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Abstract—Studies involving epidemic models are usually
focused only on the dynamical analysis of the model itself
or the evaluation of certain intervention strategies, thereby
overlooking an important issue that may also arise during an
epidemic: the optimal management of medicine inventory. In
this paper, we address this issue by constructing a medicine
inventory model based on an SIS-type epidemic model involving
immigrants. We first study the epidemic model in its continuous
form, verifying the non-negativity of its solutions, determining
its equilibria and basic reproduction number, and analysing the
stability of its equilibria. Since the model’s exact solution is not
easily obtainable, we discretise the model using the forward
Euler method, and study the dynamical properties of the
resulting discrete model. Using the estimates for the numbers
of infected individuals at certain time steps provided by the
discrete epidemic model, we then construct a finite-time-horizon
medicine inventory model, in which the medicine’s demand
is assumed to be proportional to the number of infected
individuals at any given time. The model takes the form of
an expression for the medicine’s total cost, which is the sum of
its order, purchase, and holding costs, as a univariate function
of the positive-integer inter-order time-interval. We conduct
numerical simulations to illustrate the application of our
epidemic and inventory models in determining the inter-order
time-interval that minimises the medicine’s total cost, using
two sets of parameter values representing two qualitatively
different cases: a disease-free and an endemic case. Finally,
we carry out a sensitivity analysis, which reveals that in both
cases, the disease’s basic reproduction number depends most
sensitively on the population’s natural death coefficient, whereas
the epidemic peak and the minimum total cost depends most
sensitively on the disease’s incidence rate.

Index Terms—medicine, inventory model, epidemic model,
basic reproduction number, sensitivity analysis

I. INTRODUCTION

HE recent COVID-19 pandemic has led to a significant

growth of the number of mathematical studies that
analyse the transmission of infectious diseases using
epidemic models [8], [10], [26], [30], [34], [39], [40],
[50], [53]. In most of such studies, however, the primary
focus has generally been on understanding the transmission
dynamics of the disease itself, or assessing the effectiveness
of various intervention strategies such as vaccinations,
quarantines, or social restrictions. This leaves overlooked
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another equally important issue that may arise during
an epidemic: the optimal management of pharmaceutical
inventory. Indeed, the scarcity of pharmaceutical items
resulting from suboptimal inventory management may
undermine the disease’s overall eradicative effort. A possible
approach to address this issue is to study how pharmaceutical
inventory can be managed with the aid of mathematical
models for inventory management. While there has been
a wealth of studies focusing solely on epidemic models,
studies that construct pharmaceutical inventory models based
on epidemic models appear to be relatively scarce.

An existing class of studies closely related to our present
interest comprises those that develop inventory models for
pharmaceutical items without the involvement of epidemic
models. Such studies have been conducted particularly
extensively by Uthayakumar and his collaborators. In 2016
and 2017, Uthayakumar and Karuppasamy constructed
an inventory model for a pharmaceutical item that
features a quadratic time-dependent demand and a linear
time-dependent holding cost [43], and subsequently extended
the model by incorporating shortages [44] and payment
delays [45]. In these three models, the pharmaceutical
item under consideration was assumed to undergo a
constant deterioration. In 2018 and 2019, the same
authors considered alternative forms of time-dependent
demand [46] as well as time-proportional deterioration
[47]. Also in 2018, Uthayakumar and Tharani incorporated
complete backlogging into a modest inventory model for
a pharmaceutical item with a quadratic time-dependent
demand, a constant holding cost, and a constant deterioration
[48].

Aside from Uthayakumar’s contributions, Zhou et al.
[52], in 2013, constructed a multi-item inventory model
for deteriorating pharmaceutical items that accommodates
both an arbitrary number of different items and space
constraints. In 2018, Kumar and Srivastava [19] constructed
an inventory model for a deteriorating pharmaceutical item
with a ramp-type demand, while Li et al. [20] constructed
an inventory model for a deteriorating pharmaceutical item
that features a stochastic lead time. Rastogi and Singh, in
2019, constructed inventory models for a pharmaceutical
item whose deterioration follows the Weibull distribution,
with price-dependent demands and partial backlogging [31],
[32], which were subsequently extended by Kumar et al.
[18] in 2021 by taking into account inflation and lost sales.
Most recently, Indrawati et al. [14], in 2024, constructed
an inventory model for a pharmaceutical item with a
linear time-dependent demand, a constant deterioration, and
complete backlogging.
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Each of the inventory models in the works cited above,
although explicitly stated to be designed for pharmaceutical
items, was constructed under the assumption that the item’s
demand follow a certain functional form, such as constant, a
linear or a quadratic function of time, or an algebraic function
of the item’s selling price, often without any justification for
whether such an assumption reasonably reflect the item’s
actual demand that arises at the time of an epidemic.
The absence of such a justification subsequently raises
the question of what distinguishes these inventory models,
which were specifically designed for pharmaceutical items,
compared to inventory models for generic items, the studies
of which have been extremely abundant in the literature.

