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Abstract—To mitigate the challenges posed by data uncer-
tainty in Full-Self Driving (FSD) systems. This paper proposes
a novel feature extraction learning model called Adaptive
Region of Interest Optimized Pyramid Network (ARO). Specif-
ically, ARO introduces a novel cross-layer fusion attention
mechanism that dynamically assigns weighted attention to
feature maps across different levels, facilitating deep feature
fusion and enabling the effective extraction and utilization of
salient feature information. Furthermore, ARO incorporates
a feature replication layer to duplicate and refine feature
maps at multiple levels, thereby enhancing its capability to
capture fine-grained details and generate richer feature rep-
resentations. Additionally, a multi-path upsampling strategy
preserves fine-grained features during upsampling. Extensive
experimental evaluations conducted on the benchmark CuLane
and Tusimple datasets demonstrate that ARO achieves an
F1 score of 80.60% on the CuLane dataset, outperforming
state-of-the-art methods, showcasing the effectiveness of the
proposed approach in handling data uncertainty for robust
lane detection in autonomous driving. Our code are available
at https://github.com/caoxu0109/lane detect ldfr.

Index Terms—Lane detection, Multi-scale fusion network,
Attention mechanisms, Culane, Tusimple.

I. INTRODUCTION

THE rise of autonomous driving technology has made it
a key focus in today’s automotive industry and research.

Lane detection, as a crucial component of environmental
perception and interaction [1], [2], plays a key role in
implementing Advanced Driver Assistance Systems (ADAS)
[3], [4] and autonomous driving. It is designed to ensure
vehicle stability within lanes and provide necessary road
information for self-driving cars by identifying and analyzing
lane markings on the road, helping drivers maintain proper
driving.

Therefore, advancements in technologies capable of real-
time and accurate lane detection [5]–[7] are crucial for
enhancing both safety and passenger comfort. With the
advent of Convolutional Neural Networks (CNNs), several
lane detection methods [8]–[10] have achieved significant
progress in real-time performance and accuracy. However,
lane detection encounters numerous challenges in real-world
road scenarios, with data uncertainty being a prominent issue.
This uncertainty stems from several factors: Firstly, complex
and variable road environments, including varying lighting
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conditions, weather patterns, and road surface materials,
significantly impact image quality, leading to increased data
noise and blurring. Secondly, the diversity of lane lines
themselves, such as variations in color, shape, and width,
as well as wear and occlusion, contribute to the difficulty of
detection. Additionally, inherent sensor error and uncertain-
ties in the data acquisition process are also significant factors.
Traditional deterministic lane detection methods [11] often
struggle to address these uncertainties effectively, resulting in
erroneous detections or complete failures. Consequently, ef-
fectively mitigating data uncertainty caused by environmental
interference is paramount to improving the robustness and
reliability of lane detection algorithms.

For instance, CondLaneNet [12] introduced the Recur-
rent Instance Module (RIM) to capture more contextual
information. Meanwhile, Resa [13] proposed an informa-
tion dissemination mechanism. This mechanism aims to
extract information from complex environments. Neverthe-
less, these methods do not fully explore the potential of
integrating information from multi-scale features. Previous
research indicates that features at different scales offer unique
and valuable characteristics: deep features capture global
structural information, while shallow features highlight finer
details. Furthermore, the effectiveness of anchor frame design
significantly influences target detection performance. A well-
designed anchor frame can simplify the regression process
and improve detection accuracy. However, existing anchor
frame designs often lack adaptability to dynamic environ-
ments, limiting their performance in diverse scenarios. CLR-
net [14] addresses this limitation by employing multi-level
feature integration, initially determining the presence of lane
lines at a higher level and subsequently refining their precise
positions at a lower level. Moreover, the lane prior used for
regressing lane line positions through point offset prediction
has demonstrated advantages over other techniques. Despite
its efficiency and accuracy, this method relies on only two
feature layers, potentially overlooking valuable local infor-
mation. This study aims to advance lane detection techniques
by introducing a novel model named ARO. First, we propose
an innovative cross-level fusion attention mechanism that
enables the fusion of feature maps from different levels
by assigning weighted attention. This mechanism facilitates
more effective extraction and utilization of rich feature
information. Second, to enhance the refinement process, we
introduce a feature replication layer. This layer generates
multi-hierarchical feature information by duplicating feature
maps and processing them at distinct levels. This refinement
improves the model’s fine-grained representation of lane
lines, leading to more accurate localization and identification.

