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Abstract—To address critical challenges in medical image
analysis, such as complex structure recognition, multi-scale fea-
ture fusion, and the need for computational efficiency, this study
proposes an innovative Dynamic Iterative Multi-scale Attention
Network (DIMAN). DIMAN incorporates two key modules:
the Dynamic Mixed Channel Attention (DMCA) mechanism
and Enhanced Partial Convolution (EPConv). DMCA adap-
tively integrates local and global features to capture multi-
scale information effectively, improving the model’s perception
of intricate structures. EPConv enhances feature represen-
tation through selective channel processing combined with
batch normalization and non-linear activation, while maintain-
ing computational efficiency. Additionally, DIMAN adopts a
multi-iteration refinement strategy that progressively enhances
segmentation accuracy. Extensive experiments on two public
retinal artery and vein segmentation datasets, RITE and
LES-AV, demonstrate its effectiveness. On the RITE dataset,
DIMAN achieves 96.04% sensitivity, 97.40% specificity, and
96.50% accuracy, outperforming current mainstream methods
across all metrics. On the LES-AV dataset, it obtains 95.33%
sensitivity, 94.81% specificity, and 93.75% accuracy, confirm-
ing its strong generalization and stability. Further analysis
shows that DIMAN excels in segmenting fine vessels and
complex bifurcation regions, highlighting its superior structural
perception. Overall, the results validate the contributions of
DMCA and EPConv to vascular feature discrimination. DIMAN
achieves high segmentation accuracy with efficient computation,
demonstrating excellent robustness and promising potential for
clinical application.

Index Terms—Artery-Vein segmentation, Fundus retinal im-
ages, Enhanced Partial Convolution, Iterative refinement

I. INTRODUCTION

Iterations in retinal vascular morphology have signifi-

cant clinical value for the early detection of multiple
systemic and ocular pathologies. As the only noninvasively
observable microvascular system in humans, the retinal vas-
culature serves as a critical biomarker, reflecting not only the
progression of ocular diseases such as diabetic retinopathy,
hypertensive retinopathy, and glaucoma, but also providing
a basis for the early diagnosis of systemic conditions, in-
cluding cardiovascular and cerebrovascular disorders. The
structural and functional characteristics of retinal vessels are
therefore essential indicators for early detection of severe
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pathologies[1]. Consequently, automated analysis of reti-
nal vascular features has attracted considerable attention in
medical imaging diagnostics. Clinically, the morphological
distinctions between retinal arteries and veins indicate dis-
ease progression, and accurate arteriovenous segmentation
enhances diagnostic accuracy while supporting personalized
therapeutic strategies. Fueled by advances in computer vi-
sion and deep learning, automated segmentation of retinal
vasculature has become a key research area in intelligent
healthcare. In particular, arteriovenous segmentation poses
substantial challenges due to the need for precise discrimina-
tion of subtle morphological variations, while offering critical
clinical value for informed diagnostic decision-making.

Although deep learning techniques have achieved remark-
able progress in image segmentation in recent years[2],
directly applying these methods to retinal artery and vein
segmentation remains highly challenging. First, the anatom-
ical structure of retinal vessels is extremely intricate, with
arteries and veins exhibiting subtle differences in color,
width, and orientation. These distinctions become particu-
larly ambiguous in small vessel branches, where boundaries
are often blurred and vessels may intersect or merge with the
background, thereby significantly increasing segmentation
difficulty. Second, the quality of retinal images is highly sus-
ceptible to variations in acquisition devices and environmen-
tal conditions, often resulting in blur, noise, or low contrast,
which impedes the representation of vascular features and
compromises model robustness. Moreover, AV segmentation
requires not only precise extraction of local features, such as
color and texture, but also effective modeling of the global
vascular structure and topological relationships. However,
existing methods still encounter limitations in multi-scale
feature fusion, making it difficult to preserve fine details
while simultaneously capturing global semantic context. Ad-
ditionally, AV segmentation often depends on prior vessel
segmentation results, and errors in initial segmentation can
propagate through subsequent stages, leading to accumulated
inaccuracies and degraded final performance. Therefore, de-
veloping a segmentation framework capable of robust multi-
scale feature perception, effective error mitigation, and strong
generalization remains a critical and unresolved challenge.