In this paper, we adopt a novel approach by constructing
a modest inventory model for a pharmaceutical item under
the assumption that the item’s time-dependent demand is
governed by a certain epidemic model. More precisely,
we shall focus on a specific type of epidemic model:
an SIS-type epidemic model, whereby at any given time
each individual in the population is either susceptible or
infected, and on a specific pharmaceutical item: medicine. In
2021, Saikh and Gazi [35] constructed an SIS-type epidemic
model that takes into account the presence of immigrants,
assuming that a certain fraction of the immigrants enter
the population in an infected state. In this paper, we
shall utilise a special case of this model by Saikh and
Gazi, where the aforementioned fraction is set to be zero,
meaning that all entering immigrants are susceptible. We
shall construct a finite-time-horizon inventory model [27],
[28], [29] for the disease’s medicine, which takes the form
of an expression for the total cost incurred by the medicine’s
monopolistic distributing company over a specified epidemic
duration, which is to be minimised over all feasible
constant positive-integer inter-order time-intervals. Drawing
inspiration from the classical EOQ-type inventory model [25,
Chap. 2], we shall assume that the total cost is the sum of
three cost components: the medicine’s order cost, purchase
cost, and holding cost.

The rest of the paper is organised as follows. In the
upcoming section II, we construct our epidemic model in
its continuous form, verify the non-negativity of its solutions,
analyse its dynamical properties, and construct the associated
medicine inventory model. Since in the latter the demand is
assumed to be proportional to the time-dependent number of
infected individuals, whose explicit expression is not easily
obtainable, in the subsequent section III we construct a
discrete analogue of our epidemic model using the forward
Euler method, and briefly study its dynamical properties.
Using the estimates for the time-dependent number of
infected individuals at certain time steps generated by
our discrete epidemic model, we then construct a discrete
analogue of our medicine inventory model. In section IV, we
conduct numerical simulations to illustrate the applicability
of both our epidemic and inventory models. We also analyse
the sensitivity of three key quantities: the epidemic model’s
basic reproduction number, the epidemic peak, and the
company’s total cost, with respect to small changes in the
involved parameters. In the final section V, we state our
conclusions and discuss possible directions for future studies.
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Fig. 1. Compartmental diagram of our model (1).

II. THE EPIDEMIC AND INVENTORY MODELS

In this section, we first construct our epidemic
model in a continuous form and establish its biological
feasibility (subsection II-A). Subsequently, we analyse the
epidemic model dynamically, determining its equilibria, basic
reproduction number, and stability of equilibria (subsection
II-B). Finally, we construct our medicine inventory model,
which takes the form of an expression for the total cost
incurred by a company that distributes medicine for all
infected individuals over a specified epidemic duration,
as a function of the company’s inter-order time-interval
(subsection II-C).

A. Construction and biological feasibility of epidemic model

Suppose that a disease spreads across a population in
such a way that at any given time, each individual in the
population belongs to exactly one of the following two
compartments: susceptible (S) and infected (I). We denote by
S = S(t) and I = I(t) the numbers of individuals belonging
to the susceptible and infected compartments, respectively, at
any given time ¢ > 0. Assume that the number of individuals
in each compartment evolves over time in the way we now
describe. First, the number of susceptible individuals increase
due to the entries of newborns and immigrants at the constant
rates of A,k > 0, respectively, and the entry of recovering
infected individuals at the linear rate of €I, where ¢ > 0.
The same number decreases due to infections occurring at
the bilinear rate of 8SI, where 8 > 0 and natural deaths
occurring at the linear rate of §S, where § > 0. On the
other hand, the number of infected individuals increases due
to the infections at the rate of 8SI and decreases due to
recovery at the rate of €/ and deaths due to the disease at
the rate of (6 + 1) S, where p > 0. These assumptions lead
to the compartmental diagram presented in Figure 1 and to
the SIS-type epidemic model

g = A+ kK —BSI— 68 +el,

(D
dI
o = BSI— (@t

Table I summarises the parameters involved in this model,
along with their values used in our numerical simulations.
Notice that we use days as the unit for time in our model.
We remark that the above model is a special case of the
SIS-type model constructed by Saikh and Gazi [35, eqn.
(3.2)], obtained by setting » = 0.

Let us now verify our epidemic model’s biological
feasibility. For this purpose, consider a solution (S,I) =
(S(t),I(t)) associated to an initial condition in R%, where
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TABLE I
SUMMARY OF PARAMETERS INVOLVED IN OUR EPIDEMIC MODEL (1)
AND THEIR VALUES USED IN OUR NUMERICAL SIMULATIONS.

Parameter| Description Unit Yalue for Source
simulation

entry rate of I, [42], [51],

A newborms individual/day 0.14001904 [11]. [12]

) |cnuy rae of individual/day 0.5 simulated
immigrants
incidence PR . 0.00005 R

B coefficient 1/(individual x day) 0.00006 simulated

§  |natural death 1/day 0.00024833 [13]
coefficient
death-by-disease

1/d: . 1 1

m coefficient /day 0.00036133 [13]
recovery

€ coefficient 1/day 0.1287 [49]
initial number of

S5(0) susceptible individual 3,000 simulated
individuals
initial number of
I(0) |infected individual 1 simulated

individuals

R, = [0, 00). First, since at each t* > 0 where I (¢t*) =0
we have that dI/dt = 0, then the value of I(t) remains
non-negative for all ¢ > 0. On the other hand, since at each
t* > 0 where S (t*) = 0 we have that dS/dt > A + x > 0,
then the value of S(t) also remains non-negative for all ¢ > 0.
This proves that the set Ri is positively invariant under our
model (1).
Next, adding the two equations in (1) gives

dN
T =A+K—0N—pul < A+K—0N,
ie., AN
— + 0N <A ,
I + + K

where N = N(t) = S(t) + I(t). Multiplying both sides by
e%t gives
d d [A+K 5 A+ kK
dt[etN(t)]gdt[ 5 ! B }7

which, since the square-bracketed functions both evaluate to
N(0) at t = 0, implies that the following holds for all ¢ > 0:

+ N(0)

() < 2 4 (o) - A0
5 5
ie., \ \
N < 258 4 [Ny - 28 o,
5 5
Letting

A+ K
Q:{(S,I)GR1:S+1< : }

this shows that if (S(0),1(0)) € € then the solution
(S, I) remains forever in €. Our conclusion is the following
theorem (cf. [35, p. 4]).

Theorem 1. The sets R? and

A+ K
Q{(S,I)eRi:S+I< 5 }

are both positively invariant under our epidemic model (1).

B. Equilibria and stability
Let us now discuss our epidemic model’s equilibria and
their stability [33], [38]. The equilibria of the epidemic model
(1) satisfy the system
0=A+rk—8SI—0S+¢l,
0=8ST—(6+p+e)l,
The second equation can be written as
0=(8S—d6—p—e)l,

which gives I = 0 or S = (0 +p+¢) /8. In the former
case, the first equation gives S = (A + k) /9, leading to the
disease-free equilibrium

A+
ey = (S0, Io) = <5K,0> ,

which exists in Ri for all sets of parameter values. In the
latter case, the first equation gives

BO+K) =60+ p+e)

1= ,
B0+ u)
leading to the endemic equilibrium
d+p+e ﬁ()\+n)5(5+u+5))
=(51,11) = , .
er = (51, 11) < 3 36+ 0

2
Since on the right-hand side of the second equation of our
epidemic model (1),

dl

the first term represents the entry rate of new infections to
the infected compartment, while the second term contains
all remaining transition rates to and from the infected
compartment, the next-generation approach of van den
Driessche and Watmough [4], [23] gives the following
expression of our epidemic model’s basic reproduction
number:

B A+ k)
§(0+p+e)
which enables us to rewrite our epidemic model’s endemic
equilibrium (2) as

el :(51,11):<

Ro=PBSo(0+p+e) " =

d+p+e 5(5+u+5)(9%0—1)>
g B(6+p) ’

so that e; exists in R% if and only if Rg > 1.

Theorem 2. Our epidemic model (1) has the basic
reproduction number

BA+ k)
Ro= ——— 3
T 50 +pte) )
and two equilibria: a disease-free equilibrium
Ak
eo = (S0, Io) = <630> ; “)

which belongs to ]R?._ for all sets of parameter values, and
an endemic equilibrium

B [0+ pte 6(0+pu+e)(Ro—1)
el(Slajl)< /8 ) ﬁ((s‘i‘/l) >a

which belongs to R? if and only if R¢ > 1.

®)
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Next, since the Jacobian matrix of our epidemic model (1)
is given by
—pI -9 e—pBS

BI BS—(+pu+e)|’
the Jacobian matrix at the disease-free equilibrium ey is the
upper-triangular matrix

J(S,1) =

B 1 O )]
J(eo) = o
0 —(0+p+e)(l—-%NR)
whose eigenvalues are its diagonal entries — and
—(6+p+e)(1—R). Consequently, ey is locally

asymptotically stable if Ry < 1,
Ro = 1, and is unstable if Ry > 1.

On the other hand, the Jacobian matrix of our epidemic
model (1) at the endemic equilibrium e,

06+ pte)(Ro—1)

is non-hyperbolic if

-6 —(6+
I (er) = O+ p (6 +n)
0(0+p+e)(Ro—1) 0 ’
0+

has the characteristic polynomial
S(0+p+e)(Ro—1)

rI—J(e)| =7%+ 4+ 6] r
=3 (er) S
+0(0+pu+e)(Ro—1).
If Rg > 1, then the non-leading coefficients of this

polynomial are both positive, so that e; is locally
asymptotically stable by the Routh-Hurwitz criterion [I1,
sec. 4.5]. If My = 1, then the matrix J (e;) has a zero
eigenvalue, so that e; is non-hyperbolic. If Ry < 1,
then the above polynomial has a negative discriminant,
and hence real eigenvalues, but its constant coefficient’s
negativity ensures the existence of a positive eigenvalue,
implying that e; is unstable. We have therefore proved
the following theorem, which indicates that our model’s
two equilibria cross and exchange their stability through a
forward transcritical bifurcation at SRg = 1.

Theorem 3. The following holds with regards to the
disease-free and endemic equilibria ey and e; of our
epidemic model (1). If Rg < 1, then ey is locally
asymptotically stable, while e; is unstable. If 53y = 1, then
ep = e is non-hyperbolic. If Ry > 1, then e( is unstable,
while e; is locally asymptotically stable.

