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Abstract—Arrhythmia detection based on electrocardiograms
(ECG) plays a crucial role in the diagnosis and management of
cardiac disorders. Recently, deep learning has shown promising
results in healthcare applications. However, the deep neural
networks currently employed in the detection of cardiac ar-
rhythmias have excessive complexity, low interpretability, and
insufficient learning due to the mechanical stacking of multi-
ple computationally demanding operations. To address these
challenges, the proposed work presents a compact transformer
encoder model (ArrhythTransform) for the accurate classifi-
cation of arrhythmia beats from ECG signals. The Arrhyth-
Transform model demonstrates the capabilities of local and
global feature extraction by leveraging a multihead attention
transformer encoder and a convolutional neural network (CNN)
for patch embedding. We have compared the performance of
the ArrhythTransform model with a CNN and a multilayer
perceptron (MLP) neural network in the embedding block. This
work investigates the impact of patch size, model depth, and
internal dimensions on overall classification results. Further-
more, the attention distributions from the last transformer layer
were presented through attention maps. These attention maps
highlight the ECG portions that influence the final predictions,
interpreting the decision-making process of the model. For
the open-source MIT-BIH arrhythmia database, the proposed
ArrhythTransform model with CNN in the embedding block
achieved 99.31% accuracy, 98.41% precision, 98.16% recall,
and 98.28% F-score in classifying seven unique arrhythmias.
The work revealed that careful selection of patch size, patch em-
bedding method, and model hyperparameters improves cardiac
arrhythmia classification performance and reduces complexity.

Index Terms—Arrhythmia classification, deep learning, elec-
trocardiogram, multi-head attention, Transformer encoder.

I. INTRODUCTION

CARDIAC disorders are still the most significant cause
of mortality worldwide [1]. More than 80% of patients

with cardiovascular diseases experience arrhythmias, which
sometimes lead to severe complications such as stroke and
sudden cardiac arrest, which can be life-threatening [2]. Iden-
tifying cardiac arrhythmias early may be critical for prompt
intervention [3]. The ECG is the most widely used technique
for capturing cardiac electrical activity and a common cardiac
monitoring tool [4]. However, long-term manual analysis
of ECG records is time-consuming, especially in real-time
diagnosis. This has generated interest in automated methods
to help doctors detect arrhythmias and monitor patients [5],
[6].

Deep learning has performed well in numerous applica-
tions [7], [8], [9], [10]. The technique has also been used in
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the classification of ECG signals. CNNs [11], [12], [13], [14],
[15], [16], [17], [18] and recurrent neural networks (RNNs)
[19], [20], [21], [22] are the architectures most widely used.
Özal Yıldırım et al. [3] presented a fast, efficient, and
straightforward one-dimensional CNN model to classify 17
types of cardiac arrhythmia disorders. Amin Ullah et al.
[23] implemented a two-dimensional CNN for the classifica-
tion of cardiac arrhythmias. The research transformed one-
dimensional electrocardiogram signals into two-dimensional
short-time Fourier transform spectrograms. Challenges such
as limited training data and moderate computing resources
can be resolved using the transfer learning approach [24].
Anita Pal et al. [25] applied the transfer learning technique
to the DenseNet architecture, resulting in faster and more
accurate heartbeat classification to detect arrhythmias. By
fine-tuning and configuring ResNet 50 and AlexNet, Yared
Daniel Daydulo et al. [26] achieved the best classification
results. Long-term dependencies in the sequences can be
tracked and monitored using recurrent neural networks and
are widely applied for sequential data processing, such as
ECG signals. Somaraju Boda et al. [4] developed a novel
architecture using long-term memory (LSTM) for the clas-
sification of patient-specific electrocardiogram beats. CNN
and RNN architectures have shown effective performance in
cardiac arrhythmia classification. However, CNNs struggle to
capture long-range temporal dependencies, and RNNs suffer
from slow training. Wei Zeng et al. [19] introduced a hybrid
model consisting of an LSTM and a one-dimensional CNN
architecture for the classification of multiclass arrhythmias.
The hybrid architecture of CNN and RNN would capture
global and local data, but RNN’s sequential process requires
much computational power. The transformer architecture
has achieved exceptional success in areas such as text
classification, segmentation of images, recognition of sound
events, and ECG signal processing [27], [28], [29], [30]. The
Transformer’s self-attention mechanism of the Transformer
is dominant in capturing contextual features, while computa-
tional efficiency is achieved via its parallel architecture [31].
Duoduo Wang et al. [32] proposed a hybrid electrocardio-
gram waveform detection model with a combination of a
convolutional neural network and a Transformer. Lingxiao
Meng et al. [27] proposed the bidirectional Transformer
for arrhythmia classification. The architecture improved per-
formance by fully capturing time-dependent factors present
in preceding and following contexts. Yong Xia et al. [33]
provided a framework that combines CNN with a denoising
auto-encoder coupled with a lightweight Transformer, fur-
ther improving the performance of arrhythmia classification.
The multi-head self-attention mechanism proposed by the
Google team has demonstrated outstanding performance in
machine translation [34]. Yue Wang et al. [35] developed an
arrhythmia classification technique using a multi-head self-
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Fig. 1. ECG arrhythmia classification block diagram.