Recognizing the common issue of information loss in
traditional feature fusion [15]–[17], we propose a multipath

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 282-291

 
______________________________________________________________________________________ 

https://github.com/caoxu0109/lane_detect_ldfr


Fig. 1. Comparison Results of Mainstream Methods.

downsampling strategy. This strategy combines the paral-
lel execution of various downsampling methods, capturing
multi-scale representations of features more comprehensively
and mitigating information loss. By integrating these tech-
niques, along with the previously mentioned cross-level
fusion attention mechanism, our model excels in enhancing
the capture of context information and detail characteristics
in complex scenes. In summary, the specific contributions of
this paper can be outlined as follows:

1) The integration of the multi-scale attention fusion
module within the Feature Pyramid Network (FPN)
enhances the model’s capacity to capture information
across various scales.

2) We propose a multi-path up-sampling strategy de-
signed to preserve more useful information during the
up-sampling process, minimizing information loss.

3) The feature copy module and feature copy layer are
introduced with creativity, wherein the original feature
map is duplicated, providing a richer and multi-level
feature representation for detection tasks.

4) The model underwent experimentation using the Cu-
lane dataset, wherein it demonstrated superior per-
formance, surpassing the current benchmarks across
various challenging categories.

To validate our approach, confirmatory experiments were
conducted on two standard datasets, Culane and Tusimple.
As depicted in Figure 1, our approach surpasses many
contemporary technologies in terms of both performance and
efficiency.

II. PREVIOUS WORK

This section primarily analyzes diverse methods of
lane detection, categorizing them into three main groups:
segmentation-based, anchor point-based, and parameter-
based.

A. Anchor-Based methods

The lane detection methods based on anchor points [18],
[19] can be categorized into point anchor-based and line
anchor-based methods. The point anchor-based method uti-
lizes predefined point anchors as references to precisely
detect the position of lane lines through regression. This
approach focuses on identifying discrete points in the image,
allowing the network to predict lane line information at each
point. GANet [18] adopts a global regression strategy, which
proves to be more efficient than traditional local regression;
however, the accuracy of global regression must also be
upheld. CLRNet [14] seeks to optimize the training process
by integrating high and low-level features, enhancing the
learning of lane features through the ROIGather module, and
employing LIoU losses. These improvements are designed
to enhance the model’s ability to understand the complex
structure of lanes. While point anchor-based methods offer
computational efficiency and scenario-specific lane detection,
they still encounter difficulties while dealing with severe
occlusions and challenging environmental conditions.

Line anchor-based methods focus on delineating the geom-
etry of lane lines. For instance, CondLaneNet [12] intricately
captures the geometric structure of continuous lane lines
for precise regression, demonstrating a systematic approach
to shape representation. While dynamic convolution and
conditional lane detection frameworks contribute strategies
for real-time performance, such approaches may encounter
limitations in handling complex traffic scenarios. It highlights
the need for more adaptive line anchor layouts and intelligent
detection mechanisms to cope with dense traffic and road
markings.

Anchor-based detection methods [20], [21] excel in reduc-
ing computational complexity compared to full-graph search
or large-scale area detection techniques. They confine the
search to predefined anchors that potentially contain the
target. With well-designed anchors, this approach demon-
strates adaptability in handling target scale variations and
rotations. However, choosing an appropriate anchor configu-
ration is crucial to ensure high detection accuracy. Part of this
challenge involves determining the layout of these anchors.
The anchor must mirror the typical features of the target to
accurately capture it in various situations. This necessitates
infusing expertise into the anchor design process, optimizing
the size, shape, and number distribution of anchors through
experimentation and practical experience. For instance, in
lane detection applications, anchor points should cover lane
lines of different widths and curvatures. Nonetheless, even
with a properly designed anchor, the method still faces
the challenge of information acquisition when the target is
occluded. Effectively addressing the occlusion problem may
require the integration of advanced occlusion recognition and
processing techniques.
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B. Segmentation-Based methods

Segmentation-based methods [22]–[24] frame lane seg-
mentation as a pixel-by-pixel prediction task. For example,
TwinLiteNet [25] employs a dual decoder structure, featur-
ing two decoder blocks for driving area and lane splitting
tasks separately. This enables independent optimization of
segmentation performance for each task, enhancing overall
segmentation accuracy. To fortify the model’s capability to
capture spatial and channel information, TwinLiteNet [25]
introduces a dual attention mechanism, comprising a location
attention module (PAM) and a Channel Attention Module
(CAM). This inclusion aims to capture global dependencies
in spatial and channel dimensions, thereby enhancing the
model’s perception of context information.

Moreover, YOLOPv2 [26] proposes a multi-task learn-
ing network to address panoramic car driving perception.
This network simultaneously handles traffic object detection,
drivable road area segmentation, and lane line detection.
Researchers integrate data enhancement technologies such
as Mosaic and Mixup, along with a hybrid loss function
configuration combining Dice loss and Focal loss [27]. These
strategies and mixed loss functions significantly improve
the performance of all three tasks. ERFNet [28] introduces
a novel lane detection method with a built-in Enhanced
Spatial Attention module (ESA). The ESA module analyzes
visual cues in the probability prediction graph to extract the
accuracy confidence of the lane signal.