To address the aforementioned challenges, this paper in-
troduces a novel Dynamic Iterative Multi-scale Attention
Network (DIMAN) that is specifically designed for efficient
and accurate segmentation of retinal arteries and veins. The
main contributions of this work are summarized below:

1) A DIMAN network is introduced, integrating U-Net
with novel attention and convolution modules to build a
deep neural network capable of multi-scale feature perception
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and iterative refinement, thereby enhancing the accuracy and
robustness of retinal arteriovenous segmentation.

2) The designed DMCA module introduces a novel learn-
able mechanism for dynamically adjusting local and global
weights, effectively enhancing fine-grained feature represen-
tation and improving the model’s adaptability to complex
vascular topologies.

3) The proposed EPConv module integrates partial con-
volution with batch normalization and ReLU activation, sig-
nificantly reducing computational overhead while preserving
high performance, thereby providing an efficient solution for
high-resolution medical image analysis.

II. RELATED WORK

A. Traditional Methods for Retinal Arteriovenous Segmenta-
tion

In the study of retinal arteriovenous vessel segmentation,
traditional methods primarily relied on the color, morphol-
ogy, topology, and contextual information to construct fea-
tures, which were then integrated with graph models or
classifiers for vessel recognition. Sathananthavathi et al.[3]
proposed a segmentation method that used Bat Algorithm-
optimized feature selection combined with a Random Forest
classifier, significantly reducing dimensionality and improv-
ing segmentation accuracy by fusing color space and lumi-
nance models to construct efficient feature vectors. Xu et
al.[4], by contrast, enhanced segmentation accuracy through
intra-image regularization, inter-subject normalization, and
multi-texture feature extraction in combination with a kNN
classifier. Dashtbozorg et al.[5] introduced a graph-structure-
based segmentation method analyzing node types in the
vascular network, such as bifurcations and intersections, and
combined this analysis with intensity features to automati-
cally segment vascular segments. Vazquez et al.[6] developed
a minimal path-based technique using local color clustering
and cross-radius vascular segment tracking, incorporating
a voting mechanism to enhance segmentation robustness.
Zhao et al.[7] employed an explicit set clustering approach
to reconstruct and segment vascular networks by building
a vascular graph and clustering based on similarities in
node features such as intensity, curvature, and diameter. Yan
et al.[8], on the other hand, proposed a context-dependent
method combining the B-COSFIRE filter with morphological
and contextual features to finely segment blood vessels using
JointBoost and Conditional Random Fields. Pellegrini et
al.[9] extended their approach to Ultra Wide Field of View
Scanning Laser Ophthalmoscope (UWFoV SLO) images,
proposing a graph model that integrates local feature seg-
mentation with global graph cut optimization to achieve fully
automated arterial and venous segmentation on this image
type for the first time.

B. Deep Learning Methods for Retinal Arteriovenous Seg-
mentation

In deep learning research on retinal arteriovenous vessel
segmentation, a variety of novel approaches have emerged
in recent years. Yi et al.[10] proposed MMF-Net, which
enhanced vascular structural features via multi-channel fre-
quency filtering, combined with multi-scale transformation

and a feature fusion module, significantly improving seg-
mentation accuracy. Zhang et al.[ll] introduced a gen-
erative adversarial network based on an improved U-Net
architecture, integrating the ASPP module to expand the
receptive field and optimizing vessel pixel weights through
an attention mechanism for end-to-end automatic segmenta-
tion. To address computational efficiency, Diwakar et al.[12]
designed a cascaded supervised mini-U-Net that utilized
multispectral information from bimodal images, combin-
ing color and monochrome wavelength inputs to segment
vessels and simultaneously distinguish arteries and veins
through a cascaded three-phase network. Containing only
one eighty-seventh of the parameters of traditional U-Net,
it achieved a balance between high accuracy and low re-
source consumption. Cui et al.[13] developed MGA-Net to
improve segmentation robustness by enhancing local features
through a Feature Augmented Channel Attention module
and capturing long-range dependencies via a Global Feature
Aggregation module. In the domain of data augmentation,
Liu et al.[14] proposed VSG-GAN, which decoupled vas-
cular topology from background style using a hierarchical
variational autoencoder, combined with a SPADE module to
generate high-fidelity synthetic images and enhance model
generalization. For retinal vessel segmentation, Zhang et
al.[15] utilized U-Net variants, including a spatial attention-
enhanced architecture, to optimize feature extraction and
vascular boundary delineation via adaptive receptive fields
and channel refinement. Chen et al.[16] introduced EAV-
Net, which fused multi-scale convolutional blocks with dense
color-invariant feature learning to effectively address mis-
segmentation caused by illumination and contrast variations.
Additionally, Patil et al.[17] combined CNNs with graph op-
timization, using the minimum spanning tree algorithm to op-
timize label propagation within vascular networks and reduce
topological errors, while Bhimavarapu et al.[18] integrated
multi-scale filtering, a parallel channel attention mechanism,
and CNNs to jointly optimize segmentation. Collectively,
these methods advanced retinal arteriovenous segmentation
by enhancing feature representation, fusing modalities, re-
ducing computational cost, and refining vascular boundaries,
offering diverse technical solutions for clinical applications.

