignment of the search agents of
the CRAOA algorithm to the LSTM neural network, and
the figure can also represent the process of extracting and
reconstructing the weight and bias in the LSTM network
into a one-dimensional column vector. After obtaining the
optimal search agent position, it needs to assign the
position corresponding to the weight and deviation to the
network for prediction. The flow chart of the
CRAOA-LSTM algorithm is shown in Fig. 9.

Fig.8 Assigning CRAOAsearch agent vectors to LSTM.
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V. SIMULATION EXPERIMENT AND RESULT ANALYSIS

A. Solving function optimization problems based on
CRAOA
In this section, the CEC 2022 benchmark function is

adopted to verify the performance of CRAOA. The
comparison algorithms and parameter settings are shown in
Table 1, and the parameter settings are derived from the
relevant literature.
To make the comparison experiments more fair, the

experimental parameters were uniformly set as follows:
population size was set to 20, maximum number of
iterations of the evaluation function was set to 1000,
dimension was set to 10 and each algorithm was run 20
times independently of each test function.
To verify the improved performance of the algorithm

based on the original AOA algorithm, two improved
strategies of two-dimensional circle chaotic map AOA
(CAOA) and random adjustment factor AOA (RAOA)
were introduced, and the ablation experiments of function
optimization were carried out. Four sets of four different
types of test function optimization effects are shown here,
as shown in Fig. 10.
Fig. 10 shows that the red diamond curve is the CRAOA

fused by the two improvements, the green quincunx curve
is RAOA, the black five-pointed star curve is CAOA, and
the blue circle curve is the original AOA. Among them, the
improved schemes of CRAOA, CAOA and RAOA are
better than the original algorithm, and CRAOA is the most
influential algorithm among the three schemes under the
same experimental conditions, and it is also the best to find
the extreme point of the function.
The analysis results of the convergence characteristics of

each test function are shown in Fig. 11, and the quantitative

evaluation data are detailed in Table 2. In the table, the
convergence performance indicators of 30 independent
experiments are calculated, including the average solution
accuracy (Ave), the standard deviation of stability
representation (Std) and the Best solution quality (Best).
The performance Rank of each algorithm is given
according to the comprehensive performance.
This multi-dimensional evaluation system not only

intuitively shows the optimization process of the algorithm
through the convergence curve, but also objectively
compares the solution accuracy and robustness of different
methods by means of statistical indicators.
From Table Ⅱ, we can see that the overall performance

of CRAOA is better than other advanced algorithms, such
as function 1 3~f f , 6 12~f f , and the performance only in
function 4 5~f f is not the best, but it is always ranked in
the top three. However, CRAOA is still the best performer
when ranking according to the average of all functions. The
comparative analysis of the convergence curve in Fig. 11
shows that CRAOA algorithm (red diamond line) shows
significant performance advantages.

TABLE Ⅰ. COMPARISON OF ALGORITHM PARAMETERS

Algorithm Parameters setting

BAT 0.5, 0.5, 0.001ro   

AOA 0.5, 0.5  

COA 30N 

RSA 0.5, 0.005  

CFOA [0,1] 

CRAOA 0.5 

Fig. 9 CRAOA-LSTM flow chart.
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(a) 3f (b) 7f

(c) 9f (d) 10f

Fig. 10 Ablation experiments on four different types of test functions 3 7 9 10, , ,f f f f .

(1) F1 (2) F2

(3) F3 (4) F4
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(5) F5 (6) F6

(7) F7 (8) F8

(9) F9 (10) F10

(11) F11 (12) F12

Fig.11 Comparison curves of CRAOA with other algorithms in function optimization.
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TABLE Ⅱ. COMPARISON DATA BETWEEN CRAOA AND OTHER ALGORITHMS ON TEST FUNCTION OPTIMIZATION

Function AOA BAT COA CFOA RSA CRAOA

F1

Best 5.164E+03 1.440E+04 4.796E+03 3.830E+03 3.644E+03 3.178E+02
Ave 1.044E+04 4.406E+04 8.702E+03 9.615E+03 8.471E+03 7.291E+02
Std 5.402E+03 2.252E+04 1.770E+03 4.169E+03 2.299E+03 4.396E+02
Rank 5 6 3 4 2 1

F2

Best 5.955E+02 1.325E+03 8.861E+02 4.672E+02 5.916E+02 4.000E+02
Ave 1.477E+03 3.017E+03 1.735E+03 5.281E+02 1.039E+03 4.142E+02
Std 6.218E+02 1.426E+03 6.649E+02 5.349E+01 4.782E+02 2.346E+01
Rank 4 6 5 2 3 1