While these methods exhibit exceptional performance in
handling sections with complex topological variability, such
as twists and turns, intersections, or other intricate pavement
structures, they often come with substantial computational
load requirements. Due to their involvement in fine pixel-
level classification of the entire image, these methods con-
sume considerable computing resources and may introduce
delays in real-time application scenarios. Additionally, they
are sensitive to image noise and lighting changes, heighten-
ing the risk of false or missed detections. This sensitivity
affects the reliability and accuracy of lane detection, espe-
cially under complex road conditions, such as intersecting,
fractured, or low-visibility lane lines. Segmentation-based
detection algorithms can suffer from a negative impact on
accuracy, particularly when relying solely on GPU accelera-
tors for a large number of calculations.

C. Parameter-Based methods

The lane detection method based on parameters [19], [29],
[30] employs mathematical parameters to represent the shape
of lane lines. This method typically characterizes lane lines
in the image by fitting model parameters, such as those of a
line or curve. BezierLaneNet [30] introduces a lane detection
method based on parametric curves. Diverging from existing
methods grounded in segmentation and point detection, this
approach can inherently learn the overall lane representa-
tion without relying on heuristics to decode predictions or
formulate numerous anchor points. To address optimization
challenges inherent in existing polynomial curve methods,
the authors propose the use of a parametric Bessel curve,
chosen for its ease of calculation, stability, and high degree
of freedom transformation. Additionally, the authors suggest
a feature flipping fusion based on variable convolution to

leverage lane symmetry in driving scenarios. This method
has demonstrated state-of-the-art performance on the widely
recognized LLAMAS [31] benchmark test.

Similarly, BSNet [32] presents a lane detection method
based on B-spline curves. Initially, the B-spline curve serves
as the representation of the lane line, with each point on
the curve’s position calculated through the weighted sum
of control points. Subsequently, the residual network and
pyramid feature network extract features from the lane line
candidate region. Local features of the lane candidate region
are then obtained using a self-attention mechanism and local
feature pooling operation, and global features are fused.
Finally, classification and regression modules predict the
existence probability of lane lines and the coordinates of
control points.

Parametric curve methods for detecting curved or con-
tinuously changing roads offer superior adaptability. They
also have clear advantages in computational complexity
compared to some methods based on whole image pixel seg-
mentation. However, when confronted with complex traffic
scenarios commonly encountered in practical applications,
such as intersections or road conditions featuring multiple
geometric structures, parameterization methods relying on
simple geometric models may fall short in capturing and
characterizing all the details of these scenarios. Additionally,
lane features can be dynamic, with rapid lane changes
or temporary road markings. A parameterized curve-based
approach may require continuous adjustment and updating
of model parameters to account for these changes. This
poses challenges to the stability and accuracy of real-time
performance.

III. METHOD

Data uncertainty is inevitable, as the large-scale datasets
we currently apply are collected from the internet. On
one hand, low-quality images are common in unconstrained
large-scale application datasets. On the other hand, the image
quality obtained by different acquisition methods is not the
same, such as overexposure, underexposure, and blurriness.
Furthermore, environmental occlusion, small targets, and
low-quality acquisition exacerbate the problem of noisy data
uncertainty. To address this issue, this chapter proposes an
adaptive ROI optimization pyramid network. The network
uses multi-scale fusion processing and feature replication
techniques to extract key features, reducing the impact of
data uncertainty on the detection results.

A. Adaptive ROI Optimization Pyramid Network

Our proposed lane detection model architecture is illus-
trated in Figure 2. The model is built on a ResNet backbone,
integrating a Feature Pyramid Network (FPN) to process
input images and create multi-level feature representations.
The key innovation lies in the utilization of the FPN layer,
embedding a multi-scale attention fusion structure to refine
the feature maps. This ensures that feature maps at different
levels prioritize attention to lane information. The notable
advantage of this structure is its capacity to selectively extract
features crucial for lane detection and enhance these features
throughout the fusion process. To address the common issue
of feature information loss in up-sampling, we introduce a
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Fig. 2. ARO Model Overall Structure Diagram.

designed multi-path up-sampling architecture. This architec-
ture not only effectively preserves rich information content
but also maintains precise details of features, enhancing the
model’s performance. Additionally, a feature copy module
is incorporated into the model, acting on the features of
layers C1 and C2 and replicating them. This replication
strategy contributes to generating more comprehensive and
hierarchical feature maps, thereby boosting the overall ex-
pressive power of features. For the copied feature map, a
method akin to Clrnet [14] is employed to determine the
region of interest, with the detection head predicting the
offset of the prior anchor point. This strategy enables high-
precision localization of lane alignment. Ultimately, after the
entire data flow processing, the model successfully outputs
fine-grained lane detection results containing rich feature
representations. By predicting the prior anchor points, our
model efficiently performs the detection task.