III. METHOD
A. Network architecture

The Dynamic Iterative Multi-scale Attention Network (DI-
MAN) is a novel deep learning architecture, whose overall
structure is presented in Fig. 1. Its core idea is to initially
extract features using a basic U-shaped network and subse-
quently apply a dynamic attention mechanism alongside an
iterative refinement process to progressively capture multi-
scale contextual information, thereby improving segmenta-
tion accuracy and robustness. DIMAN mainly consists of
two key components: a basic U-shaped subnetwork and a
dynamic multiscale refinement subnetwork.

The foundational U-shaped subnetwork module utilizes a
standard U-Net architecture, which processes input images to
generate initial segmentation outputs. As illustrated in Fig. 2,
the U-Net comprises an encoder and a decoder: the encoder
extracts hierarchical features through convolution and down-
sampling operations, while the decoder reconstructs spatial
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Fig. 2. Basic U-Net module

resolution using upsampling and convolution layers. This
base module produces initial feature representations and seg-
mentation maps that serve as the foundation for subsequent
iterative refinement, ultimately enhancing the network’s over-
all performance.

The Dynamic Multiscale Refinement (DMR) module con-
stitutes the core innovation of DIMAN, with its structure
illustrated in Fig. 3. Built upon the U-Net architecture, this
module introduces three key enhancements: the Dynamic
Mixed Channel Attention (DMCA) mechanism, Enhanced
Partial Convolution (EPConv), and a multi-iteration strategy.
The DMCA mechanism is integrated into the skip connec-
tions of the DMR module, enabling adaptive fusion of local
and global features to improve the perception of multi-scale

vascular structures. EPConv is applied within both the
encoder and decoder, effectively balancing computational
efficiency and representational capacity by selectively
processing a subset of channels while preserving the
information from the remaining channels. The DMR module
is iteratively applied up to six times, allowing the network
to progressively refine segmentation outputs, particularly
in challenging regions containing fine vessels and complex
intersections. Through repeated refinement, the network
gradually improves its structural understanding, leading to
more accurate segmentation results.

The overall workflow of DIMAN is structured as follows.
Initially, the input image is processed by the base U-Net
module to generate a coarse vessel segmentation map. This
preliminary output is subsequently fed into the Dynamic
Multiscale Refinement (DMR) subnetwork for iterative re-
finement. In each iteration, the output from the previous
stage is combined with the original segmentation map to
construct the input for the next iteration. Through this recur-
rent refinement process, the network progressively improves
segmentation quality, particularly in regions characterized by
complex vascular structures.

Overall, DIMAN provides a robust and efficient solution
for retinal arteriovenous vessel segmentation, significantly
improving segmentation accuracy and serving as a reliable
tool for clinical diagnosis. Its architectural design and inno-
vative modules also demonstrate considerable potential for
broader applications in other medical image analysis tasks.
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Fig. 3. Dynamic Multiscale Refinement module
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B. Dynamic Mixed Channel Attention (DMCA) Mechanism

In this paper, we introduce a novel Dynamic Mixed
Channel Attention (DMCA) mechanism, whose architec-
ture is illustrated in Fig. 4. The DMCA employs a dual-
branch design to effectively integrate local spatial features
and global channel information. It incorporates learnable
dynamic weight parameters, enabling adaptive modulation
of feature responses via a sigmoid activation function.
Unlike conventional channel attention mechanisms limited
by single-scale modeling, DMCA addresses the challenges
posed by the complex topology, multi-scale coexistence,
and low-contrast characteristics commonly found in medical
images. By dynamically balancing local detail enhancement
and global semantic understanding, the proposed method
significantly improves the model’s sensitivity to subtle varia-
tions. This architecture establishes a stable and generalizable
feature extraction paradigm, making it well-suited for the
analysis of diverse medical imaging modalities.