F3

Best 6.303E+02 6.503E+02 6.338E+02 6.135E+02 6.361E+02 6.057E+02
Ave 6.419E+02 6.887E+02 6.501E+02 6.244E+02 6.504E+02 6.208E+02
Std 9.180E+00 2.141E+01 6.500E+00 6.540E+00 6.380E+00 9.010E+00
Rank 3 6 4 2 5 1

F4

Best 8.187E+02 8.794E+02 8.344E+02 8.180E+02 8.387E+02 8.180E+02
Ave 8.374E+02 9.129E+02 8.520E+02 8.315E+02 8.494E+02 8.438E+02
Std 1.073E+01 2.047E+01 8.350E+00 1.010E+01 7.790E+00 1.571E+01
Rank 2 6 5 1 4 3

F5

Best 1.121E+03 1.823E+03 1.233E+03 9.790E+02 1.201E+03 9.376E+02
Ave 1.443E+03 3.706E+03 1.549E+03 1.075E+03 1.503E+03 1.221E+03
Std 2.014E+02 9.506E+02 1.813E+02 8.472E+01 1.970E+02 1.719E+02
Rank 3 6 5 1 4 2

F6

Best 1.970E+03 5.380E+07 4.280E+05 2.256E+03 2.852E+07 1.912E+03
Ave 3.097E+07 1.163E+09 1.132E+07 1.343E+05 3.484E+08 3.902E+03
Std 8.047E+07 1.122E+09 1.268E+07 2.726E+05 6.457E+08 2.243E+03
Rank 4 6 3 2 5 1

F7

Best 2.045E+03 2.170E+03 2.053E+03 2.032E+03 2.073E+03 2.012E+03
Ave 2.101E+03 2.253E+03 2.097E+03 2.067E+03 2.132E+03 2.043E+03
Std 3.051E+01 5.450E+01 2.809E+01 2.314E+01 3.515E+01 1.440E+01
Rank 4 6 3 2 5 1

F8

Best 2.224E+03 2.245E+03 2.228E+03 2.224E+03 2.239E+03 2.222E+03
Ave 2.293E+03 2.775E+03 2.252E+03 2.234E+03 2.257E+03 2.225E+03
Std 8.211E+01 6.182E+02 1.775E+01 7.940E+00 1.314E+01 2.260E+00
Rank 5 6 3 2 4 1

F9

Best 2.653E+03 2.754E+03 2.670E+03 2.601E+03 2.620E+03 2.529E+03
Ave 2.760E+03 2.982E+03 2.766E+03 2.652E+03 2.710E+03 2.533E+03
Std 5.350E+01 1.913E+02 4.396E+01 2.756E+01 4.801E+01 5.340E+00
Rank 4 6 5 2 3 1

F10

Best 2.531E+03 2.543E+03 2.527E+03 2.501E+03 2.515E+03 2.403E+03
Ave 2.771E+03 4.009E+03 2.794E+03 2.622E+03 2.639E+03 2.524E+03
Std 1.883E+02 9.055E+02 2.630E+02 2.406E+02 9.718E+01 5.467E+01
Rank 4 6 5 2 3 1

F11

Best 2.964E+03 3.495E+03 3.037E+03 2.765E+03 2.879E+03 2.600E+03
Ave 3.648E+03 4.934E+03 3.899E+03 2.875E+03 3.349E+03 2.818E+03
Std 4.038E+02 8.314E+02 4.460E+02 1.547E+02 4.700E+02 1.609E+02
Rank 4 6 5 2 3 1

F12

Best 2.928E+03 2.912E+03 2.881E+03 2.869E+03 2.878E+03 2.864E+03
Ave 3.031E+03 3.213E+03 2.964E+03 2.884E+03 2.899E+03 2.877E+03
Std 6.268E+01 1.426E+02 6.470E+01 1.481E+01 2.639E+01 2.343E+01
Rank 5 6 4 2 3 1
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B. Battery capacity prediction based on CRAOA-LSTM

(1) Battery dataset selection
It is proposed to estimate the capacity of lithium-ion

batteries based on the voltage, current and temperature data
collected by the Battery Management System (BMS). The
experiment adopted data from eight 18650 lithium-ion
batteries in NASA’s database, including three working
modes: charging, discharging and resting. The battery is
charged by constant current and constant voltage (CCCV)
method (1.5A constant current to 4.2V, then constant
voltage to 20mA), and discharged at different currents (1A
or 2A) to the cut-off voltage (2.0V - 2.7V) to accelerate the
aging process [22].
Studies have shown that the capacity regeneration

phenomenon will occur if lithium-ion batteries enter the
resting period after many charging and discharging cycles,
but the internal parameters change slowly, and the current
technology is still difficult to achieve non-destructive
monitoring of these microscopic parameters, and it is
difficult to directly measure. In contrast, the external
parameters of the charging process show significant
changes with the number of cycles, making it more suitable
for capacity prediction. Therefore, the characteristic
parameters of the charging stage are selected for modeling.
The experimental data have undergone preprocessing such
as normalization. The specific batteries selected are Battery
#5 and Battery #6, which are represented by the blue line
and the red curve in Fig 12 respectively. Among them, the
black dotted line represents the battery attenuation
threshold. When the battery exceeds this range, it reaches
the terminal life of the battery.

