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Abstract—Detecting dangerous driving behavior is a critical
research area focused on identifying and preventing actions
that could lead to traffic accidents, such as smoking, drinking,
yawning, and drowsiness, through technical methods. Advanced
computer vision and machine learning technologies enable effi-
cient detection models to monitor and analyze driver behavior,
improving road safety. Due to challenges posed by complex
environments, this paper introduces an enhanced detection
algorithm, YOLOv8s-CDS, to improve the identification of
dangerous driving behaviors. First, the ConvNeXt V2 module
is integrated with the C2f module to form C2fNeb2, optimiz-
ing feature extraction for behaviors like smoking or phone
use. Second, the DASI (Dimension-Aware Selective Integra-
tion) module enhances detection accuracy through multi-scale
fusion and dimension perception. Additionally, the SCConv
module replaces the Conv module in the Bottleneck, forming
C2fSCConv, which reduces spatial redundancy and improves
detection efficiency.A comprehensive experimental analysis of
dangerous driving image datasets demonstrates that the mean
average precision (mAP) of the YOLOv8s-CDS algorithm is
91.20%, which is 2.4% higher than that of the YOLOv8s
algorithm. Compared to other object detection algorithms, such
as Faster R-CNN, YOLOv5s, YOLOv7s, YOLOX and YOLOv8,
YOLOv8s-CDS demonstrates greater practicality in detecting
dangerous driving behaviors, contributing to a reduction in
traffic accidents and enhancing the safety of life and property.

Index Terms—dangerous driving, YOLOv8s, ConvNeXt V2,
DASI, SCConv

I. INTRODUCTION

IN recent years, the rapid increase in motor vehicles and
the expansion of the logistics industry have led to a rise

in traffic accidents, threatening public safety and social and
economic development. Research shows that dangerous driv-
ing behaviors are a major cause of traffic accidents, resulting
in significant harm to life, health, and social security. As
driver-related factors are the primary cause of these acci-
dents, studying technologies for detecting dangerous driving
behaviors is of great scientific importance.

Studying and detecting dangerous driving behaviors [1]
can improve road safety, reduce traffic accidents, and protect
lives and property. This paper uses deep learning to train a
model for detecting dangerous behaviors in driving images,
with the goal of mitigating such behaviors and preventing
accidents. These detection technologies are often integrated
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into vehicle safety or driver assistance systems, which can
alert drivers to maintain safety or interact with vehicle
controls to mitigate hazards. Additionally, they can monitor
driver behavior and provide data to assess driving habits,
promoting better driving practices and heightened safety
awareness.

Researchers are increasingly focused on detecting danger-
ous driving behaviors, exploring both indirect and direct de-
tection [2] methods. Indirect detection monitors factors like
vehicle speed, steering wheel movements, and lane positions
[3] using sensors. It tracks the vehicle’s speed, observes
steering changes, and analyzes surrounding conditions to
detect behaviors such as illegal lane changes. While effective,
these methods are influenced by road conditions and vehicle
abnormalities, which can reduce accuracy. Direct detection,
on the other hand, monitors the driver’s physiological state,
including heart rate, blood pressure, and brain activity, to
assess potential danger. While theoretically feasible, this
approach requires complex equipment in the vehicle, which
can interfere with driving and presents challenges in practical
implementation.

The driver behavior-based method assesses dangerous
driving by monitoring behavior patterns [4], such as phone
use, smoking, checking the back seat, talking to passen-
gers, or falling asleep. With advances in deep learning and
object detection, this approach is gaining popularity as it
does not interfere with the driver and enables efficient data
processing. A key example is using computer vision for
dangerous driving detection, where image data is collected,
driver behavior is extracted, and features are classified.
This method overcomes the limitations of environmental
sensitivity and the interference of wearable devices, making
computer vision-based detection a superior approach for
identifying dangerous driving behaviors.

Gao Wen [5] enhances the deep neural network Mask R-
CNN for object detection by improving its ability to accu-
rately locate object borders. Experimental results show that
this method achieves nearly 90% accuracy in detecting dan-
gerous driving behaviors, outperforming other algorithms,
especially for overlapping and small targets. In recent years,
first-order algorithms, which bypass candidate frame genera-
tion and directly extract features for object classification and
localization, have gained popularity. These include SSD [6],
the YOLO series, and RetinaNet [7], which are increasingly
used in dangerous driving behavior detection. First-order
algorithms offer faster detection and more efficient feature
extraction. Ji Chenjin [8] introduced the Convolutional Block
Attention Module (CBAM) into the YOLO layer, creating the
improved C-YOLOv3 structure. This modification reduced
background interference and significantly boosted detection
accuracy. Using 8,000 images from the StateFarm distracted
driver detection dataset and 1,000 real driving images, the
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model achieved a 94.41% accuracy rate, demonstrating its su-
perior performance in detecting dangerous driving behaviors
and minimizing background noise, making it highly suitable
for real-world driver behavior detection.