The core idea of DMCA is to enhance the model’s ability
to recognize vascular structures at different scales by con-
sidering both local and global information and dynamically
balancing their importance. Specifically, the operation of
DMCA is as follows.

First, given an input feature map X, which belongs to
ROHXW “the DMCA applies a Local Average Pooling (LAP)
operation to capture local spatial information. As shown in
Fig. 5, LAP pools the input feature map using a k x k sliding
window (in this case, k = 2) to generate a local feature
representation L, which belongs to RE*ksxks where ks is the
preset number of region divisions (usually set to 5). The LAP
operation effectively preserves local structural information,

which is critical for detecting fine vessels and local patterns.

Next, DMCA applies Global Average Pooling (GAP) to
extract global context information. As shown in Fig. 5,
GAP computes the mean of the entire feature map across
the spatial dimensions, producing a single value for each
channel, thereby generating a global semantic representation.
The GAP operation effectively captures the global context
of the feature map, facilitating a better understanding of the
overall vessel distribution and large-scale structures.

Local and global features are first reshaped and then
processed with 1D convolution operations, respectively, to
capture inter-channel dependencies. The convolution kernel
size k for the 1D convolution is dynamically determined[19]
based on the number of input channels C, as shown in
Equation (1):
log,(C) + 9

v gl

where C is the number of channels, k is the size of the
convolutional kernel, and ~ and b are hyperparameters, both
set to a default value of 2. To ensure that the kernel size is
odd, 1 is added to k if it is initially even. This adaptive
kernel-size design allows the model to efficiently capture
inter-channel dependencies across different network layers
and input resolutions.

In the design of the DMCA, the Unpooling of Average
Pooling (UNAP) operation plays a crucial role, as it is not
only used to resize the attention map but also facilitates
the fusion of local and global features, as shown in Fig. 5.
To achieve effective integration of information at different
scales, DMCA introduces a dynamic weighting mechanism
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Fig. 4. Overview of the DMCA mechanism
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that adaptively balances the contributions of local and global
attention using learnable parameters. This mechanism en-
ables the network to dynamically adjust the influence of each
attention branch according to the semantic and structural
requirements of the input features. A sigmoid function is
subsequently applied to generate the corresponding local and
global attention weights. This is achieved through a learnable
parameter /, which is processed by the sigmoid function to
ensure that the weight values lie within the range [0, 1]:

w = o(l) )

where o represents the sigmoid function. The final attention
map A is obtained by dynamically fusing the local and global
attention maps with learned weights:

A=Gx(1l—w)+Lxw 3)

where G is the global feature, L is the local feature, and
w is the dynamic weighting value. This dynamic weighting
enables the model to adaptively modulate the contributions
of local and global information based on the input features,
thereby improving its ability to handle diverse vessel struc-
tures and image characteristics.

Finally, through an Unpooling of Average Pooling (UNAP)
operation, the DMCA resizes the fused attention maps A’ to
match the dimensions of the original input feature maps and
performs element-wise multiplication with the original input
features:

Y=XxA 4

In this way, the DMCA effectively fuses and dynamically
balances local and global information. The UNAP operation
plays a crucial role in this process, being used not only to
align the global attention dimensions with the local attention
but also to resize the final fused attention map to match the
dimensions of the original input. This design enables DMCA
to efficiently capture multi-scale features while maintaining
computational efficiency, thereby enhancing performance in
complex medical image analysis tasks.

C. Enhanced Partial Convolution (EPConv)

This subsection introduces a novel convolution operation,
Enhanced Partial Convolution (EPConv). Fig. 6 illustrates
its structure and operational mechanism. The method is
designed to improve both the performance and efficiency of
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Fig. 6. Overview of the EPConv

deep neural networks in processing complex medical images.
The core idea of EPConv is to selectively process a subset
of input feature map channels while integrating Batch Nor-
malization (BN) and ReLU activation, thereby enhancing the
model’s representational capacity and training stability.

EPConv works as follows: given an input feature map X
belongs to R&HW where C is the number of channels, and
H and W are the height and width of the feature map, respec-
tively, it first splits the channels of the input feature map into
two parts, one of which is processed while the other is kept
unchanged. For the channels to be processed, EPConv applies
a standard convolution operation, immediately followed by
batch normalization and ReLLU activation. The unprocessed
channels are retained as is. Finally, EPConv concatenates
the processed and unprocessed channels along the channel
dimension to produce the final output.

