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Abstract—Discovering potential drug candidates for diseases
is a critical task in drug repositioning. Conventional wet
experiments are labor-intensive, so developing a framework for
predicting drug-disease associations is essential. In this paper,
we designed a new deep learning framework (called DR-DDA)
to predict drug-disease associations. First we constructed a new
heterogeneous network including drug Gaussian interaction
profile kernel similarity, disease Gaussian interaction profile
kernel similarity and association matrix of drugs-diseases, and
in drug similarity we considered drug frequency weights. Next,
we constructed two bi-parallel graph transformers, to better
extract drug features and disease features in heterogeneous
networks. We then performed separate residual operations on
the dual parallel graph transformer with different weights to
learn more complex features and improve accuracy. Finally we
validated the model on two publicly available datasets and DR-
DDA achieves better results compared to other base models,
once again showing that DR-DDA can be an effective tool for
predicting drug-disease association prediction.

Index Terms—Deep learning, double residual, graph trans-
former, drug-disease association prediction

I. INTRODUCTION

HE prediction of drug-disease associations is crucial in

drug discovery and is also a hot issue. Drug discovery,
also called drug repurposing, is the study of whether existing
drugs or drugs under development can treat other diseases
[1]. Traditional drug development is a long and resource-
consuming process, from screening of drug candidates to
various pharmacological tests to clinical trials, and successful
approval for marketing often takes 10-15 years [2]. What’s
more, it takes 2 to 3 billion US dollars to successfully
develop a new drug, but such a high investment cost is
rewarded with a clinical approval rate of less than 10% [3],
[4], [5]. Therefore, drug-disease association prediction has
become an effective way to discover new drugs by analyzing
the information of various features of drugs and diseases, and
searching for new associations between drugs and diseases.
With localized drug-disease associations, drug scientists can
target follow-up studies, greatly shortening the drug de-
velopment cycle. For example, aspirin was initially widely
used as an antipyretic and analgesic, but later researchers
found that aspirin could reduce the risk of cardiovascular
disease, so now aspirin is one of the most important drugs
for the prevention and treatment of cardiovascular disease
[6]. Sildenafil was initially developed as a therapeutic drug
for cardiovascular diseases, but later, scientists found that
it also has significant efficacy on male erectile dysfunction
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in clinical trials, so now sildenafil has become a commonly
used medication for treating male erectile dysfunction [7].

With the rapid development of artificial intelligence tech-
nology, the prediction of associations between drugs and
diseases has opened up new opportunities. Deep learning is
a currently popular technique, which utilizes neural network
models to learn features from data for various tasks such
as computer vision [8], natural language processing [9],
health informatics [10], financial field [11], intelligent Trans-
portation [12] and so on. Deep learning-based drug-disease
association prediction is generally modeled using structural
features of the network [13]. The current heterogeneous
network consists mainly of drug-drug similarities, disease-
disease similarities, and drug-disease associations validated
by wet experiments [14].

Although a number of deep learning methods have been
investigated for drug-disease association prediction, most
of them are direct fusions of drug-drug similarity matrix,
disease-disease similarity matrix, and drug-disease associ-
ation matrix to compose a heterogeneous network. This
ignores the frequency of drug use, if a drug is used frequently
in the drug-disease association matrix, there may be a greater
likelihood that it will be able to treat the new disease, so
we considered the drug use frequency matrix in constructing
the heterogeneous network. Second, most of the previous
methods use GNN for drug-disease association prediction,
including GCN and GAT. GNN generally updates node
representations through the neighbor nodes of a node, and
it is difficult to capture the features of distant nodes in the
graph for complex graphs [15].