attention mechanism, incorporating positional encoding and
linear projection.

Transformer models have particularly excelled in ap-
plications that include sequential data analysis. Current
transformer-based models have shown promising perfor-
mance in the classification of cardiac arrhythmia. However,
these models employ complicated architecture and are com-
putationally expensive and difficult to interpret. Specifically,
transformer architectures are more prone to overfitting, which
influences the overall classification accuracy. To address
these challenges, we have proposed the ArrhythTransform,
a transformer encoder-based model. The ArrhythTransform
model enhances performance and reduces complexity by
leveraging structured patching and efficient patch embedding.
To avoid overfitting during training, learning rate decay and
a less complex model with fewer layers were employed.

An overview of the main contributions to the proposed
work:

· The transformer encoder-based arrhythmia classification
model ArrhythTransform is designed with a multi-head self-
attention mechanism.

· The patch embedding and position embeddings are incor-
porated into the time series ECG signals. The performance of
the proposed model is compared with CNN- and MLP-based
patch embeddings.

· The proposed architecture’s performance is evaluated
for various combinations of hyperparameters, including the
number of layers, the size of the input patch, and the
embedding dimension.

· To understand the decision-making process, the attention
scores returned by the last multi-head attention layer of the
proposed transformer encoder model are plotted over the
ECG heartbeat.

· The proposed method has been compared to state-of-the-
art techniques and has produced optimal precision, recall,
accuracy, and F-score results.

The remainder of the paper is structured as follows.
Section II addresses the methodology, which includes pre-

TABLE I
ECG BEATS OBTAINED FROM THE MIT-BIH ARRHYTHMIA DATABASE

Class Train Validation Test Total

N 6952 1005 2043 10000
L 5624 816 1635 8075
R 5075 736 1448 7259
A 1797 247 502 2546
V 5037 690 1403 7130
F 558 89 156 803
P 4946 701 1381 7028

Total beats 29989 4284 8568 42841

Fig. 2. ECG beat class distribution.

processing of ECG signals, details about the database, the
design of a transformer encoder-based classification model,
and evaluation metrics. Section III presents the results, while
Section IV concludes the proposed work.

II. METHODOLOGY

The proposed ArrhythTransform model investigates the
application of the transformer encoder architecture for the
classification of ECG arrhythmias. Figure 1 shows the block
diagram. The approach is divided into two processing phases:
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Fig. 3. Illustration of ECG beats from the classes (a) A, (b) F, (c) L, (d) N, (e) P, (f) R, and (g) V.

preprocessing electrocardiogram records taken from the MIT-
BIH database and transformer-based arrhythmia classifica-
tion.

A. Database

The ECG signals used to develop the proposed model are
gathered from the MIT-BIH arrhythmia database [36], [37].
The database contains 48 two-channel ambulatory records of
30-minute duration. The recordings were digitized at a 360
Hz sampling rate with a resolution of 11 bits over a 10 mV
range. This database provides 17 types of heartbeats with
respective annotations.