The introduction of batch normalization and nonlinear
activation functions is a key innovation of EPConv, and
this design offers several important advantages. First, by
processing only a subset of channels, EPConv significantly
reduces computational cost and parameter count, thereby
improving model efficiency. This is particularly important
for processing high-resolution retinal vessel images, as it
enables the construction of deeper networks under limited
computational resources. At the same time, retaining some
unprocessed channels preserves the original input informa-
tion within the network, which is crucial for capturing
the subtle features of retinal vessels. For example, retain-
ing original color and texture information may be critical
for distinguishing fine arteries from veins. Second, batch
normalization mitigates the problem of internal covariate
shift. In deep neural networks, the distribution of inputs at
each layer varies with the parameters of previous layers, a
phenomenon known as internal covariate shift. Batch normal-
ization stabilizes this distribution by normalizing the inputs
of each layer to have zero mean and unit variance. This not
only accelerates training but also enables the use of higher
learning rates, further improving training efficiency. This
property is particularly important when dealing with retinal
vessel images, which often exhibit significant variations in
brightness and contrast. Third, the ReLU activation function
introduces nonlinearity, thereby enhancing the representa-
tional capacity of the model. Nonlinear activation allows
the network to learn more complex feature representations,
which is essential for capturing the intricate morphology and
topology of the retinal vasculature. An additional advantage
of ReLU is the simplicity of its derivatives, which helps
mitigate the vanishing gradient problem and supports more
stable and efficient network training.

Overall, EPConv provides an efficient and practical solu-
tion for the task of retinal arteriovenous vessel segmentation
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by integrating partial processing, batch normalization, and
nonlinear activation in its structure. This design not only
improves the accuracy of the model but also maintains
computational efficiency, making it a powerful tool for
analyzing complex medical images. With further research
and optimization, EPConv is expected to play an important
role in advancing medical image analysis and supporting the
early diagnosis of related diseases.

IV. EXPERIMENTS
A. Datasets

In this study, we utilized the RITE dataset[20] and the
LES-AV dataset[21] to evaluate the performance of our
proposed method. The RITE dataset comprises 40 image
sets, evenly divided into training and testing subsets. Each set
contains a fundus photograph, a vascular reference standard,
and an arterial/venous reference standard. All images have
a resolution of 565x584 pixels and are derived from the
DRIVE dataset[22], ensuring consistent quality and structure.
The LES-AV dataset consists of 22 fundus images with
vessels manually annotated as arteries and veins by experts,
providing high-quality labels with strong clinical relevance.
Representative examples from both datasets, along with their
arterial and venous annotations, are shown in Fig. 7.

(a) RITE dataset (b) LES-AYV dataset

Fig. 7. Examples of fundus images from two datasets

B. Implementation details

The experiments were conducted on a single NVIDIA
GeForce RTX 3060Ti GPU using the PyTorch deep learning
framework and evaluated with 4-fold cross-validation on the
RITE and LES-AV datasets. To enhance model generaliza-
tion, various data augmentation techniques were applied, in-
cluding stochastic affine transformations, HSV adjustments,
flipping, and cropping. DIMAN was trained using the Adam
optimizer with a learning rate of le-4 and a batch size of 1
for 20,000 epochs. Mixed-precision training was employed
to accelerate convergence and reduce memory consumption.
Multi-process training was adopted, with each fold trained
in a separate process, and early stopping was used to prevent
overfitting. For reproducibility, a fixed random seed was
set. During training, GPU resources were fully utilized
with CUDA acceleration and cudnn.benchmark enabled, and
memory usage was optimized. The training results for each
fold, including optimal model weights, configurations, and
logs, were saved separately for subsequent analysis.

C. Evaluation metrics

To objectively evaluate the performance of the proposed
method for retinal arteriovenous vessel segmentation, three
widely used evaluation metrics were adopted: sensitivity,

specificity, and accuracy. These metrics collectively reflect
the model’s discriminative ability and robustness, providing
a reliable basis for performance assessment. In the binarized
segmentation map, pixels correctly identified as vessels are
denoted as True Positives (TP), while those incorrectly
identified as vessels are designated as False Positives (FP).
Pixels correctly identified as non-vessels are labeled True
Negatives (TN), while those incorrectly classified as non-
vessels are labeled False Negatives (FN). The definitions and
significance of these evaluation metrics are detailed below.
Sensitivity (Sen) evaluates the model’s ability to correctly
identify arterial and venous vessels, reflecting the proportion
of true positives among all actual vessels. It is calculated as

follows:
TP

“TPYFN

Specificity (Spe) measures the model’s ability to correctly
identify non-target regions, such as background areas or
vessels of the opposite class, reflecting the proportion of true
negatives among all actual non-target pixels. It is calculated
as follows:

Sen )

TN

(TN + FP) ©

Spe =

Accuracy (Acc) is the most intuitive metric for assessment,
but it may not fully reflect the model’s performance in cases
of class imbalance. It is calculated as follows:
B TP+ TN
~ TP+TN+FP+FN

Ace @)

D. Experimental Results and Analysis

(1) Comparative Experimental Analysis

To validate the effectiveness of the proposed DIMAN
network for retinal arteriovenous vessel segmentation, we
conducted systematic comparative experiments with several
existing mainstream methods to evaluate its performance
on two publicly available datasets, RITE and LES-AV. The
results of the comparison on the RITE dataset were presented
in Table I, while those on the LES-AV dataset were shown
in Table II.

As shown in Table I, the proposed DIMAN network
outperformed other state-of-the-art methods on the RITE
dataset in terms of three widely adopted evaluation metrics:
sensitivity, specificity, and accuracy. Specifically, DIMAN
achieved the best performance across all three metrics, with
a sensitivity of 96.04%, a specificity of 97.40%, and an accu-
racy of 96.50%, demonstrating a clear improvement over ex-
isting approaches. In sensitivity, DIMAN surpassed the next
best method, TW-GAN, which reached 95.38%, by 0.66%,
highlighting its superior capability in detecting vessel pixels,
particularly thin or low-contrast ones. In specificity, DIMAN
slightly outperformed TW-GAN at 97.20% and NM-GAN-
IUNet at 97.25%, demonstrating an enhanced capacity to
discriminate vessels from background regions. With respect
to accuracy, DIMAN exceeded NM-GAN-IUNet at 96.46%
by 0.16% and RRWNet at 96.16% by 0.34%. CMP-OSNet
and SegNeXt showed lower sensitivities and accuracies,
while Coupling performed close to DIMAN but remained
slightly below, emphasizing DIMAN’s superior and balanced
segmentation performance. Although the gains were modest,
they were meaningful for medical image analysis, where
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TABLE I TABLE I
COMPARATIVE EXPERIMENTAL RESULTS FOR THE RITE DATASET COMPARATIVE EXPERIMENTAL RESULTS FOR THE LES-AV DATASET
Methods Sen(%) Spe(%) Acce(%) Methods Sen(%) Spe(%) Acce(%)
ISAVC 90.00 90.00 92.30 U-Net 86.40 90.44 87.71
GenS 71.00 74.00 72.00 DeepLabv3+ 89.27 87.94 88.46
Multi-task CNN 93.40 95.50 94.50 UA-Net 88.00 85.88 86.04
FCN 95.13 92.78 93.81 UA-AV 88.00 85.00 86.00
UA-AV 89.00 90.00 89.00 AVNet 94.26 90.90 92.19
TR-GAN 94.53 96.31 95.46 AV-NET 94.40 94.60 93.60
AVNet 88.63 92.72 90.81 VC-Net 94.25 94.67 93.46
AV-NET 93.70 94.30 94.30 WNet 86.86 93.56 90.47
MTLB 87.47 90.89 89.24 RMHAS 94.00 90.00 92.00
SegRAVIR 93.10 94.31 95.13 MSC-Net 90.30 91.55 90.72
TW-GAN 95.38 97.20 96.34 CMP-OSNet 69.00 90.00 92.00
WNet 88.86 96.04 92.76 RRWNet 93.06 92.21 93.42
MMF-Net 94.10 93.79 93.95 Coupling 94.03 94.14 93.18
CMP-OSNet 70.00 95.00 95.00 DBMAE-Net 89.53 94.20 93.10
NM-GAN-IUNet 91.78 97.25 96.46 Ours 95.33 94.81 93.75
SPC-Net 93.37 95.37 94.42
RRWNet 94.87 96.37 95.7
Coupling 2001 97:20 9647 work also achieved outstanding results on the LES-AV
SegNeXt 93.70 95.60 94.70 dataset, consistently surpassing existing methods in sensitiv-
Ours 96.04 97.40 96.50

small improvements can enhance clinical decision-making.
Methods like TW-GAN and RRWNet achieved competitive
results on some metrics but did not consistently outperform
DIMAN, with TW-GAN achieving high specificity but lower
sensitivity, and RRWNet showing balanced performance yet
inferior accuracy and sensitivity.