In order to solve the above problem, we added the drug
frequency matrix to the feature matrix. Specifically, for the
drug-disease association matrix, we counted the total number
of drug occurrences in each row and then normalized the
resulting drug frequency matrix and multiplied it by the drug
similarity matrix. Because if a drug appears more often,
it means that the drug is likely to be able to treat more
diseases, this also highlights the drugs that stand out in
the drug similarity matrix and improves the accuracy of
the prediction. Second, to address the problem that GNNs
do not convey features of distant nodes well when dealing
with complex graph data, we use graph transformer to
predict the association between drugs and diseases. Graph
transformer uses the attention mechanism to directly couple
any two nodes in the graph without limiting the distance
between nodes, so it can better capture the full range of
features [16]. In addition, in order to solve the problem
of vanishing and degrading gradients, we add residuals to
the graph transformer so that the network can skip some
layers to deliver messages directly, avoiding performance
degradation due to the network being too deep [17]. The
main contributions of this paper are as follows.
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eWe proposed a new deep learning-based drug-disease
association prediction model, which well predicts the as-
sociation between drugs and diseases by obtaining feature
embeddings of drugs and diseases through heterogeneous
networks.

oeThe heterogeneous network was constructed by con-
sidering not only drug-to-drug similarity, disease-to-disease
similarity, and drug-to-disease association, but also drug
frequency.

oA bi-residual transformer was constructed to better ex-
tract drug features and disease features from heterogeneous
networks.

The paper is organized in the following structure, the
section I is an introduction to the relevant background
knowledge and the limitations that exist in some of the meth-
ods. Section II is the dataset information and the proposed
methodology. Section III is the analysis and discussion of
the experimental results. The conclusion and future work is
shown in section IV.

II. MATERIALS AND METHODS

In this section we will give a specific description of the
dataset used, the construction of the heterogeneous network,
and the double residual transformer.

A. Datasets

To validate the effectiveness of DR-DDA, we evaluated
the model on two datasets (Cdataset [18] and Fdataset [19]).
The Cdataset dataset contains 663 drugs, 409 diseases, and
2532 known associations; and the Fdataset dataset contains
593 drugs, 313 diseases, and 1933 known associations. The
details of the dataset are displayed in Figure 1. Gaussian
interaction profile (GIP) kernel similarity [20] was used to
calculate drug-drug and disease-disease similarity. GIP is
primarily designed to address the problem of sparsity in
the similarity of molecular fingerprints of drugs and the
similarity of disease phenotypes, more information can be
found in reference Liu et al. [21].

B. Construction of Heterogeneous Networks

Inspired by Liu et al.[14], we constructed heterogeneous
networks as initial input features for DR-DDA. Different

from their method, we consider the drug frequency ma-
trix in the construction of the heterogeneous network. Our
heterogeneous network consists of three main components,
which are drug-drug GIP similarity, disease-disease GIP
similarity, and known associations that exist between drugs
and diseases. The drug-drug GIP similarity is denoted as
Adrug € R™*™, and the disease-disease GIP similarity is
denoted as Ag;s € R™*™2, nl and n2 denote the number of
drugs and the number of diseases, respectively. The drug-
disease association matrix is defined as Ayg € R™*"2,
which is validated by relevant wet experiments, if A;;=1,it
means that there is a known association between the cor-
responding drug and the disease, otherwise it means that
there is no known association between the corresponding
drug and the disease.The main steps of heterogeneous matrix
construction are as follows:

e Stepl: The frequency of drug use f was calculated from
the drug-disease association matrix A. The formula for f is
fi = Z?ilAij,Z’ = 1,2,"' ,Nny.

e Step2: Scaling operation for drug frequency, the scaled
drug frequency g was obtained, g; = fi_0'5,i =1,2,---,n1.

e Step3: Update the drug similarity matrix, that is, consider
drug frequencies in the drug-drug GIP similarity matrix, C' =
diag(g) - Agrug, where diag is the diagonal matrix consisting

g 0 - 0
0 ¢o - 0

of the vectors g, where g is .
0 0 I,

e Step4: The middle matrices Ry, x(n,4+n,) and
Syax (ny+ny) are obtained, R = [CD], S = [DTN]|
e Step5: The final heterogeneous network matrix H is

obtained, H = [];

C. Double residual graph transformer

Transformer [22] has made a big splash in the field of
natural language processing (NLP) since it was proposed.
Graph transformer [23], [24] is a neural network that applies
transformer to graph-structured data, combining the advan-
tages of transformer and graph neural networks (GNN). We
constructed a double residual graph transformer inspired by
the work in Shi et al. [25], Liu et al. [21] and Li et al. [26].