B. Preprocessing

The collected ECG signals are initially down-sampled to
256 Hz to reduce computational complexity while preserving
essential information. Heartbeat segments of 256 samples
are extracted from each record using the provided R-peak
annotations. Arrhythmia classification commonly follows the
Association for the Advancement of Medical Instrumentation
(AAMI) standard. This work considers the fusion beat (F),
atrial premature contraction (A), normal beat (N), left bundle
branch block (L), paced beat (P), right bundle branch block
(R), and premature ventricular contraction (V) arrhythmia
beats from the MIT-BIH database. Table I displays the
selected classes and the respective sample count. Figure 2
shows the class distribution of ECG beats, and Figure 3
shows the types of ECG arrhythmia beats selected from the
database.

C. Classification

Figure 4 presents a multi-head self-attention-based trans-
former encoder architecture. The model incorporates an

embedding block, the stacked transformer encoder layers,
and an MLP head. The embedding block includes a patch
and a position embedding. The transformer encoder includes
layer normalization, residual connections, and multiple layers
of multi-head attention. Each heartbeat segment is split
into a sequence of patches of identical size. Each patch is
projected into a high-dimensional space, resulting in a patch
embedding vector, which is fed as input to the model. A
one-dimensional (1D) CNN or an MLP layer is commonly
used for patch embedding. To facilitate the learning of spatial
relationships, positional encodings PosE are included as
follows:

PosE(pos,i) = sin

(
pos

10000
i

dk

)
(1)

PosE(pos,i) = cos

(
pos

10000
i

dk

)
(2)

where Pos indicates the patch position, i is the dimension in-
dex, and dk is the dimensionality of the transformer encoder
model.

The self-attention procedure determines the attention score
(Atn) between each element of the sequence. As depicted
in Figure 5, self-attention is performed by performing scaled
dot product attention. Attention is calculated as follows:

Atn(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (3)

where Q is Query, V is Value, and K is Key. These metrics
are derived from the sequence given as input. dk represents
the dimension of the K vector and is used for scaling
to maintain stability in gradients. The Softmax function
normalizes the scores, ensuring that they sum up to 1.
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Fig. 4. Proposed transformer model architecture for arrhythmia classification.

Fig. 5. Self-attention.

Transformers use multiple attention heads to process in-
formation simultaneously. Figure 6 shows the multi-head
attention module. This module uses multiple scaled dot
product units. Each head focuses on distinct input data
features to capture diverse contextual relationships.

MultiHeadAttention(Q,K, V ) = Concat(h1, . . . , hh)WO

(4)
hi = Attn(QWQ

i ,KWK
i , V WV

i ) (5)

Where WQ
i , WK

i , and WV
i represent each attention head’s

(hi) learnable weight matrices. The concatenated outputs are
projected back to the desired dimension using the output
weight matrix WO.

Fig. 6. Multi-head attention.

Each layer in the transformer encoder includes a feed-
forward neural network with a GELU activation function,
residual connections, and normalization layers. These com-
ponents help the model learn complex patterns efficiently
while stabilizing the training. The model uses a special
learnable classification (CLS) token, a comprehensive rep-
resentation of the entire sequence. The CLS token interacts
with other patch embeddings through self-attention, and its
output is used for classification tasks. Tables II and Table III
show the model parameter specifications.
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TABLE II
THE MODEL PARAMETER SPECIFICATIONS

Parameter Value

Number of heads 4
Patch embedding size 64
Patch size 32
MLP Unit [64, 32]
Encoder layers 2
Input Dimension 1 × 256
Output Dimension 7 classes
Batch size 32
Epochs 100
Learning rate 0.0001
Loss function Categorical cross-entropy
Optimizer Adam
Activation functions Gelu, Softmax
Parameters 44935

TABLE III
PATCH EMBEDDING AND TRANSFORMER ENCODER HYPERPARAMETER

DETAILS

Patch Embedding
X (Input) [1, 256]

Convolution Layer Kernel size: 1× 32
Stride: 32
Number of filters: 64
in: 1× 256
out: 8× 64

Transformer Encoder
X (input) [9, 64]

Multi-head attention Number of layers: 2
WQ,WK ,WV ,WO : 64× 64

Self-attention In:
X ·WQ : [9× 64] ⇒ Q : 9× 64
X ·WK : [9× 64] ⇒ K : 9× 64
X ·WV : [9× 64] ⇒ V : 9× 64
Out: 9× 64

Layer Norm [9, 64]

MLP In: 64, Out: 32

Layer norm [9, 64]

Softmax [64, 7]

Algorithm 1 describes the sequential steps in the pro-
posed architecture of the model. The input consists of ECG
records retrieved from the database. Each record contains a
sequence of heartbeats with annotated labels. The output is
one of the seven types of arrhythmias that are considered for
classification. Step 1 is data preprocessing, which involves
segmentation based on R-peak annotations, down-sampling,
and vector representation of the ECG signal input. Step 2
provides details abouta set splitting. Step 3 shows parameter
details such as signal length, batch size, and number of
channels. The number of channels is one, as ECG is a 1-
dimensional time series signal.