As presented in Table II, the proposed DIMAN net-

= R
mE

(b) Ground truth

(¢) UNet

(a) Original image

Fig. 8.

ity, specificity, and accuracy. DIMAN obtained a sensitivity
of 95.33%, a specificity of 94.81%, and an accuracy of
93.75%, ranking first across all three evaluation metrics.
In terms of sensitivity, DIMAN significantly outperformed
most competitive approaches, such as AV-NET and AVNet,
which reported 94.40% and 94.26%, as well as Coupling
and DBMAE-Net, which achieved 94.03% and 89.53%,
demonstrating its superior capability in accurately identifying
vessel regions, particularly in challenging conditions such
as bifurcations or low-contrast areas. With respect to speci-
ficity, DIMAN exceeded the second-best method, VC-Net,

- l!- -

(d) WNet

(e) TW-GAN (f) RRWNet (g) Ours

Comparison of visualization results on the RITE dataset. (a) original fundus image; (b) labeled true values; (c) U-Net; (d) WNet; (e) TW-GAN;

(f) RRWNet; (g) DIMAN (our method). Cyan color indicates veins and purple color indicates arteries.
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(a) Original image

(b) Ground truth (¢) UNet

(d) WNet (e) RRWNet (f) Ours

Fig. 9. Comparison of visualization results on the LES-AV dataset. (a) original fundus image; (b) labeled true values; (c) U-Net; (d) WNet; (¢) RRWNet;
(f) DIMAN(our method). Cyan color indicates veins and purple color indicates arteries.

which achieved 94.67%, and also outperformed Coupling
and DBMAE-Net, which obtained 94.14% and 94.20%,
indicating its enhanced ability to suppress false positives and
avoid misclassification of background areas. Furthermore,
DIMAN achieved the highest overall segmentation accuracy
of 93.75%, outperforming strong baselines such as VC-
Net, AV-NET, Coupling, and DBMAE-Net, highlighting its
robust generalization capacity across diverse vessel struc-
tures. Several methods demonstrated strong performance in
individual metrics; for example, VC-Net achieved the highest
specificity, while AV-NET achieved strong accuracy; how-
ever, they did not consistently achieve high scores across all
evaluation aspects. In contrast, DIMAN maintained balanced
and top-level performance, reinforcing its effectiveness and
reliability for practical applications.

To visualize the performance advantages of the DIMAN
model, we presented its segmentation results on the RITE and
LES-AV datasets and compared them in detail with those of
other methods for the arterial-venous segmentation task in
Figs. 8 and 9. These figures displayed the original fundus
images, ground truth annotations, and A/V segmentation
results generated by U-Net[23], WNet[24], TW-GANI[25],
RRWNet[26], and DIMAN. Visually, DIMAN achieved the
best performance on both datasets, particularly in handling
fine blood vessels and complex intersection regions. In Figs.
8 and 9, colored boxes highlighted the differences in per-
formance for fine vessel segmentation among the methods.
It was evident that DIMAN more accurately recognized and
segmented these fine vessels, whereas methods such as U-Net
and WNet tended to miss or incorrectly segment these areas.
Furthermore, DIMAN effectively preserved vessel continuity
and segmentation consistency, especially at crossings and
bifurcations, yielding stable segmentation results.

Combining quantitative evaluation and visualization re-
sults, the DIMAN network demonstrated excellent perfor-
mance and good generalization ability in the retinal artery-
vein segmentation task. It not only achieved improvements

in individual metrics but also realized a comprehensive
improvement in three key metrics: sensitivity, specificity,
and accuracy. The visualization results further confirmed
DIMAN’s superiority in handling complex and fine vascular
structures. This demonstrated that DIMAN was able to rec-
ognize vascular structures more accurately while effectively
reducing segmentation errors, providing a more reliable
tool for clinical applications. DIMAN’s success validated
the effectiveness of its innovative architecture, especially
the dynamic mixed channel attention mechanism and the
enhanced partial convolution module, in processing complex
medical images.

(2) Ablation Experimental Analysis

Ablation experiments are a commonly used analytical tool
for assessing the impact of individual key modules on a
model’s overall performance. In this study, we examined
performance variations by selectively removing or replacing
specific components of the model, thereby revealing the ac-
tual contribution of each network component. This approach
not only facilitated a deeper understanding of the model
architecture but also provided a theoretical foundation for
subsequent optimization.