1) Multi-head attention: The attention mechanism is at
the heart of graph transformer and its main idea is to
measure the correlation between different elements. In graph-
structured data, the source node needs to measure which
neighboring nodes are more important to itself. (J; represents
the feature information of the source node and K; and V;
represent the feature information of the neighboring nodes,
respectively, the attention scores of the source node (); and
each of the neighboring nodes K; are computed, the higher
the attention score, the higher the attention weight will be
assigned. After obtaining the attention score, the source node
performs a weighted summation of the neighbor nodes V;
based on the attention score to obtain the information of the
aggregated neighbor nodes. Here are the specific calculations
for the multi-head attention.

For each node ¢ and its neighbor node j, its query matrix
Q;, key matrix K; and value matrix V; are defined as
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Fig. 2: a: The overall structure of DR-DDA. b: Calculation of drug frequency matrices. c: Multi-head attention in graph
transformer.

Equation 1,2 and 3.

Qi = WeX; + by (D
K; ZWka—Fbk 2)
Vi =Wy X; + b, 3)

where W,, W, and W, are the learnable parameter matrix
of Q;, K; and Vj , by, by and b, are the bias vector, and X
is the feature matrix of the heterogeneous network.

After obtaining @);, K; and V}, for node 7 and its neigh-
boring nodes, the attention score « is calculated as shown in
4 and 5.

€;j = NG 4
s exp(e; ;) 5)

ZkeN(i) exp(€; k)

where Dim is the dimension of each header, the division by
V/dy, in is to scale the dot product and prevent the gradient
from vanishing or exploding [22]. N (i) denotes the set of
neighbors of all nodes and then the attention coefficient « is
obtained by softmax.

After getting the attention score, it starts aggregating the
information of neighboring nodes. Message passing is the
core of graph neural networks, which is where nodes in
the graph exchange information with neighboring nodes to

update their features [27]. For node i, its message m is the
product of the value vectors of the neighboring nodes and
the attention. Then calculate the average value of message
m over all heads, it is shown in 6 and 7.

mi= Y aig Vi (®)
JEN(D)
1 H
= h
mifﬁ};mi ™

where V; denotes the value vector of node 4’s neighbor node
7, H is the number of heads, and m? is the message of node
1 on the current head.

2) Double residual and prediction: Residual can effec-
tively solve the problem of gradient vanishing caused by
deeper network layers and improve the generalization ability
of the model [17]. We designed two residuals to address
the problem of gradient loss as the network hierarchy gets
deeper.

Xo=Xo+(1-p5)-X )

where X; and X, are the feature matrices of message m
after Layer-Norm [28], Relu, Dropout and other operations
respectively and S is the residual weight.

Volume 33, Issue 11, November 2025, Pages 4709-4717



Engineering Letters

And then X and X5 are summed and the number of drugs
and the number of diseases are taken as the representation
of drugs and the representation of diseases, respectively

o
=X1+Xs (10)
Zq
where z, is a representation of the drug and x4 is a
representation of the disease.

Finally, we extract features of specific node pairs from the
computed drug representations and disease representations,
respectively, and input them into the M LP to obtain the
final prediction scores.

Ei,i = RelLU (.’Er [Sil,Z] + x4 [SiQ,Z]) dia=1,---, M (11)

Score = MLP(E; ;) (12)

where s € RM*? is the matrix corresponding to the samples,

M is the number of samples, each row s; = [s;1, S;2]
represents a sample, s;; represents the first column of the
sample, which is the index of the drug, and s;; represents
the second column of the sample, which is the index of the
disease.