Step 4.1 patches the sequence, provides patch embed-
dings using 1D CNN, adds position encoding to the patch
embedding, and concatenates the trainable class token to
prepare the input for the transformer encoder. In Step 4.2.1,
training occurs on multiple layers that contain transformer
encoders consisting of multi-head attention, followed by
layer normalization and an MLP layer. The last layer output
is processed by a dense layer with softmax activation, which

generates class probabilities in step 4.2.2. Step 5 returns the
final class label of the input.

The proposed transformer model adapts the Adaptive
Moment Estimation (Adam) optimizer. Adam brings gra-
dient descent together with the momentum algorithm and
the RMSProp algorithm, resulting in a more efficient and
robust process for training neural networks. Adam adjusts
the learning rate for each parameter dynamically based on
the moments of the gradients and incorporates momentum
to smooth out the optimization process. For a parameter at
timestamp t, the moment update equations take the following
form:

mt = β1mt−1 + (1− β1)gt (6)

vt = β2vt−1 + (1− β2)g
2
t (7)

where gt denotes the gradient at time step t and β1, β2 are
the decay rates for the two moments. The formulas for bias
correction and updating parameters are given as follows:

m̂t =
mt

1− βt
1

(8)

v̂t =
vt

1− βt
2

(9)

ωt+1 = ωt −
η√

v̂t + ε
m̂t (10)

where η denotes the learning rate and ε represents a positive
constant with a small value to avoid division by zero.

The proposed model utilized a categorical cross-entropy
loss function during training to adjust the model weights,
resulting in a minimum loss. Categorical cross-entropy loss,
known as softmax loss, is normally used in multiclass
classification. With softmax activation applied to the neural
network’s raw outputs, the result of multiclass classification
is a vector of probabilities predicted over the different classes
of input heartbeats. The categorical cross-entropy loss for a
single sample is given as follows:

Loss = −
C∑
i=1

yi log(ŷi) (11)

where yi represents the target, ŷi is the estimated output, and
C denotes the number of classes.

D. Performance evaluation metrics

The performance of the proposed architecture is measured
using the metrics recall, precision, F-score, and accuracy. Ac-
curacy measures the correctness of the classification model.
For accurate positive correctness, the F-score combines recall
and precision. The metrics are computed using a confusion
matrix with a true class present in each row and the predicted
class in each column, as illustrated in Table IV.

From the confusion matrix, the following formulae can be
derived.

Overall Accuracy =

∑N
i=1 Clii∑N

i=1

∑N
j=1 Clij

(12)
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Algorithm 1: The algorithm of the proposed transformer encoder-based arrhythmia classification model

Input ECG record X(t) = {x1, x2, . . . , xn}
n → The total count of samples in the ECG record
xt → Amplitude of the signal at time t

Output Classification result of ECG Arrhythmia class = {A, F, L, N, P, R, V}
Step 1: Preprocessing
Step 1.1: Segment heartbeats using R-peak annotations.

R = {r1, r2, r3, . . . , rm}
m → The number of R-peaks in a record
rj → R-peak of jth heartbeat in the record
For each rj with class label L, heartbeats are segmented using a window of 360 samples centered around rj

Hj = X[rj − 180 : rj + 180]

Step 1.2: Down-sample each heartbeat with label L to 256 Hz
Sj = Hj [:: 360/256] ∈ R256

Training data sample with label L: SL
j = {SL

1 , SL
2 , . . . , SL

256}
Step 2: Data set splitting

Train → 70%, Validation → 10%, Test → 20%
Step 3: Input ECG training vector representation
Step 3.1: Input shape = (signal length, number of channels)

Input tensor S ∈ RB×L×C

B → batch size, L → signal length, C → number of channels
Step 4: For each batch
Step 4.1: Prepare transformer encoder input
Step 4.1.1: Use CNN to make patches.