The results are expressed as follows:

rk = {clsk,Sxk, Syk, θk, Lengthk, offsetk} (1)

offsets = {l1k, l2k, l3k...l71k , l72k } (2)

In this study, k denotes the number of detected lane
lines, and it is fixed at 192. In the context, cls signifies
the classification score of the lane line, Sx and Sy denote
the coordinates of the starting point of the lane line, θ
represents the angle between the lane line and the horizontal
plane, Length represents the length of the lane line, offset
represents the offset of the predicted lane line point. A total
of 72 points were employed to represent the anchor points
of the lane lines.

B. Multi Scale Attention Fusion

In the field of deep learning, feature fusion emerges as
a pivotal technology enhancing the semantic comprehen-
sion capabilities of models. Profound deep features excel
in capturing comprehensive semantic information, a criti-
cal aspect for comprehending the overall characteristics of

an object. Nevertheless, the conventional feature pyramid
network (FPN) [33] employs rudimentary upsampling and
linear fusion, proving inadequate in leveraging the feature
information of individual layers. To address this limitation,
we propose an upsampled attention module (UAT) and
devise an innovative feature fusion strategy. Subsequently,
the fusion factor is derived by subjecting the similarity
score to a nonlinear transformation through the activation
function. This fusion factor allocates distinct weights to
features at various spatial locations during the feature fusion
process, thereby regulating the information flow. Ultimately,
the upsampling attention module employs multiple paths
to up-sample the C1 feature map, aligning its dimensions
with C2. This not only enhances information flow, but also
mitigates the information bottleneck associated with a single
path. Through the weighted fusion of feature maps post-up-
sampling using fusion factors, a feature map with enhanced
content and boundary information is obtained, optimizing
lane detection performance in complex scenes. The UAT
module not only effectively synthesizes the multi-layer fea-
ture information, but also delivers a more accurate feature
representation for the lane detection task, thereby enhancing
the overall performance of the model. The process can be
formally described by the following formula :

C1′= Interpolation(C1) (3)

Query = fQ(C1′) (4)

Key = fK(C2) (5)

SimMap = Sigmoid(Query •Key) (6)

out = (1− SimMap) • US(C1) + SimMap • C2 (7)

In this process, to determine the weights of the features
intended for fusion, the computation is grounded in the
attention of features of varying dimensions. Feature fusion
follows Equation 1.7. By incorporating the upsampling atten-
tion module, the model integrates information from different
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levels more effectively, focusing on boundary details and
features of the region near the lane line. This significantly
enhances the lane detection performance. As illustrated in

Fig. 3. Multi Scale Attention Feature Fusion Module.

Figure 3. The features of layers C1 and C2 are initially
upsampled to the same dimension using linear interpolation.
Subsequently, a multiscale attention mechanism is employed
to compute the similarity score between these two layers of
features and transform it into a fusion weight (scaling factor)
through an activation function. In addition, the features of
layer C1 undergo further upsampling via the multi-path
upsampling module to enhance their combination with the
features of layer C2. Finally, using the obtained fusion
weights, the upsampled features of the C1 layer and the
features of the C2 layer are linearly fused to perform feature
integration.

C. Sampling on Multipath

Preserving Key information is crucial during feature fu-
sion. Both interpolation algorithms and transposed convo-
lution algorithms are frequently employed in upsampling
processes; However, either approach has its own drawbacks.
Interpolation algorithms enlarge the size by computing the
value of a new pixel point, often resulting in information loss
during the recovery of image details. While the transposed
convolution reconstructs the features by training the upsam-
pling parameters, it can potentially lead to artifacts and image
blurring, which can affect the final fusion result.

To overcome these limitations, a two-path upsampling
method, illustrated in Figure 4, is introduced. This ap-
proach seeks to incorporate the benefits of interpolation
and transposed convolution while mitigating their respective
drawbacks. Our module consists of two parallel paths :
The first path employs a linear interpolation operation to
upsample the input feature X, preserving the continuity and
smoothness of the image while aiding the reconstruction of
detailed information. The second path leverages transposed
convolutions to learn upsampling efficiently, emphasizing the
acquisition of feature transformations.

Following the combination of the two upsampled feature
graphs, a convolution layer with a 1×1 convolution kernel is
applied to diminish the dimension of the combined features.
This step not only reduces the dimensionality of the features,
but also combines the benefits of the two distinct upsampling
strategies to optimize the feature expression and enhance the

operational efficiency of the model. The upsampling formula
can be expressed as :

upfea = ReLu(I(x) + CTBR(x)) (8)

where I(x) denote the upsampled feature map obtained
by the interpolation algorithm and CTBR(x) denotes the
upsampled feature map obtained by the transposed convo-
lution. The final upsampling result is obtained by summing
them and subjecting them to a convolution operation.