D. Optimization and loss function

The Adam optimizer [29] is used to optimize the pa-
rameters in our model. Because drug-disease association
prediction is a classification problem, for the classification
task, we use the binary cross entropy (BC'E) loss to evaluate
the difference between predicted and true values, it is defined
as Eq.(13)

M
1 - ,\
Losspce = i E yilogy; + (1 —y;) log(1 — ;) (13)
im1

where M is the sample size, y; represents the true label. It
is known that y; = 1 when the drug is associated with the
disease, and y; = 0 when there is no such association, ; is
the predicted label.

E. Overall structure of DR-DDA

Algorithm 1 is a pseudo-code for DR-DDA, which
first calculates the drug-to-drug GIP similarity matrix, the
disease-to-disease GIP similarity matrix, and then combines
it with the drug-to-disease association matrix to form a
heterogeneous network. Then, the features of drugs and
diseases are obtained using graph transformer and double
residual network, and finally feature pairs are obtained from
the samples and input into MLP for prediction. Figure 2
shows the general structure of DR-DDA, part a shows the
general structure, part b shows the computation of the drug
frequency matrix and the updated drug similarity matrix. part
¢ shows the details of the graph transformer layer.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Experimental settings

We use the pytorch [30] framework to implement DR-
DDA, pytorch version is 2.0.1, torch geometric[31] version
is 2.4.0, the maximum training epoch set to 500, the learning
rate set to 0.0001, the dropout set to 0.5, and the number of

Algorithm 1: The pseudo-code of the proposed DR-
DDA
Input: Drug-Drug GIP Similarity Matrix,
Disease-Disease GIP Similarity Matrix,
Drug-Disease Association Matrix, max epoch
Mazx epoch
Output: Predicted score
1 Constructing the feature matrix of the isomorphic
graph, used the method in section II-B ;
2 while the maximum number of epoch is not reached
do

3 Calculate query matrix ();, key matrix K; and

value matrix V; using Eq.(1),using Eq.(2) and

using Eq.(3);

4 Calculate the attention score « using Eq.(5);

5 Calculate the average message m after multi-head

attention, using Eq.(7);

6 Calculate X; and X5 using Eq.(8) and Eq.(9);

7 Using Eq.(10) to get the representation of drugs

and the representation of diseases;

8 Feature pairs were extracted from the samples

based on drug and disease representations using

Eq.(11);

9 The predicted scores are obtained by inputting

them into the MLP, using Eq.(12);

10 end
11 Return predicted score

cross-validation folds set to 10. Nine folds at a time as a
training set and one fold as a test set.

The residual weight oo and number of heads will directly
affect the performance of feature fusion, and we set the value
range of « as follows: 8 € {0.1 ~ 0.5}, the number of
heads for multi-head attention is set to {2, 4, 8}. As shown
in Figures 3 and 4, when obtaining best values for AUC and
AUPR, 3 = 0.5, heads = 8.

B. Performance of DR-DDA

To further validate the performance of DR-DDA, we
compare it with some base models(GCN [32], GAT [33],
GATv2 [34], k-GNNs [35] and UniMP [25]), evaluation
metrics included AUC, AUPR, Accuracy, Precision, Recall,
Fl-score and MCC. All metrics results are ten-fold cross-
validated means and standard deviations. Tables 2 and 3
show the results of DR-DDA and other comparison models
on the two datasets. It is clear from the tables that DR-
DDA outperforms the comparison models in most of the
evaluation metrics, and although it is not the highest in
terms of accuracy, taken together, DR - DDA is still the
best performing model. Figure 5 shows the histograms of
all metrics for all models on both datasets. From the figure
we can see that DR-DDA ranks first in the height of the
bars for most of the metrics and the height of the error
bars is also close to the other compared models, once again
demonstrating the better performance of DR-DDA.

C. Ablation experiment

1) Effect of double residuals graph transformer: To fur-
ther analyze the role of double residuals graph transformer
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TABLE I: Prediction performance of DR-DDA on the C-dataset.