C. Construction of inventory model

To construct our inventory model, let us first fix an
integer time horizon 7' > 0 representing the duration of the
epidemic. Recall that the time in our model is measured in
days. We assume that each infected individual consumes a
specific medicine at an average dosage of a > 0 units per
day, where the distribution of this medicine is controlled
entirely by a single company. Suppose that the company
orders the medicine from a certain supplier at the per-unit
purchase price of II dollars, where the per-order ordering
cost is I' dollars, and that the medicine incurs a per-unit
per-day holding cost of A dollars. Suppose also that to
meet the medicine demands in the entire epidemic duration

—from day 0 to day 7— the company places repeated orders
with a regular inter-order time-interval of m days, which is
assumed to be no longer than a certain maximum inter-order
time-interval of my,x days. More precisely, the company
places | T'/m]+1 orders where, fori € {0,...,|T/m] — 1},
the ¢-th order is placed on day ¢m to meet the medicine
demands on days im, ..., (i +1)m — 1, and the |T/m]-th
order is placed on day |7/m]|m to meet the medicine
demands on days |T'/m]|m , T. We aim to formulate
the company’s total cost to meet the medicine demands in
the entire epidemic duration as a univariate function of m,
and later in our numerical simulation, determine the value of
m that minimises the total cost.

As in the classical EOQ-type inventory model [25, Chap.
2], we assume that the company’s total cost 7C (m) is the
sum of three cost components: the company’s order cost
OC (m), purchase cost PC (m), and holding cost HC (m),
which we now construct separately. First, the fact that the
company places |T/m]| + 1 orders, where the per-order
ordering cost is I' dollars, implies the following expression
for the company’s order cost:

OC (m) = QTJ + 1> r. (6)

m

Next, since for every ¢ € {0,...,|T/m| — 1}, the total
demand of medicine on days im, ..., (i+1)m — 1
is azgzﬁim "7 (j) units, whereas the total demand of
medicine on days |T/m|m, ..., T is aZ?:LT/meI(j)
units, recalling that the medicine entails a per-unit purchase
price of II dollars, we obtain the following expression for
the company’s purchase cost:

|T/m]—1(i+1)m—1 T
2 2 T0E )

j=im i=1T/m|m

Finally, we notice that for every i € {0,...,|T/m| — 1},
since on day ¢m the company purchases Q; =
Zg‘tzm "7(4) units of medicine, then the number of

PC (m) =T« I()|-

stored medicines on each day k € {im,...,(i+1)m — 1}
are given by
(i+1)m—1 k (i+1)m—1
Yo I -a) IG=a Y 1)
j=im Jj=im j=k+1

Moreover, since on day |7/m]m the company purchases
Q| 1/m) OLZ]T:LT/meI () units of medicine, then
the number of stored medicines on each day k €
{IT/m]m,..., T} are given by

T k T
a S IG-a Y IG)=a 3 I()
J=|T/m|m ji=1T/m|m j=k+1

Recalling that the medicine incurs a per-unit per-day holding
cost of A dollars, this leads to the following expression for
the company’s holding cost:

| T/m]—1 (i+1)m—1 (i+1)m—1

2 2 2

k=im j=k+1

T T
+oY Y I (8)

k=|T/m|m j=k+1

HC (m) = A
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TABLE II
SUMMARY OF PARAMETERS INVOLVED IN OUR INVENTORY MODEL (9)
AND THEIR VALUES USED IN OUR NUMERICAL SIMULATIONS.

Parameter Description Unit Yalue tjor Source
simulation

T time horizon day 8,000 simulated

maximum
Mmax inter-order day 365 simulated

time-interval
medicine’s

II per-unit purchase $/unit 1 simulated
price
medicine’s

T per-order $/order 500 2]
ordering cost
medicine’s

A per-unit per-day | $/(unit x day) 0.00043836 [9]
holding cost

« medicine’s unit/day 3 simulated
average dosage

Therefore, the company’s total cost over the epidemic
duration is given by

TC (m) = OC (m) + PC (m
(2] 1) o

-y

J=\T/m|m

) +HC (m)
| T/m]—1(i+1)m—1

2 210

j=im
1(5)
| T/m]—1 (i+1)m—1 (i+1)m—1

2 2 21

k=im j=k+1

+oY Y I, ©)

k=|T/m]m j=k+1

+ Ao

and the company’s purchase quantity for each order ¢ €
{0,...,[T/m] + 1} is given by

min{(i+1)m—1,T}

>

j=im

Qi =« I (]) )
On the other hand, the company’s medicine inventory at the
end of each day t € {0,...,T} is given by

min{([¢/m]+1)m—1,T}
I(t)=a 1(j).
j=t+1
The parameters involved in our inventory model, along
with their values used in our numerical simulations, are
summarised in Table II.

III. DISCRETISATION

The expression of the company’s total cost (9) can only be
evaluated in an exact manner if an explicit expression for the
number of infected individuals at any given time is available.
In reality, such an expression is not easily obtainable.
Accordingly, we generate a sequence of estimates for the
number of infected individuals —and simultaneously for the
number of susceptible individuals— at specified time steps,
via discretisation. For this purpose, we utilise the simplest

discretisation method for systems of differential equations:
the forward Euler method. In this section, we describe the
discrete epidemic model obtained by applying the forward
Euler method to our continuous epidemic model (1), before
discussing its equilibria and their stability (subsection III-A).
Subsequently, we derive an estimate for the company’s total
cost (9) using the estimates for the number of infected
individuals at the specified time steps provided by our
discrete epidemic model (subsection III-B).