The two-path sampling strategy thoroughly considers the
benefits of the interpolation algorithm and the transposed
convolution algorithm, while mitigating their drawbacks. By
preserving feature continuity and smoothness while obtaining
suitable upsampling parameters, we can optimize the reten-
tion of crucial information, thereby enhancing the quality and
performance of feature fusion.

Fig. 4. Multi Path Upsampling Module.

D. Feature Copy Module

Drawing on the insights from Clrnet [14], to further
enhance the accuracy of lane detection, this study introduces
a method for intensifying the depth of feature refinement,
proven through experiments to markedly enhance detection
effectiveness.

We devise a new component known as the Feature Copy
Module (FCM). This module downsamples the features of
layer C3 to produce C3

′
, and similarly processes the features

of layer C2 to generate C2
′
. In this way, features of three

different scales and five levels can be obtained, which serves
as a bridging mechanism in the elaboration of features across
multiple levels.

The FCM module efficiently integrates high-level semantic
features with low-level detailed features by transferring infor-
mation and integrating features across different levels. This
multi-scale and multi-level feature representation facilitates a
more accurate capture of the detailed features and contours
of lane lines, thus enhancing the accuracy and stability of
lane detection.

Engineering Letters

Volume 33, Issue 2, February 2025, Pages 282-291

 
______________________________________________________________________________________ 



Fig. 5. Feature Replication Enhancement Module.

This article presents a valuable exploration of lane de-
tection techniques and demonstrates that combining high-
level semantics with low-level details, accompanied by the
implementation of FCM modules, is able to effectively
enhance detection performance. The design of the FCM is
illustrated in Figure 5 and is performed through the following
steps : Path1 : The input X undergoes a convolutional layer
to yield Conv(X), followed by undersampling through the
pooling layer to obtain Path1(X). Path2 : The input X is
partitioned into channel groups, with each group undergoing
dilated convolution, denoted as DConv(X), and the resulting
outputs are concatenated to form Path2(X).

Finally, the output of Path 1 and Path 2 are fused
and dimensionality reduced through the SE (Squeeze-and-
Excitation) module. The SE module enhances feature recog-
nition by autonomously learning channel weights, optimizing
the fusion of outputs from both paths, and simultaneously
reducing the number of channels. This design strategy com-
bines convolution, pooling, and grouped- dilated convolu-
tions to achieve subsampling that preserves more compre-
hensive feature information, enables extraction of features of
varying sizes, and enhances the model’s understanding and
processing power of the data.

In the process depicted in Figure 5, the input feature
map undergoes downsampling through two distinct paths.
Path1 uses a pooling layer for downsampling, whereas Path2
uses dilated convolution to achieve the same. While both
methods aim to reduce the spatial dimension of feature maps,
they employ different techniques to preserve crucial image
information and features. Finally, the Channel Attention
Module is applied to weight the feature maps from Path1 and
Path2, enabling the model to prioritize critical information
and disregard less relevant details for the final task. Following
this procedure, we obtain downsampling results that combine
the benefits of pooling layer and dilated convolution, empha-
sizing the most crucial feature information.

IV. EXPERIMENTS

A. Dataset

Our model underwent evaluation on two extensively em-
ployed datasets : the CULane [31] dataset and the Tusimple
dataset. The CULane [31] dataset serves as a comprehen-
sive dataset for Lane Detection, initially introduced in the
paper titled ”Scale-Aware CNN for Real-Time Traffic Lane
Detection”. The dataset consists of more than 55 hours of

video data captured by onboard cameras on various vehicles
driven by different individuals in Beijing, yielding 133, 235
image frames. The dataset was partitioned into a training set
(88,880 frames), a validation set (9,675 frames), and a test
set (34,680 frames). Due to its substantial data volume, the
dataset enhances the robustness of our model. In addition
to the regular scenarios, the test set incorporates eight chal-
lenging scenarios including Crowded, Dazzle, Light, Shadow,
NoLine, Arrow, Curve, Cross, and Night, which are designed
to assess the model’s capacity to generalize in complex
environments. The Tusimple dataset, which is more focused
on highway scenes, is widely used in the lane detection
field. The dataset encompasses 3,268 images for training,
358 for verification, and 2,782 for testing, all maintaining
a consistent resolution of 1280×720 pixels. This dataset
facilitates the evaluation of model performance in a highway
environment.