Model AUC AUPR Accuracy Precision Recall F1 MCC

GCN  0.8796 ( 0.024 )0.8638 ( 0.026 )0.7842 ( 0.030 )0.8082 ( 0.067 ) 0.7677 ( 0.102 )0.7788 ( 0.033) 0.5813 ( 0.049 )
GAT 0.8625 (10.022 )0.8392 ( 0.030 )0.7139 ( 0.048 ) 0.8419 ( 0.023 ) 0.5278 ( 0.116 )0.6412( 0.088 ) 0.4631 ( 0.078 )
GATv2 0.8646 ( 0.019 )0.8427 ( 0.026 )0.7307 ( 0.036 ) 0.8441 ( 0.026 ) 0.5672 ( 0.087 )0.6743 ( 0.061 ) 0.4899 ( 0.060 )
k-GNNs 0.8752 ( 0.024 )0.8589 ( 0.031 )0.7591 ( 0.042 )0.8316 ( 0.029 ) 0.6493 ( 0.091 )0.7260 ( 0.063 ) 0.5328 ( 0.075 )
UniMP  0.8642 ( 0.019 )0.8407 ( 0.026 ) 0.7326 ( 0.021 )0.8441 ( 0.032 ) 0.5723 ( 0.047 )0.6805 ( 0.035 ) 0.4922 ( 0.040 )
DR-DDA 0.8926 ( 0.027 )0.8809 ( 0.033 )0.8092 ( 0.036 )0.8041 ( 0.027) 0.8191 ( 0.088 )0.8088 ( 0.050 ) 0.6223 ( 0.069 )

TABLE II: Prediction performance of DR-DDA on the F-dataset.

Model AUC AUPR Accuracy Precision Recall F1 MCC

GCN  0.8646 ( 0.026 )0.8448 ( 0.034 )0.7693 ( 0.035 )0.8322 ( 0.032 ) 0.6803 ( 0.108 ) 0.7417 ( 0.066 ) 0.5524 ( 0.056 )
GAT 0.8426 ( 0.025 )0.8173 ( 0.023 )0.6769 ( 0.044 ) 0.8242 ( 0.042 ) 0.4548 ( 0.122 ) 0.5749 ( 0.098 ) 0.3982 ( 0.069 )
GATV2 0.8453 ( 0.024 )0.8207 ( 0.029 )0.6811 ( 0.040 ) 0.8439 ( 0.035 )0.4459 ( 0.096 ) 0.5772 ( 0.078 ) 0.4115 ( 0.064 )
k-GNNs 0.8519 ( 0.025 )0.8319 ( 0.029 )0.7331 ( 0.043 ) 0.8445 ( 0.036 )0.5716 ( 0.098 ) 0.6771 ( 0.072 ) 0.4941 ( 0.076 )
UniMP  0.8551 ( 0.031 )0.8300 ( 0.028 )0.6943 ( 0.060 )0.8292 ( 0.042 )0.4942 ( 0.163 ) 0.6023 ( 0.123 ) 0.4293 ( 0.100 )
DR-DDA 0.8790 ( 0.030 )0.8655 ( 0.029 )0.7964 ( 0.039 )0.7714 ( 0.047 ) 0.8484 ( 0.052 ) 0.8066 ( 0.035 )0.5990 ( 0.079 )
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TABLE III: The effect of double residual graph transformer
on the C-dataset.

Metrics Single-DDA DR-DDA

AUC 0.8641 (0.020 )  0.8926 ( 0.027 )
AUPR 0.8447 (0.026 )  0.8809 ( 0.033 )
Accuracy  0.7310 ( 0.033 )  0.8092 ( 0.036 )
Precision  0.8453 ( 0.031 ) 0.8041 ( 0.027)
Recall 0.5695 (0.095)  0.8191 ( 0.088 )
Fl1 0.6747 (0.064 )  0.8088 ( 0.050 )
MCC 0.4915 (0.053)  0.6223 ( 0.069 )

in the model, we designed a variant of DR-DDA that only
a graph transformer and residual, denoted as (Single-DDA).
Tables III and IV show the results of Single-DDA and DR-
DDA for all metrics on both datasets. It is obvious from the
table that DR-DDA, compared to Single-DDA, has better
performance in AUC, AUPR, Accuracy, Recall, F1, and
MCC metrics, except for Precision, which once again proves
the excellent performance of the double residual structure.
Figures 7 and 8 show boxplots of Single-DDA and DR-DDA
for multiple assessment metrics on both datasets. It is clear
from the graphs that the median of the boxes is larger for DR-
DDA on the other metrics except Precision, indicating that
DR-DDA has better classification performance. In addition,
DR-DDA has shorter boxes, indicating that DR-DDA also
has excellent stability with a small range of data fluctuations.