P = Conv1D(S, F,K, Sr)

F → number of filters, K → kernel size, Sr → stride length
where P ∈ RB×N×M and N = L−K

Sr
+ 1 is the number of patches.

Step 4.1.2: Positional embedding
Epos token = PosEmbedding(N,F ) is assigned.
The output expands to Epos token ∈ RB×N×M

Step 4.1.3: Add patch and position embeddings:
E = P + Epos token

Step 4.1.4: Concatenate class token.
cls ∈ RB×1×M and Xout ∈ RB×(N+1)×M

Step 4.2: For i = 0 to B
Step 4.2.1: For each transformer encoder layer,
Step 4.2.1.1: Initialize query, key, and value matrices.

Q = Xout ·WQ, K = Xout ·WK , V = Xout ·WV

Step 4.2.1.2: Multi-head attention matrix is evaluated.
Xout = MultiHeadAttention(Q,K, V )

Step 4.2.1.3: LayerNormalization(Xout)

Step 4.2.1.4: Xout = MLP(Xout)

Step 4.2.1.5: LayerNormalization(Xout)

Step 4.2.3: Append class
Step 4.2.4: P = softmax(cls token)
Step 5: Return predicted class

TABLE IV
CLASS N CONFUSION MATRIX

Predicted class

True class Class 1 Class 2 .... Class N

Class 1 Cl11 Cl12 .... Cl1N
Class 2 Cl21 Cl22 .... Cl2N
... ... ... .... ...
Class N ClN1 ClN2 .... ClNN

Recall(Class i) =
Clii∑N
j=1 Clij

(13)

Precision(Class i) =
Clii∑N
j=1 Clji

(14)

F -score =
2 · Precision(Class i) · Recall(Class i)
Precision(Class i) + Recall(Class i)

(15)

III. RESULTS

The experiments were conducted using Python on a system
powered by a 13th Generation Intel(R) Core(TM) i7-13700
CPU @ 2.1 GHz with thirty-two gigabytes of RAM and
an NVIDIA GeForce RTX 4080. The model was developed
using the parameters shown in Table II and Table III.
Table III shows the hyperparameter specifications of each
layer. The Adam optimizer was used for model training for
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Fig. 7. Model performance: (a) Accuracy plot of the model with CNN in embedding block, (b) Accuracy plot of the model with MLP in embedding
block, (c) Loss plot of the model with CNN in embedding block, and (d) Loss plot of the model with MLP in embedding block.

TABLE V
PERFORMANCE MEASURES OF THE MODEL WITH CNN AND MLP FOR PATCH EMBEDDING

Class
CNN for Patch embedding MLP for Patch embedding

Precision (%) Recall (%) F-score (%) Precision (%) Recall (%) F-score (%) Support

A 97.25 98.61 97.92 97.82 98.41 98.11 502
F 94.04 91.03 92.51 90.51 91.67 91.08 156
L 99.69 99.57 99.63 99.45 99.63 99.54 1635
N 99.76 99.76 99.76 99.66 99.66 99.66 2043
P 99.93 99.93 99.93 99.78 99.78 99.86 1381
R 99.72 99.79 99.76 99.45 99.72 99.59 1448
V 98.50 98.43 98.47 98.42 97.72 98.07 1403

Macro avg 98.41 98.16 98.28 97.89 98.08 97.99 –
Weighted avg 99.31 99.31 99.31 99.15 99.15 99.15 –
Accuracy 99.31 99.15 –

100 epochs at a learning rate of 0.0001. A batch size of thirty-
two was used. The categorical cross-entropy loss function
was used for the experiment. Instead of using pre-trained
weights, the model in this work was trained from scratch
using the architectural design.

We evaluated the effectiveness of CNN and MLP for patch

embedding. In addition, we experimented with the Arrhyth-
Transform model using several hyperparameters, including
the head count (4, 8), the number of layers (2, 4), and the
patch embedding dimension (32, 64) for varying patch sizes
(8, 16, and 32). Learning rate decay and a lower-complexity
model with 2 and 4 layers are employed to mitigate the risk

Engineering Letters

Volume 33, Issue 11, November 2025, Pages 4718-4730

 
______________________________________________________________________________________ 



Fig. 8. Confusion matrix of the model with CNN in the embedding block.