Fig. 12 Capacity attenuation curves of Battery #5 and #6 in NASA battery
pack.

Through the visual analysis of the fitting curve and error
curve, the prediction effect of each model on the battery
capacity attenuation trend is intuitively presented. To
further evaluate the performance of the model
quantitatively, the three indicators of RMSE, MAE and
MAPE are used for comprehensive evaluation, and the
specific calculation formula is shown in Table Ⅲ.
This qualitative and quantitative analysis method not

only intuitively shows the overall fitting degree of
CRAOA-LSTM and other classical models through image
comparison, but also objectively compares the prediction

accuracy through multi-dimensional error indicators, which
comprehensively verifies the performance differences of
different algorithms.

TABLE Ⅲ. QUANTITATIVE INDEX OF BATTERY CAPACITY PREDICTION
MODEL

Index Function

Mean absolute error 
1

1 n

ii
i

MAE y y
n 

 

Root mean square error 
1
2

2

1

1 ( )
n

ii
i

RMSE y y
n 

 
  
 


Mean Absolute Percentage Error


1

1 n
ii

i i

y yMAPE
n y


 

(2) Neural network and optimizer parameter settings
To verify the superiority of CRAOA-LSTM, it is

proposed to compare with classical deep learning models
FNN and LSTM. For FNN, since there is not much battery
data in the experiment, it does not need too many training
times and layers, and the experiment is set to 500 times and
2 layers.
The optimizer of choice is Adam, which is widely used

by many researchers. The parameter settings of LSTM are
similar to FNN, the number of training is also 500 times,
Adam optimizer is selected, the number of LSTM stacking
layers is set to 5 layers, and the learning rate is set to 0.001.
Furthermore, different meta-heuristic algorithms for

optimizing the LSTM model are also introduced. The AOA
for optimizing LSTM (AOA-LSTM), the BAT Algorithm
for optimizing LSTM (BAT-LSTM), and the Coati
Optimization Algorithm for optimizing LSTM
(COA-LSTM), Catch Fish Optimization Algorithm for
optimizing LSTM (CFOA-LSTM), and Reptile Search
Algorithm for optimizing LSTM (RSA-LSTM) to predict
battery capacity. To ensure the fairness of the experiment,
the number of populations is uniformly set to 20, and the
maximum number of iterations is set to 500.
The parameter selection of each algorithm is consistent

with the original paper. For the partition of the original
dataset, 70% of the population was randomly selected as
the training set, 15% as the validation set, and 15% as the
test set.

(3) Capacity prediction of Battery #5 and Battery #6
In this part, the CRAOA-LSTM prediction model is

compared with other optimization algorithms to optimize
LSTM and other neural network prediction, as shown in
Fig. 13 to 15. Fig. 13 shows the comparison test of LSTM
optimized by CRAOA algorithm and other comparative
optimization algorithms in solving the capacity prediction
problem.
The fitness function is selected as shown in Eq. (16), the

maximum number of iterations is set as 500 generations,
and the number of populations is 20. The five-pointed star
curve of the red line is the prediction results of
CRAOA-LSTM in two groups of battery data, which has
the lowest error compared with other optimization
algorithms.
Secondly, CRAOA has a faster downward trend and

convergence speed. And when other algorithms have fallen
into local optimum at the early stage of iteration, CRASOA
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still keeps a certain speed decline, which reflects the
superiority of CRAOA in solving optimization problems. It
can jump out of local optimum and has stronger ability in
global search and local search.
Fig. 14 shows the capacity prediction curve of