B. Experimental Design

For the experiments, ResNet [34] and DLA were selected
as the fundamental backbone networks for image feature
extraction. These networks were selected based on their
proficiency in learning feature representations at various
levels, enabling efficient capture of complex features in
images. To strike a balance between model performance
and computational efficiency, the input image resolution
is consistently set to 320×800. This ensures the model’s
ability to maintain high performance in image processing
while judiciously allocating computational resources. The
model was constructed and trained using the PyTorch deep
learning framework, with computation accelerated by a single
NVIDIA GeForce RTX 3090 graphics card. Depending on
the dataset, the training cycles vary : the CULane [31]
dataset underwent 11 training cycles, whereas the Tusim-
ple dataset underwent up to 70 training cycles, illustrating
the differences in complexity and sample size between the
two. AdamW optimizer is employed to optimize the model.
Derived from the classical Adam algorithm, it introduces a
weight decay mechanism to enhance model generalization.
The initial learning rate is set to 0.001 and the cosine decay
learning rate strategy is implemented with a power of 0.9.
This ensures that the learning rate gradually decreases during
training, promoting more stable convergence. To optimize the
model, the classification loss, xyz loss, and regression loss
formulas are defined as follows :

Ltotal = w1 • Lcls + w2 • Lxyz + w3 • LLiou (9)

where Lcls represents the focal loss between the prediction
and label [27], Lxyz is the smooth L1 loss of the starting
point coordinates, θ represents the angle, and lane length
regression, while LLiou is the Line IoU loss between the
predicted lane and ground truths

C. Evaluation Indicators

The evaluation metrics for the model on the CULane [31]
dataset consist of the F1 score and mean F1 score (mF1),
providing a comprehensive assessment of the model’s per-
formance across eight challenging categories. For individual
F1 score calculations, an intersection ratio (IoU) threshold of
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0.5 is employed to determine the proximity of the predicted
lane line to the actual lane line. Notably, the F1 score is
computed as the harmonic average of prediction accuracy
and recall.

Precision is defined as the ratio of correctly detected
lane-line points to predicted lane-line points, while recall
represents the ratio of correctly detected lane-line points
to actual lane-line points. In this context, the Intersection
over Union (IoU) threshold is utilized to ascertain the cor-
rectness of lane detection. The mF1 scores are derived by
computing the F1 scores across various IoU thresholds and
subsequently averaging them. This encompasses F1 scores
at different thresholds ranging from 0.5 to 0.95, separated
by 0.05, denoted as F1@50, F1@55, . . . , F1@95. This
approach ensures a comprehensive and rigorous evaluation of
the model performance beyond the limitations of a specific
IoU threshold. The specific calculation formula is shown as
follows :

F1 =
2× Precision×Recall

Precision+Recall
(10)

mF1 = (F1@50 + F1@55 + ...+ F1@95)/10 (11)

By employing the mF1 score as the final evaluation
metric, we can precisely gauge the proficiency of the model
in lane-line detection, ensuring its continued high accuracy
and recall across diverse and complex scenarios.

On the Tusimple dataset, we employed accuracy (ACC)
and F1 scores as performance indicators. These metrics
provide insights into the overall effectiveness of the model
in the lane detection task and its accuracy in recognizing
intricate details. Further details are provided below :

acc =

∑
Cclip∑
Sclip

(12)

Cclip represents the number of correctly predicted points
in the image, and Sclip represents the number of points
in the ground truth. In F1 scores, a correct prediction is
defined when more than 85% of the predicted lane points
fall within 20 pixels of the actual lane point. This criterion
enables a precise evaluation of the performance of the
model on the lane detection task. Employing these evaluation
criteria facilitates a comprehensive comparison of model
performance on diverse lane detection tasks across different
datasets. This ensures that the model not only exhibits
overall proficiency, but also maintains enhanced accuracy in
identifying individual components.

D. Compare with the most Advanced models

1) Performance on CULane Dataset: To assess the effec-
tiveness of our approach, we conduct a comparative analysis
with 12 widely used models and show that our model
outperforms them [35]–[38], achieving superior results in
terms of performance. Specifically, when ResNet is employed
as the backbone network, as shown in Table I our model
achieved an F1 metric of 80.6% with an IOU threshold set
to 0.5. Moreover, across eight challenging scenarios, our ap-
proach outperforms current mainstream methods, including
the top 12 models. For example, in scenarios such as Nor-
mal, Crowded, Dazzle and Noline, our model demonstrated

Fig. 6. Visual heat map.

superior performance compared to other methods [24], [39]–
[41].

These findings indicate that our model excels in handling
object detection tasks within complex scenes. Considering
the feature extraction and fusion capabilities of the multi-
scale attention fusion module, our model can achieve more
accurate localization and recognition of target objects.