A. Discretised epidemic model and equilibria

Fixing a step size At > 0 and defining the time steps
t; = 1At for every non-negative integer 4, the forward Euler
method [17, sec. 22.3] transforms our continuous epidemic
model (1) into the discrete epidemic model

{ Sit1=8i+ (A +r—BS:I; — 6S; +¢l;) At,

Tir =T+ [B5T, — (6 + pu+e) T1] A, (10)

where S; ~ S (t;) dan I; ~ I(t;) for every non-negative
integer i. In particular, So = S(0) and I, = I(0).
Clearly, the discrete epidemic model (10) possesses the same
equilibria as our continuous epidemic model (1).

The Jacobian matrix of the discrete epidemic model (10)
is given by
3(5.T) = 1— (BI+0) At (e - BS) At }

BIAt 1+ (BS—0—p—¢)At

Evaluating this at the disease-free equilibrium e gives the
matrix

- 1—0At

T {8_6()\—&-@)
€y) =

0
0 1—(5+M+5)(1—9{0)At
having eigenvalues 1 —dAt and 1—(0 4+ p +¢) (1 — Ro) At.
In the case Ry < 1, the disease-free equilibrium eq is
a locally asymptotically stable equilibrium of our discrete
epidemic model (10) if these eigenvalues both lie inside the
unit circle. The latter holds if and only if At < 2/§ and
2

(0+p+e)(l—NRo)’

| a

At <

respectively. o
On the other hand, evaluating the Jacobian matrix J (S, I)
at the endemic equilibrium e; gives the matrix
1 d(0+p+e) (Ro—1
= o+ p
J(e1)=
(e1) 5 (6+p—+e) (Ro—1
041
whose characteristic polynomial reads

|TI—j

) + 0| At — (04p) At

)At 1

(el)| =1’ + Air + Ay,

where

S0 +p+e)(PRo—1
0+

S(O0+p+e)(Ro—1
o+ p

+6(00+p+e) (Mo —1) (A1),

A1=—2+{ )+6}At,

A2=1—[ )+5}At
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Suppose that 5y > 1. By the Schur-Cohn criterion [5, sec.
5.1], e; is locally asymptotically stable if |A1| <1442 < 2.
The second inequality holds if and only if
1 1
At < + )
d+p (b4+p+e)(Ro—1)
while the first inequality holds if and only if 1+.4; +.45 > 0

and 1 — A; + Ay > 0. While the former is a tautology, the
latter can be written as

1 1
S+p (6+pte)(Ro—1

Y

2
[At— )} > R, (12)

where

"= 5 o)
R= +
O+p  (O+p+e)(Ro—1)
4
0+ pte)(BRo-1)
If R <0, then (12) is a tautology. Otherwise, since At must
satisfy (11), the inequality (12) reduces to
1 1 =
At < + V&

d+p  (O4+p+e)(Ro—1)

Our conclusion is the following theorem.

Theorem 4. In the case PRy < 1, the disease-free
equilibrium e( of our discrete epidemic model (10) is locally
asymptotically stable if

At < min g 2
8 (0+p+e)(1—Ro) S

In the case Ry > 1, the endemic equilibrium e; of the same
model is locally asymptotically stable if

1 1 —
At < 5+u+(5+u+6)(m071)—\/max{ﬁ70}, (13)
where
— 1 1 2
B 5+u+ (6+u+5)(9‘i0—1)]
4

00 tpte)(Ro—1)

B. Discretised inventory model

For computational convenience, let us choose At € (0, 1]
such that 1/At is an integer. After specifying the values
of all involved parameters, given the initial numbers So
and I of susceptible and infected individuals, our discrete
epidemic model (10) provides the estimates S, /at and 1, /AL
for the numbers of susceptible and infected individuals S (%)
and I (t) on days t € {0,1,...,T}. The expressions (6),
(7), and (8) for the company’s order cost OC (m), purchase
cost PC (m), and holding cost HC (m) as functions of the
inter-order time interval m are thus estimated by

oo~ (|Z] 1)
m

|T/m]—1 (i+1)m—1 B
PC(m) = Il Z > Tt Z Lijat| s

j=im i=\T/m|m

|T/m]—1 (i+1)m—1 (i+1)m—1

IO

k=im j=k+1

T T B
+ > > Ly

k=|T/m]m j=k+1

HC (m) = Aa Ti/n

Consequently, the following expression estimates the
company’s total cost 7C (m) as a function of the inter-order
time interval m:

TC(m)—(H;J+1)F+Ha

T

D
J=1T/m]m
|IT/m]—1(i+1)m—1 (i+1)m—1

22 2 Ty

k=im j=k+1

T T
+ > D> Ly

k=|T/m]m j=k+1

[T/m]—1(i+1)m~—1

Z Z IJ/At

Jj=im

Tija

+ Aa

In the upcoming section, we conduct numerical simulations
using two sets of parameter values representing two
qualitatively different cases: Yig < 1 and JRg > 1, in each of
which we determine the value of m that minimises 7C (m),
specify the company’s purchase quantity Q; for each order
i€40,...,|T/m| + 1}, which is estimated by

min{(i+1)m—1,T}

Qi=a >

j=im

Tj/Ata

and visualise the company’s medicine inventory Z (¢) at the

end of each day t € {0,...,T}, which is estimated by
min{([t/m]+1)m—1,T}
It/At =« Ij/At~

j=t+1

IV. NUMERICAL SIMULATIONS AND SENSITIVITY
ANALYSIS

In this section, we illustrate the applicability of both our
epidemic and inventory models via numerical simulations.
For this purpose, we employ two sets of parameter values
presented in Tables I and II, representing two qualitatively
different cases: a disease-free case Ry < 1 and an endemic
case Ry > 1. These two sets of parameter values differ
only in the value of the disease’s incidence coefficient:
£ = 0.00005 in the former case and 5 = 0.00006 in the
latter case. We begin by explaining how the parameter values
the two tables are selected (subsection IV-A). Subsequently,
we study numerically each of the two cases, calculating
the values of the key epidemic quantities, observing how
the number of susceptible and infected individuals evolve
over time, and using our inventory model to solve the
total-cost minimisation problem (subsection IV-B). We shall
see that in both our disease-free and endemic cases, the
number of infected individuals achieve a certain maximum
—the so-called epidemic peak— before approaching its
equilibrium value. Finally, we conclude our study by
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conducting a sensitivity analysis of the disease’s basic
reproduction number, the epidemic peak, and the minimum
total cost with respect to the parameters involved in our
epidemic and inventory models (subsection IV-C).

A. Selection of parameter values

Let us begin by justifying our selection of parameter values
presented in Tables I and II.

(i) The initial numbers of susceptible and infected
individuals, S (0) and I(0), are both simulated to
represent a scenario that begins with 3, 000 susceptible
individuals and only 1 infected individual. This implies
that our initial population comprises 3, 000+1 = 3,001
individuals.

(ii) To estimate our population’s birth rate A\, we assume
an average number of births per female of 2.5 [42]
and a female’s average life expectancy of 73.4 years
[51]. Further assuming that a year comprises 365 days,
these lead to a female giving birth to approximately
2.5/(73.4-365) individuals per day. Assuming a
gender equidistribution [11], [12], in our initial
population there are approximately 3,001/2 females.
Consequently, we make the estimation A = (3,001/2)-
[2.5/(73.4 - 365)] ~ 0.14001904 individuals per day.
Our population’s natural death and death-by-disease
coefficients  and p are derived from the work of
Hoseana et al. [13], where these are assumed to be
approximately 0.00745 and 0.01829 — 0.00745 =
0.01084 per month, respectively. Conducting the
necessary unit conversion yields the estimations § ~
0.00024833 and p = 0.00036133 per day.

Our disease’s recovery coefficient is directly acquired
from the work of Wang et al. [49], namely, € ~ 0.1287
per day.

(v) A study by Cakici et al. [2] highlighted the potentially
high per-order ordering cost of medicine, which
practically includes expenses for manual counting,
reordering, shipping and receiving, replenishment,
invoice processing, and transportation. Following their
observation, we assume that each medicine order incurs
an ordering cost of I =~ 500 dollars per order.

We set our medicine’s purchase price at II = 1 dollar
per unit. As noted by Gurtu [9], an item’s annual
holding cost is commonly assumed to be a certain
percentage of the item’s purchase price, with 16%
as a possible choice. Consequently, we assume our
medicine’s holding cost as A ~ 16% - 1/365 =~
0.00043836 dollars per unit per day.

The values of all other parameters are simulated.
In particular, as shown in Table II, we specify the
epidemic period to be T' = 8,000 days and the
maximum inter-order time-interval to be mpy.x = 365
days. Additionally, as shown in Table I, we specify two
different values for the disease’s incidence coefficient,
namely, 0.00005 per individual per day to represent a
disease-free case and 0.00006 per individual per day
to represent an endemic case.

(iii)

(iv)

(vi)

(vii)

B. Numerical solution and total-cost minimisation

Let us now study numerically each of the two cases
corresponding to the two different values of the disease’s

incidence coefficient. For each case, we shall calculate
the values of the key epidemic quantities, visualise the
time evolution of the number of susceptible and infected
individuals, and determine the inventory management
strategy to be implemented by the medicine’s distributing
company in order to minimise the incurred total cost.

1) A disease-free case: Our disease-free case 1is
characterised by the parameter values presented in Tables
I and II with 8 = 0.00005. In this case, the disease’s basic
reproduction number (3) evaluates to Ry ~ 0.99655837 < 1.
By Theorem 4, one expects that the solution associated
to the initial condition presented in Table I converges to
the disease-free equilibrium ey =~ (2577,0), computed
using equation (4), provided that the discretisation step
size At is strictly less than the minimum value of
2/6 =~ 8053.79938000 and 2/[(6 + p+¢) (1 —Ro)] ~
4494.01540600. Recalling that At must be selected from
the interval (0,1] such that 1/At is an integer, let us
select At = 1. The time evolution of the number of
susceptible and infected individuals over the epidemic
period —from day 0 to day T— provided by our discrete
epidemic model is visualised in Figure 2. Observe that
the expected convergence to the disease-free equilibrium
ep is achieved non-monotonically. Indeed, the number
of susceptible individuals first decreases abruptly before
gradually increasing towards its equilibrium value, while the
the number of infected individuals initially rises towards a
conspicuous maximum —which we refer to as the epidemic
peak— of I,.x ~ 343 individuals on day 484, before
progressively declining towards zero.