Fig. 9. Confusion matrix of the model with MLP in the embedding block.

Fig. 10. Performance metrics of the model using CNN for patch embedding

Fig. 11. Performance metrics of the model using CNN for patch embedding

TABLE VI
COMPARISON OF PERFORMANCE METRICS FOR CNN- AND MLP-BASED

PATCH EMBEDDING

Performance metric
Patch Embedding

with CNN
Patch Embedding

with MLP

Accuracy (%) 99.31 99.15
Precision (%) 98.41 97.89
Recall (%) 98.16 98.08
F-score (%) 98.28 97.99

Fig. 12. Comparison of performance metrics for CNN- and MLP-based
patch embedding

of overfitting during training.
To avoid losing shape information, the heartbeat-

segmented patches were mapped to a high-dimensional
space. Model performance is affected by the patch embed-
ding technique in the embedding block. We evaluated the
performance of the ArrhythTransform model using CNN and
a multi-layer perceptron (MLP) in the embedding block. The
validation, training accuracy, and loss plots of the model
using CNN for patch embedding are shown in Figure 7(a)
and 7(c). The validation, training accuracy, and loss plots
of the model using MLP for patch embedding are shown
in Figure 7(b) and 7(d). These plots show the performance
improvement of the models over time.

The confusion matrices of the model with CNN and MLP
in the embedding block are presented in Figures 8 and 9.
Performance metrics, including precision, accuracy, recall,
and F-score, can be assessed using the confusion matrix.
Figure 10, Figure 11, and Table V present the performance
of the model using CNN and MLP in the embedding block
for various classes of cardiac arrhythmia beats. The macro
average (Avg) and the weighted average of precision, recall,
F-score, and overall classification accuracy are also presented
in the table.

The proposed model achieved an average accuracy of
99.31% using CNN for patch embedding. The model
achieved the highest precision of 99.93% for class P, and
class F had the lowest precision of 94.92%, indicating that
99.93% of class P instances were correctly classified and
94.04% of class F instances were correctly predicted. The
model achieved 99.93% recall for class P, while class F
achieved the lowest recall of 91.03%, indicating that 99.93%
class R instances were identified, while only 91.03% of the
actual class F instances were correctly classified. The F-
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TABLE VII
PERFORMANCE COMPARISON OF THE PROPOSED MODEL TRAINED WITH DIFFERENT HYPERPARAMETER SETTINGS, REPRESENTED AS AT-I TO AT-VI

Model L ED H
Precision (%) Recall (%) F-score (%)

Accuracy (%) TP
Macro avg Weighted avg Macro avg Weighted avg Macro avg Weighted avg

AT I 2 32 4 98.35 99.24 97.78 99.24 98.05 99.24 99.24 18471
AT II 2 32 8 98.19 99.20 97.73 99.21 97.95 99.20 99.20 18471
AT III 4 32 4 97.76 99.14 97.96 99.14 97.86 99.14 99.14 35559
AT IV 4 32 8 97.77 99.05 97.29 99.05 97.53 99.05 99.05 35559
AT V 2 64 4 98.41 99.31 98.16 99.31 98.28 99.31 99.31 44935
AT VI 2 64 8 98.38 99.29 98.16 99.29 98.27 99.29 99.29 44935

AT: ArrhythTransform, L: Number of layers, ED: Embedding dimension, H: Number of heads, TP: Trainable parameters.

Fig. 13. Performance comparison of the proposed model trained with different hyperparameter settings, represented as AT-I to AT-VI

TABLE VIII
INDIVIDUAL CLASS PERFORMANCE OF THE PROPOSED MODEL TRAINED WITH DIFFERENT HYPERPARAMETER SETTINGS, REPRESENTED AS AT-I TO

AT-VI

Performance metric Class Model
AT-I AT-II AT-III AT-IV AT-V AT-VI

Pr
ec

is
io

n
(%

)

A 97.44 97.82 98.20 97.42 97.25 98.02
F 93.88 92.62 89.31 90.60 94.04 93.42
L 99.51 99.45 99.69 99.63 99.69 99.63
N 99.85 99.85 99.61 99.66 99.76 99.80
P 99.86 99.93 99.71 99.93 99.93 99.86
R 99.59 99.59 99.65 99.52 99.72 99.66
V 98.29 98.08 98.14 97.67 98.50 98.30