To validate the practical effectiveness of the key modules
in the proposed DIMAN, we conducted a series of ablation
experiments focusing on two core innovative modules in
the model: dynamic mixed channel attention and enhanced
partial convolution. These experiments aimed to systemat-
ically analyze the specific contribution of each module to
the model’s performance and further substantiate its critical
role in improving the accuracy and robustness of retinal
arteriovenous vessel segmentation.

In this experiment, ablation experiments were conducted
on the RITE and LES-AV datasets to evaluate the effects
of the base model, the DMCA mechanism, the EPConv
module, and their combinations. The results of the ablation
experiments on the RITE dataset and LES-AV dataset were
shown in Table III.
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TABLE III
RESULTS OF ABLATION EXPERIMENTS ON RITE AND LES-AV
DATASETS

Dataset DMCA EPConv Sen(%) Spe(%) Acc(%)
X X 94.87 96.37 95.7
v X 95.32 97.16 96.35
RITE
X v 95.32 96.78 96.23
v v 96.04 97.4 96.5
X X 93.06 92.21 93.42
v 93.22 92.31 93.62
LES-AV
X v 93.24 92.99 93.58
v v 95.33 94.81 93.75

As shown in Table III, the ablation experiments on both the
RITE and LES-AV datasets demonstrated the contributions of
the two modules, DMCA and EPConv, to overall model per-
formance. On the RITE dataset, the baseline model achieved
an accuracy of 95.7% without either module. Incorporating
the DMCA or EPConv module individually improved the
accuracy to 96.35% and 96.23%, respectively, indicating
that each module independently enhanced the model’s effec-
tiveness. When both modules were integrated, the accuracy
further increased to 96.5%, achieving the best performance
and confirming the synergistic effect of DMCA and EPConv.
In addition, the sensitivity and specificity also reached their
highest values of 96.04% and 97.4%, respectively, demon-
strating an improved capability to identify fine vessels while
reducing false detections.

A similar trend was observed on the LES-AV dataset. The
base model achieved an accuracy of 93.42%, which increased
to 93.62% and 93.58% with the inclusion of the DMCA
and EPConv modules, respectively. The highest accuracy
of 93.75% was obtained when both modules were used in
combination. Compared with the base model, the addition of
DMCA and EPConv not only significantly improved segmen-
tation accuracy but also enhanced the model’s generalization
and robustness, particularly in specificity, which increased
markedly from 92.21% to 94.81%. This notable improvement
indicated that the model was more reliable in distinguishing
arteries from veins.

In summary, the ablation experiments fully validated the
effectiveness of the DMCA module for dynamic feature
enhancement and the advantages of the EPConv module
in improving feature representation and computational ef-
ficiency. Their combination not only consistently improved
performance across different datasets but also demonstrated
the strong potential of the DIMAN architecture for handling
complex vascular structure tasks.

V. CONCLUSION

The proposed Dynamic Iterative Multi-scale Attention
Network (DIMAN) provides a novel and effective approach
for retinal arteriovenous vessel segmentation. By incorporat-
ing the Dynamic Mixed Channel Attention (DMCA) mecha-
nism and the Enhanced Partial Convolution (EPConv) mod-
ule, DIMAN addresses several critical challenges in retinal

vessel segmentation. Experimental results demonstrate that
DIMAN achieves outstanding performance on two public
datasets, RITE and LES-AV, with significant improvements
in segmentation accuracy, sensitivity, and specificity. The
ablation studies further confirm the effectiveness of both the
DMCA and EPConv modules, which improve performance
individually and show significant synergistic effects when
combined. Specifically, the DMCA mechanism enhances the
model’s ability to perceive complex vascular structures by
adaptively balancing local and global features, while the
EPConv module improves feature representation efficiency
without increasing computational cost. These innovations
advance the state of the art in retinal vessel segmentation and
offer new perspectives for broader medical image analysis.
The successful application of DIMAN highlights its potential
in handling high-resolution medical images and complex
vascular networks, offering a reliable tool for automated
retinal analysis in clinical settings. Future work may focus
on optimizing the DMCA and EPConv modules, exploring
more efficient iterative refinement strategies, and extending
DIMAN to other medical imaging domains to facilitate early
disease diagnosis and prevention.
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