CRAOA-LSTM. Since too many curves will affect the
reader's observation effect, only the comparison results of
CRAOA-LSTM and AOA-LSTM and two kinds of deep
learning networks are shown here.
The prediction errors of BAT-LSTM and other models

are reflected in the data in Table Ⅳ and Table Ⅴ. Among
them, the yellow triangular curve corresponds to the
predicted curve of CRAOA-LSTM, and the blue solid line
is the true attenuation value in the test set. The proposed
prediction model is more consistent with the real value as a
whole, especially in the early stage of recurrent FNN,
LSTM and other neural networks have higher deviation

from the real value, which is not as good as
CRAOA-LSTM.
To show the prediction effect more directly, the

prediction error curve is introduced, as shown in Figure 15,
and the advantages of the CRAOA-LSTM model can be
clearly seen. Table Ⅳ and Table Ⅴ show the prediction
errors of CRAOA-LSTM and other models, in the two sets
of battery data, this model performs the best among the
three errors, which are the minimum values, which directly
reflects the advantages of the model. Among them, in
Battery #5, CRAOA-LSTM is 2.5% ~ 15.2% lower than
other prediction models in RMSE index, 0.67% ~ 13.9%
lower in MAE, and 0.32% ~ 8.92% lower in MAPE. In
Battery #6, compared with other prediction models, the
RMSE index is reduced by 0.87% ~ 21.2%, MAE is
reduced by 0.15% ~ 12.9%, and MAPE is reduced by
0.14% ~ 8.82%.

(a) Battery #5 (b) Battery #6

Fig. 13 CRAOA-LSTM and other optimization algorithms optimize the error decay curve of LSTM at Battery #5 and #6.

(a) Battery #5 (b) Battery #6

Fig. 14 Capacity attenuation curves of Battery #5 and #6 in NASA battery pack.

(a) Battery #5 (b) Battery #6

Fig. 15 Capacity prediction error curve of Battery #5 and #6 in NASA battery pack.
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TABLE Ⅳ. QUANTITATIVE METRICS FOR BATTERY #5 CAPACITY
PREDICTION MODEL

Model RMSE MAE MAPE（%）

FNN 0.0730 0.0256 1.45

LSTM 0.0531 0.0248 1.45

AOA-LSTM 0.0798 0.0613 3.94

CRAOA-LSTM 0.0277 0.0181 1.13

BAT-LSTM 0.1235 0.0978 6.19

COA-LSTM 0.1797 0.1573 10.05

CFOA-LSTM 0.1101 0.0845 5.46

RSA-LSTM 0.0993 0.0840 5.49

TABLE Ⅴ. QUANTITATIVE METRICS FOR BATTERY #6 CAPACITY
PREDICTION MODEL

Model RMSE MAE MAPE（%）

FNN 0.0490 0.0327 2.2515

LSTM 0.0645 0.0500 3.3053

AOA-LSTM 0.0700 0.0561 3.9139

CRAOA-LSTM 0.0403 0.0312 2.1009

BAT-LSTM 0.1909 0.1598 10.9268

COA-LSTM 0.0841 0.0546 3.6481

CFOA-LSTM 0.0954 0.0788 5.4763

RSA-LSTM 0.1170 0.0961 6.5610

Fig. 16 Bar graph of CRAOA-LSTM versus other models in B0005
evaluation metrics.

Fig. 17 Bar graph of CRAOA-LSTM versus other models in B0006
evaluation metrics.

To enhance the visualization effect of each model in
B0005 and B0006 pack prediction, RMSE and other
evaluation indicators are plotted into bar charts, as shown

in Figs. 16 and 17. Where the abscissa is each model and
the ordinate is the evaluation index.

VI. CONCLUSION
LSTM is selected as the basic solution framework, and

then a metaheuristic AOA algorithm is proposed to
optimize the weight and bias of LSTM. At the same time,
two-dimensional circle chaotic map and random adjustment
factor AOA are proposed to increase the optimization
ability of AOA. The simulation results show that the
CRAOA-LSTM model has the best prediction effect and
the lowest error value in NASA battery data. The specific
conclusions are as follows:
(1) Aiming at the problem that the original AOA is

difficult to find the optimal solution, the two-dimensional
Circle chaotic map and random adjustment factor are
introduced. The innovation of the two strategies increases
the optimization ability of AOA, makes the algorithm
achieve an effective balance in the global and local search
stage, and avoids the situation that the optimization stops in
the early iteration and the search cannot be refined at the
end of the iteration.
(2) CRAOA is more competitive than the original AOA

and recent excellent optimization algorithms in solving
function optimization problems, and it is more likely to find
the optimal solution of the function. CRAOA also plays a
crucial role in lithium battery capacity prediction. CRAOA
can find the weight and bias of the optimal LSTM, which
effectively solves the problem of inaccurate prediction
caused by inadequate LSTM training of traditional training
methods.
In the larger context of future lithium battery capacity

prediction, there is still much that can be innovated. We can
consider using transfer learning, which is popular in recent
years, by training a model on a large amount of historical
data and transferring it to this problem. For the innovation
of CRAOA, better variants of AOA and better optimization
algorithms can be proposed to solve this problem.
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