Let us now determine the company’s optimal strategy for
managing the medicine inventory over the epidemic period.
First, the company’s total cost 7C (m) as a function of
the inter-order time-interval m € {1,...,mmax} is plotted
in Figure 3 (left). The plot, expectedly convex-shaped,
reveals that the company may achieve the minimum total
cost of TCumin ~ 2,033,258 dollars by adopting an
inter-order time-interval of muy;, = 99 days, thereby placing
|T/Mmin] +1 = 81 orders over the epidemic period. In
such a scenario, the company’s purchase quantity Q; for
each order ¢ € {0,...,|T/Mmin]} is shown in Figure 3
(right), while the company’s medicine inventory Z, /At at the
end of each day ¢ € {0,...,T} is displayed in Figure 4.
Of note is that on the company’s 5th order, placed on day
495, the company records a maximum purchase quantity of
approximately 99,253 units, which conforms with the fact
that the epidemic peak is achieved on day 484.

2) An endemic case: For our endemic case, we consider
the parameter values provided in Tables I and II with
B = 0.00006. For these parameter values, the formulae
(3) and (5) yield the basic reproduction number Ry =~
1.19587004 > 1 and the endemic equilibrium e; =~
(2155, 172), respectively. Furthermore, the upper bound for
the discretisation step size At prescribed by the inequality
(13) evaluates to approximately 201.37476000, and so At =
1 remains an admissible selection. Indeed, from Figure 5
we see the expected behaviour of our epidemic model’s
solution: convergence to the endemic equilibrium. As in the
disease-free case, the convergence is non-monotonic, with
the number of susceptible individuals exhibiting a sharp
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Fig. 2. The time evolution of the numbers of susceptible (left) and infected
(right) individuals in our disease-free case where g ~ 0.99655837 < 1.
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Fig. 3. The company’s total cost 7C (m) as a function of the inter-order

time-interval m (left) and the company’s purchase quantity Q; for each
order ¢ (right) in our disease-free case where Rg ~ 0.99655837 < 1.
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Fig. 4. The company’s medicine inventory Z, /A¢ at the end of each day
t in our disease-free case where Rg ~ 0.99655837 < 1.

decrease before a steady increase and the number of infected
individuals exhibiting a sudden increase towards an epidemic
peak of I,.x ~ 795 individuals on day 230 before a
moderate decay towards its positive equilibrium value.

A plot of the company’s total cost 7C (m) as a function
of the inter-order time-interval m € {1,...,Mmpax} in this
endemic case is displayed in Figure 6 (left), the minimum
total cost being TCmin =~ 7,469,815 dollars, achieved by
adopting an inter-order time-interval of mp;, = 51 days
and placing |T/mmin| + 1 = 157 orders over the epidemic
period. The company’s purchase quantity Q; for each order
i €{0,...,|T/Mmin]} in this scenario is shown in Figure 6
(right), while the company’s medicine inventory Z, /At at the
end of each day ¢ € {0,...,T} is displayed in Figure 7. The
company’s 4th order, placed on day 204, is placed with the
maximum purchase quantity of 1, 189, 874 units, anticipating
the epidemic peak that is achieved on day 230.

C. Sensitivity analysis

Let us complement our results with a sensitivity analysis of
three key quantities: the disease’s basic reproduction number
Ry, the epidemic peak Ip,,x, and the company’s minimum
total cost 7 Cpin, With respect to the involved parameters. For
this purpose, we recall that the sensitivity index of a quantity
@ depending differentiably on a parameter p is defined as

TR — 876’2 P
Poop @
which provides a theoretical estimate for the ratio of the
relative change in @) to the relative change in p [3].
The availability of the explicit expression (3) of the basic
reproduction number as a differentiable function of our
epidemic model’s parameters implies an opportunity to
compute the sensitivity index of the basic reproduction
number in an exact manner. By contrast, the fact that
analogous expressions for the epidemic peak and total cost
are not readily obtainable forces us to compute the sensitivity
indices of these quantities in a numerical manner.

(14)

1) Sensitivity analysis of the basic reproduction number:
Substituting the expression (3) into the formula (14)
and carrying out the algebraic simplification for p €
{\ K, B, 9, u, e}, we obtain the following expressions for the
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Fig. 5. The time evolution of the numbers of susceptible (left) and infected
(right) individuals in our endemic case where R ~ 1.19587004 > 1.
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Fig. 7. The company’s medicine inventory Z, /A¢ at the end of each day
t in our endemic case where g ~ 1.19587004 > 1.

basic reproduction number’s sensitivity indices with respect
to the parameters involved in our epidemic model:

A K
T = Th =
A A4k’ " A4k’
T?o: 7 T?0:_25+u+6’
d+p+e
3 ACJ e
# d+pu+e’ € O+p+e

Notice that none of these expressions depend on /3. Since the
two sets of parameter values representing our disease-free
and endemic cases differ only in [, substituting these into
the above expressions yields the same value of each index
in both our disease-free and endemic cases:

T =~ 0.21877324, T ~ 0.78122676,
T = 1.00000000, T ~ —1.00192043,
TP ~ —0.00279430, TR0 ~ —0.99528527.