R
ec

al
l

(%
)

A 98.61 98.41 98.01 97.61 98.61 98.61
F 88.46 88.46 91.03 86.54 91.03 91.03
L 99.57 99.63 99.57 99.27 99.57 99.63
N 99.61 99.61 99.66 99.56 99.76 99.46
P 99.93 99.86 99.78 99.86 99.93 99.86
R 99.79 99.79 99.65 99.79 99.79 99.79
V 98.50 98.36 98.00 98.43 98.43 98.72

F-
sc

or
e

(%
)

A 98.02 98.11 98.11 97.51 97.92 98.31
F 91.09 90.49 90.16 88.52 92.51 92.21
L 99.54 99.54 99.63 99.45 99.63 99.63
N 99.73 99.73 99.63 99.61 99.76 99.63
P 99.89 99.89 99.75 99.89 99.93 99.86
R 99.69 99.69 99.65 99.66 99.76 99.72
V 98.40 98.22 98.07 98.05 98.47 98.51

score is the harmonic mean of precision and recall. The F-
score considers false positives and false negatives, offering

a balanced measure between the two metrics. The model
achieved the highest balanced performance for category P,
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Fig. 14. Comparison of statistical results of the models with different patch
dimensions for a patch embedding size of 64 with 4 heads

Fig. 15. Comparison of statistical results of the models with different patch
dimensions for a patch embedding size of 64 with 8 heads

TABLE IX
PERFORMANCE COMPARISON WITH DIFFERENT PATCH SIZES AND

NUMBER OF HEADS

Model with 4 heads Model with 8 heads
Patch Size 8 16 32 8 16 32

Accuracy (%) 98.69 98.90 99.31 99.01 99.08 99.29
Precision (%) 96.80 97.79 98.41 97.72 97.36 98.38
Recall (%) 97.33 96.99 98.16 97.36 98.07 98.16
F-score (%) 97.06 97.37 98.28 97.54 97.70 98.27

producing an F-score of 99.93% and the least balanced
performance for class F with an F-score of 92.51%.

The relative performance comparison between the model
with CNN and MLP in the embedding block for patch
embedding is presented in Table VI and Figure 12. Figure 12
illustrates macro-averaged precision, recall and F-score val-
ues. The model with CNN for patch embedding achieved
better performance, as the transformer encoder’s multi-head
attention mechanism is effective at extracting global fea-
tures, and the CNN in the embedding block is effective
at extracting local features. The accuracy is very close for
both approaches, yet CNN shows better precision, recall, and
F-score. The improvements, though small, indicate a more
consistent balance among false positives and false negatives
when CNN is utilized for patch embedding.

The proposed model is evaluated for various combinations
of the model parameters. Table VII and Figure 13 present the
performance comparison of the proposed ArrhythTransform
(AT) model trained with different hyperparameter settings.
These models are represented as AT-I to AT-VI. All six
models have demonstrated comparable performance with
accuracy values exceeding 99% and macro-averaged perfor-
mances exceeding 97%. Among them, AT V and AT VI have

shown the best performance, with AT V ( two layers, four
heads, patch size of 32, and embedding dimension of 64)
achieving the best results with 44,935 trainable parameters.
In contrast, lighter variations such as AT I and AT II with
18,471 parameters yield comparable performance but with
a slight decline in recall. AT III and IV, with moderate
parameter sizes (35,559), provide slight gains but still lag in
recall and F-score. Table VIII presents the performance at the
beat level. The findings show that the proposed methods have
achieved consistent performance in detecting the majority
of arrhythmia classes, with precision, recall, and F-scores
exceeding 99% for normal beats (N), paced beats (P), and
right bundle branch block beats (R). The left bundle branch
block (L) and premature ventricular contraction (V) beats
trail slightly behind with only minor losses. However, the
fusion beat (F) continues to be the class with the lowest
performance, with accuracies exceeding 93%, but recall
values between 86% and 91%, indicating the challenge in
classifying the minority class. The six experimental config-
urations (AT-I to AT-VI) provide comparable performance
with incremental improvements in versions (AT-V and AT-
VI), with specific gains in the recognition of F and A classes.