2) Performance on Tusimple Dataset: Table II shows the
method’s performance on the Tusimple dataset. Although the
performance metrics of this dataset are close to saturation,
our approach exhibits substantial improvements. Remarkably,
the proposed method achieves state-of-the-art results in the
F1 metric, demonstrating an excellent balance between ac-
curacy and recall.

Tusimple, being a widely recognized benchmark dataset,
poses specific challenges in lane detection. Despite exten-
sive research efforts on this dataset, technological advances
have led to incremental improvements, thus limiting further
enhancements. Nevertheless, the introduction of innovative
structures and modules, such as the Feature Replication Mod-
ule (CPM) and the Unified Attention Fusion Module (UAT),
has allowed us to achieve a certain level of performance
improvement on this challenging dataset. This outcome not
only validates the effectiveness of our approach, but also
demonstrates that introducing novel methods and techniques
can yield substantial improvements even on well-established
datasets. There is still potential to push the boundaries of
performance. In the process of verifying the practicality of
our approach, it establishes a new research direction and
objective for lane detection. Specific improvements in F1
scores and other related metrics are shown in Table III.

E. Ablation Experiment

1) The Whole Ablation Experiment: To examine the con-
tributions of the multi-scale attention fusion module and the
feature replication layer in our model, we performed ablation
experiments on the CULane [31] dataset using a scaled-
down version of the model. The results for each scenario
are presented in the following table. The first row shows
the results of the baseline model. Subsequently, the second
line introduces the incorporation of the multi-scale attention
fusion module, accompanied by the respective outcomes.
Finally, the third row incorporates the feature copy layer and
depicts the corresponding results. By comparing the results,
the following conclusions can be drawn : Integrating the
multi-scale attention fusion module improves the F1 value
across IoU thresholds. Adding the feature replication layer
further enhances the F1 value, particularly at the 0.5 thresh-
old. The Feature Replication Layer enhances the capacity of
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TABLE I
RESULTS ON CULANE DATASET.

Method Backbone F1@50 F1@75 Normal Crowded Dazzle Shadow Noline Arrow Curve Cross Night

SCNN VGG16 71.60 39.84 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
RESA ResNet34 74.50 - 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80
RESA ResNet50 75.30 53.39 92.10 73.10 69.20 72.80 47.70 88.30 70.30 1503 69.90

FastDraw ResNet50 - - 85.90 63.60 57.00 69.90 40.60 79.40 65.20 7013 57.80
E2E ERFNet 74.00 - 91.00 73.10 64.50 74.10 46.60 85.80 71.90 2022 67.90

UFLD ResNet18 68.40 40.01 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10
UFLD ResNet34 72.30 - 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70
PINet Hourglass 74.40 51.33 90.30 72.30 66.30 68.40 49.80 83.70 65.20 1427 67.70

LaneATT ResNet18 75.13 51.29 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1020 68.58
LaneATT ResNet34 76.68 54.34 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72
LaneATT ResNet122 77.02 57.50 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81
LaneAF ERFNet 75.63 54.53 91.10 73.32 69.71 75.81 50.62 86.86 65.02 1844 70.90
LaneAF DLA34 77.41 56.79 91.80 75.61 71.78 79.12 51.38 86.88 72.70 1360 73.03
SGNet ResNet18 76.12 - 91.42 74.05 66.89 72.17 50.16 87.13 67.02 1164 70.67
SGNet ResNet34 77.27 - 92.07 75.41 67.75 74.31 50.90 87.97 69.65 1373 72.69

FOLOLane ERFNet 78.80 - 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1569 74.50
CondLane ResNet18 78.14 57.42 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1364 73.23
CondLane ResNet34 78.74 59.39 93.38 77.14 71.17 79.93 51.85 89.89 73.88 1387 73.92
CondLane ResNet101 79.48 61.23 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80
CLRNet ResNet18 79.58 62.21 93.30 78.33 73.71 79.66 53.14 90.25 71.56 1321 75.11
CLRNet ResNet34 79.73 62.11 93.49 78.06 74.57 79.92 54.01 90.59 72.77 1216 75.02
CLRNet ResNet101 80.13 62.96 93.85 78.78 72.49 82.33 54.50 89.79 75.57 1262 75.51
CLRNet DLA34 80.47 62.78 93.73 79.59 75.30 82.51 54.58 90.62 74.13 1155 75.37

Ours ResNet18 79.73 62.02 93.34 78.38 76.00 79.21 53.17 90.44 68.55 1034 74.96
Ours DLA34 80.60 62.70 93.82 79.68 76.81 82.00 54.60 89.75 71.26 1027 75.33

TABLE II
RESULTS ON TUSIMPLE DATASET.