Q

Therefore, in both our disease-free and endemic cases, the
basic reproduction number Ry depends most sensitively
on the natural death coefficient §, with a 1% increase in
the natural death coefficient leading to an approximately
1.00192043% decrease in the basic reproduction number.

2) Sensitivity analysis of the epidemic peak and total
cost: The fact that explicit expressions for the epidemic
peak Ip,,x and the company’s minimum total cost T Conin =
TC (Mmin) as functions of our epidemic and inventory
models’ parameters are not easily obtainable forces us
to compute the sensitivity indices of these two quantities
numerically. For this purpose, let us fix a finite set ¥ of
signed percentages and consider the following estimate for
TE:

p
— 1
pew

where pg,, (1) denotes the relative change in the value of
@ resulting from a change of v in the value of p. Our goal
is to compute Tf () as an estimate for T§ for every Q €
{Imaxaﬁmin} and p € {\,k,8,0,u,e,ILT, A, a}, using
¥ = {-1.0%,—-0.5%,0.5%, 1.0%}. We present our results
in Table III.

Notice firstly that for every p € {II,T', A, o} we have that
T{;ﬂax = 0 since I.x 1s independent of p. More notably,
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TABLE III
7T Cmin

I
ESTIMATES Y, (V) AND T, (¥) FOR THE SENSITIVITY

INDICES T{;“ax AND TPTC“““ OF THE EPIDEMIC PEAK AND THE
COMPANY’S MINIMUM TOTAL COST WITH RESPECT TO
p € {\ K, 3,0, u, &, II,T, A, o}, COMPUTED USING
U = {-1.0%, —0.5%, 0.5%, 1.0%}.

Disease-free case Endemic case
TRy [ Ao uy | T (w) | Toem (v
A 0.16786883 1.68884659 | 0.03594191 0.59325683
K 0.59944848 6.01627266 | 0.12829593 | 2.11847186
Ié] 8.16131307 13.98903524 | 2.80012129 | 3.71303265

—0.89980672 | —8.12764871 | —0.19517287 | —2.63643099
n | —0.07361513 | —0.55946903 | —0.03475499 | —0.52039082
€ | —7.95296654 | —13.91562277 | —2.73350371 | —3.68128108
IT| 0.00000000 0.95947246 | 0.00000000 | 0.97368140
r 0.00000000 0.01991877 |  0.00000000 | 0.00539368
A | 0.00000000 0.02059185 0.00000000 | 0.02090774
@ 0.00000000 0.98008125 | 0.00000000 | 0.99460632

in both our disease-free and endemic cases, both the the
epidemic peak I,,x and the company’s minimum total cost
TComin depends most sensitively on the disease’s incidence
rate (5. Indeed, in our disease-free case, a 1% increase in
the incidence rate results in an approximately 8.16131307%
increase in the epidemic peak and an approximately
13.98903524% increase in the minimum total cost. In our
endemic case, on the other hand, a 1% increase in (3 results
in an approximately 2.80012129% increase in the epidemic
peak and an approximately 3.71303265% increase in the
company’s minimum total cost.

V. CONCLUSIONS AND FUTURE RESEARCH

We have studied the dynamical properties and the
forward-Euler discretisation of a special case of an
SIS-type epidemic model with immigrants introduced
by Saikh and Gazi [35], in which all immigrants are
assumed to be susceptible. We have also constructed a
finite-time-horizon inventory model that can be used to
determine a strategy to be implemented by a monopolistic
medicine-distributing company in order to minimise the
incurred total cost over a specified epidemic period. In the
classical EOQ-type inventory model, we assumed that the
total cost comprises three cost components: the medicine’s
order, purchase, and holding costs. Using two sets of
parameter values representing a disease-free and an endemic
case, we have conducted numerical simulations where we
calculated the values of key epidemic quantities, visualised
the time evolution of the numbers of susceptible and
infected individuals, and determine the company’s inter-order
time-interval that minimises the incurred total cost. We
have also conducted a sensitivity analysis, revealing that in
both our disease-free and an endemic cases, the disease’s
basic reproduction number depends most sensitively on the
population’s natural death coefficient, whereas the epidemic
peak and the company’s minimum total cost both depend
most sensitively on the disease’s incidence coefficient.

The construction of inventory models for pharmaceutical
items based on epidemic models constitutes the general
theme of a collaborative study currently being conducted
by the second and third authors of the present paper. In
the near future, we plan to disseminate further results of
this study, which includes a two-item medicine inventory
model based on a two-age-group version of the SIS-type
epidemic model utilised in the present study, medicine
inventory models based on three different exactly solvable
SIR-type epidemic models [24], [41], [6], and a vaccine
inventory model based on an SIHV-type epidemic model
[16]. Looking further ahead, studies on the same theme
can be conducted by taking into account, for instance,
multiple infection stages corresponding to different levels
of medicine demands, as well as multiple vaccine doses.
Moreover, one could modify the medicine inventory model
constructed in the present paper by adopting different
decision variables and incorporating additional factors such
as deterioration, shortages, discounts, as well as storage and
capital constraints [36], [37], [21], [22], [15], [7].
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