Since the number of heads in the multi-head attention
layer and the size of the input patch have a significant
influence on the model’s performance, the model with an
embedding dimension of 64 is further examined with input
patch sizes of 8, 16, and 32 and four and eight heads in the
attention layer. Figures 14, 15, and Table IX present the
statistical results. A patch size of 32 and four heads in the
attention layer resulted in the highest model performance.
The improvement is apparent with increasing patch size.
Accuracy improves from 98.69% (patch size 8, 4 heads) to
99.31% (patch size 32, 4 heads), and the F-score increases
from 97.06% to 98.28%. However, the number of attention
heads has a limited effect on the performance; for instance, a
patch size of 32 yields similar F-scores (98.28% vs. 98.27%)
for both 4 and 8 heads. Accuracy is slightly better with fewer
attention heads, and recall is mostly consistent across setups.
Patch size is therefore a significant contributor; however,
adding more heads does not contribute much to classification
performance.

Multi-head attention scores are useful for visualizing the
detection results. Figure 16 presents the attention scores re-
turned by the transformer encoder’s last multi-head attention
layer plotted over the input heartbeat signal of classes A,
F and L. These attention maps illustrate how several heads
were trained to focus on various aspects of the signal in
contributing to the final prediction as class F. It can be seen
from the attention maps that the transformer model gives
higher priority to the middle QRS complex in various heads,
demonstrating its clinical importance in heartbeat evaluation.
The complementary distribution of attention enables the
model to recognize subtle variations in waveform morphol-
ogy, improving classification performance. This emphasis
on physiologically meaningful areas showcases both the
accuracy and the interpretability of the model.

Table X presents the performance metrics of numerous
studies in the field conducted by researchers. Our proposed
model demonstrates superior performance, achieving an ac-
curacy of 99.31% in categorizing seven categories of cardiac
arrhythmia beats.
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Fig. 16. Visualization of attention maps from the first three heads for the classes (a) A, (b) F, and (c) L.

TABLE X
COMPARISON WITH STATE-OF-THE-ART MODELS

Study Method Precision (%) Recall (%) F-score (%) Accuracy (%)

Ozal Yildirim et al. [3] 1D CNN 92.52 93.52 92.45 95.2
Amin Ullah et al. [23] 2D CNN 98.69 97.26 (sen) 0.98 98.92
Muhammad Salman Haleem et al. [20] CNN + BiLSTM – – – 97.9%
Wei Zeng et al. [19] CNN + LSTM – – – 97.20
Yong Xia et al. [33] AE + Transformer – – – 97.93
Taymaz Akan et al. [30] Transformer Encoder 95.00 80.00 86.00 98.00
YanYun Tao et al. [29] Refined attention Transformer 96.5 97.6 97.1 –
Proposed Model ArrhythTransform 98.41 98.16 98.28 99.31

IV. CONCLUSION

In this work, a transformer encoder-based architecture with
a multi-head attention module ArrhythTransform is proposed

for the automatic classification of arrhythmia beats from
ECG signals. The performance of the model is evaluated
using the MIT-BIH arrhythmia database. A comprehensive
performance assessment of the proposed model was con-
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ducted for key combinations of hyperparameters, including
the number of heads (4, 8), layers (2, 4), and the patch
embedding dimension (32, 64) with different patch sizes (8,
16, and 32). Furthermore, the impact of CNN and MLP
layers in the embedding block on the overall performance
of the model was systematically analyzed. The model em-
ploying CNN for patch embedding demonstrated the highest
average accuracy with an input patch size of 32, four heads
in the MHA layer, and an embedding dimension of 64. The
architecture effectively classified seven types of arrhythmia
beats with an F-score of 98.28%, a precision of 98.41%,
a recall of 98.16%, and an overall classification accuracy
of 99.31%. The effective global feature extraction of the
transformer and the effective local spatial feature extraction
of CNN resulted in peak classification performance with
reduced complexity. In addition, the attention maps presented
help interpret the decision-making process of the model.
As illustrated by the comparison analysis, the proposed
ArrhthTransform model achieves performance superior to the
state-of-the-art techniques. The proposed ArrhthTransform
model, with its lower complexity and interpretable attention
maps, is well-suited for real-time arrhythmia detection and
can be extended to clinical deployment.
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