Method Backbone F1 Acc FP FN

SCNN VGG16 95.97 96.53 6.17 1.80
RESA ResNet34 96.93 96.82 3.63 2.48

PolyLaneNet EfficientNetB0 90.62 93.36 9.42 9.33
E2E ERFNet 96.25 96.02 3.21 4.28

UFLD ResNet18 87.87 95.82 19.05 3.92
UFLD ResNet34 88.02 95.86 18.91 3.75

LaneATT ResNet18 96.71 95.57 3.56 3.01
LaneATT ResNet34 96.77 95.63 3.53 2.92
LaneATT ResNet122 96.06 96.10 5.64 2.17

FOLOLane ERFNet 96.59 96.92 4.47 2.28
CondLaneNet ResNet18 97.01 95.48 2.18 3.80
CondLaneNet ResNet34 96.98 95.37 2.20 3.82
CondLaneNet ResNet101 97.24 96.54 2.01 3.50

CLRNet ResNet18 97.89 96.84 2.28 1.92
CLRNet ResNet34 97.82 96.87 2.27 2.08
CLRNet ResNet101 97.62 96.83 2.37 2.38

Outs ResNet18 97.90 96.86 2.24 1.95

TABLE III
RESULT OF ABLATION EXPERIMENT.

Method UAT CP MF1 F1@50

ARO 55.23 79.58
ARO ✓ 55.21 79.60
ARO ✓ ✓ 55.29 79.60

the model to provide richer feature representations, further
improving the overall performance of lane detection.

Ablation experiment results demonstrate that both the
Multi-scale Attention Fusion Module and the Feature Repli-
cation Layer contribute positively to enhancing the perfor-
mance of our model on the CULane [31] dataset. These
components augment the perceptual power of features at

various scales, yielding a more comprehensive feature rep-
resentation and thus enhancing the accuracy and robustness
of lane detection.

Fig. 7. Visual detection results.

2) An Experiment on Multi-scale Attention Fusion Mod-
ule: To substantiate the practical impact of the multi-scale
attention fusion module, we employ a visual approach to
depict the attention scores, providing a visual representation
of the regions that receive heightened attention during feature
fusion. In Figure 6, brighter colors correspond to elevated
attention scores, indicating heightened significance of the re-
spective regions in the feature fusion process. Consequently,
the distribution of attention in distinct regions can be visually
observed, elucidating the role played by different regions
in the feature fusion process. Drawing insights from the
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experimental results, we can infer that the Unified Attention
Fusion Module (UAT) structure allocates greater attention
to the lower part of the image during the feature fusion
stage, with a particular emphasis on the local lane line and
the nearby vehicle. Such a fusion approach is imperative to
capture the key regions of interest and thereby substantially
enhance the accuracy of lane detection.

3) Experiments for Feature Replication: As shown in
Figure 7. In the visual analysis of the impact of our Feature
Copy Module, it is observed that the detection results of
the L1 lane lines displayed in the left image significantly
deviate from the real scene in the absence of the feature copy
layer. In turn, upon incorporating the Feature Replication
Layer into the model, the right image shows a significantly
improved detection of the L1 lane lines, which significantly
enhances the agreement with the actual lane line positions.
Through a comparative analysis of the results, it can be
affirmed that the Feature Replication Layer significantly
enhances the detection accuracy in lane detection task.

V. CONCLUSION

This study tackles the inherent data uncertainty encoun-
tered in lane detection by proposing an adaptive pyramid
network. Recognizing that the data acquisition and utilization
pipeline is susceptible to unavoidable errors and uncertain-
ties, our network employs adaptively learned feature fusion
weights to enhance the model’s feature extraction capabil-
ities. Central to our approach are two novel modules: the
Feature Copy Module (FCM), designed to enrich feature rep-
resentation, and the Unified Attention Fusion Module (UAT),
which facilitates effective multi-scale feature integration. The
FCM aims to improve lane detection performance by facili-
tating information transfer and integration between different
feature layers, combining high-level semantic features with
detailed features. Simultaneously, we designed the Unified
Attention Fusion Module (UAT) to perform feature fusion by
calculating adaptive weights. To maximize the retention of
information at different scales during feature fusion, we de-
signed a multi-path upsampling method that reduces feature
loss rate by incorporating transposed convolutions. Finally,
we validated the superiority of our model on the CuLane
and Tusimple datasets. On the CuLane dataset, the model
achieved an F1 score of 80.60%, while on the Tusimple
dataset, it achieved an F1 score of 97.90%, demonstrating
high accuracy and robustness in various challenging scenar-
ios. Overall, the proposed lane detection model in this study
effectively improves the accuracy and robustness of lane
detection by combining high-level semantic information with
low-level detailed features, and through innovative feature
fusion and replication strategies. These achievements not
only provide new solutions for lane detection problems in
autonomous driving and driver assistance systems but also
offer new directions and goals for future research in this
field.
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