2) Effect of residuals: In order to verify the role of
residual structure in the model, we designed a variant that
removes the residual structure from the model and retains
only the double graph transforer,called Nores-DDA, and the
results are shown in Tables V and VI. As can be seen
from the tables, in most of the metrics, the performance is
significantly worse than the original model after de-pointing
the residual structure, which once again demonstrates the
excellent performance of DR-DDA.

TABLE IV: The effect of double residual graph transformer

on the F-dataset.

Metrics

Single-DDA

DR-DDA

AUC
AUPR
Accuracy
Precision
Recall

Fl1

MCC

0.8463 ( 0.027 )
0.8208 ( 0.029 )
0.7010 ( 0.029 )
0.8333 ( 0.031)
0.5039 ( 0.068 )
0.6250 ( 0.052 )
0.4385 ( 0.050 )

0.8790 ( 0.030 )
0.8655 ( 0.029 )
0.7964 ( 0.039 )
0.7714 ( 0.047 )
0.8484 ( 0.052 )
0.8066 ( 0.035 )
0.5990 ( 0.079 )

TABLE V: The role of residual structure on Cdataset in the

parallel graph transformer structure.

Metrics

Nores-DDA

DR-DDA

AUC
AUPR
Accuracy
Precision
Recall

Fl1

MCC

0.8872( 0.026 )
0.8680( 0.028 )
0.8069( 0.037)
0.7790 ( 0.043)
0.8622 ( 0.050)
0.8171( 0.033 )
0.6200( 0.071 )

0.8926 ( 0.027 )
0.8809 ( 0.033 )
0.8092 ( 0.036 )
0.8041 ( 0.027)
0.8191 ( 0.088 )
0.8088 ( 0.050 )
0.6223 ( 0.069 )

TABLE VI: The role of residual structure on Fdataset in

the parallel graph transformer structure.

Metrics

Nores-DDA

DR-DDA

AUC
AUPR
Accuracy
Precision
Recall
Fl1

MCC

0.8737( 0.029)
0.8597( 0.027)
0.7907 ( 0.037 )
0.7698 ( 0.043 )
0.8339 (0.034)
0.7998(0.031)
0.5847(0.071)

0.8790 ( 0.030 )
0.8655 ( 0.029 )
0.7964 ( 0.039 )
0.7714 ( 0.047 )
0.8484 ( 0.052 )
0.8066 ( 0.035 )
0.5990 ( 0.079 )
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IV. CONCLUSIONS REFERENCES

In this paper, we proposed a deep learning framework to
predict drug-disease association. To overcome the situation
that all drugs in the drug-drug similarity matrix have the
same importance and that neighboring nodes are not well
aggregated in traditional GNNs, we design a double residual
graph transformer (DR-DDA) to predict the association be-
tween drugs and diseases. First, we processed the drug-drug
similarity matrix to consider drug frequencies. Then, in order
to better extract the features in the heterogeneous network,
we designed the double residual graph transformer. We vali-
dated the performance of DR-DDA on two publicly available
datasets and show that DR-DDA is able to outperform the
comparison models on most of the evaluation metrics. In
order to further validate the effect of the double residual
graph transformer, we designed an ablation experiment by
keeping only one graph transformer and removing the double
residuals in it, and the results show that the performance of
the model significantly decreases after removing the double
residuals, which again validates the performance of the
double residual graph transformer.

In the future, we will develop some more advanced deep
learning methods to predict drug-disease associations, and
at the same time, consider more biochemical information
to build heterogeneous networks for richer representation of
drugs and diseases.
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