The YOLO series algorithms offer significant theoretical
and practical value in dangerous driving behavior detection.
Their fully convolutional network structure enables global
perception of the entire image, which is crucial for detecting
behaviors that span the whole cab scene, not just a specific
area. Additionally, YOLO transforms object detection into a
regression problem, allowing for the simultaneous detection
of multiple targets in one forward pass, which is especially
useful for identifying various dangerous driving behaviors in
a single image. As end-to-end systems, YOLO algorithms
learn target representation and detection through a single
training process, simplifying model design and maintenance.
While YOLO is known for its speed, its accuracy, especially
for small targets, can be limited. To address this, researchers
have continuously refined and developed newer versions of
YOLO to improve its performance in detecting dangerous
driving behaviors.

In summary, this paper enhances the YOLOv8s [9]–[11]
algorithm by improving both the Backbone feature extrac-
tion and Neck feature fusion components. Three additional
modules are introduced to more accurately detect a range of
dangerous driving behaviors, leveraging recent advancements
in computer vision and deep neural network models.

II. TERIALS AND METHOD

A. YOLOv8 Object Detection Algorithm

YOLOv8 is an efficient real-time object detection algo-
rithm introduced by Joseph Redmon et al. in 2020. The
core concept of YOLOv8 is to frame the object detection
task as an end-to-end regression problem. It directly predicts
the location and category of objects within an input image
using a single neural network model, streamlining the process
from the original image to the detection result. This approach
simplifies the training process, reduces computational costs,
and minimizes the need for manual feature engineering. At
the same time, YOLOv8 delivers high real-time performance
and maintains excellent detection accuracy. It is capable of
processing large-sized images while sustaining a high frame
rate.

Through multiple iterations and enhancements, YOLOv8
has significantly improved in both performance and speed. It
incorporates a deeper network structure and employs various
optimization techniques, such as feature pyramid networks,
cross-scale connections, and multi-scale prediction, to en-
hance detection accuracy and the ability to detect small
targets. Additionally, YOLOv8 integrates technologies like
Bag of Freebies and Bag of Specials, further boosting the
model’s performance and generalization capabilities.

B. ConvNeXt V2

This paper replaces the C2f module in YOLOv8 with the
ConvNeXt V2 module [12], [13], which shows significant
improvements over ConvNeXt V1. ConvNeXt V2 integrates
Transformer-inspired design concepts while maintaining the
efficiency of traditional CNNs. It aims to enhance CNN
performance, particularly in tasks like dangerous driving

behavior detection. In YOLOv8s, ConvNeXt V2 serves as
the backbone network to improve target detection capabilities
and overall performance on large-scale datasets.

This paper integrates the ConvNeXt V2 module into the
YOLOv8s backbone to improve small target feature extrac-
tion and overall image feature learning. The module uses
multi-layer convolution with progressively larger kernels for
multi-scale feature learning, followed by a fully connected
layer for classification.

ConvNeXt V2 introduces two innovations: the Fully Con-
volutional Masked Autoencoder (FCMAE) and Global Re-
sponse Normalization (GRN). The GRN layer normalizes
feature maps on each channel, enhancing feature compe-
tition. It offers two advantages over Batch Normalization
(BN): no additional parameters and support for variable batch
sizes without extra computational overhead.

The GRN layer is implemented in three steps: global
feature aggregation using the L2 norm, feature normalization,
and feature calibration. It requires only three lines of code
and no learnable parameters. The GRN layer has low com-
putational complexity, making it easy to integrate into CNNs
to enhance feature competition and improve performance.

ConvNeXt V1 encountered a feature collapse problem due
to redundant activations, such as dead or saturated neurons,
between channels. To address this issue, ConvNeXt V2
introduces the GRN layer, which promotes feature diversity
and mitigates the feature collapse problem. Diagrams of the
ConvNeXt V1 and ConvNeXt V2 models are shown in Fig.
1.

Fig. 1. ConvNeXt V1 (left) and ConvNeXt V2 (right)
Model Diagram

Applying ConvNeXt V2 to YOLOv8s involves several
steps: loading pre-trained models, modifying the YOLOv8
backbone, training and fine-tuning the model, and optimizing
performance. ConvNeXt V2 enhances YOLOv8’s feature
extraction, improving detection precision. The integration
process is divided into three parts: replacing YOLOv8’s C2f
module with ConvNeXt V2 for high-level feature extrac-
tion, using a hierarchical ConvNeXt V2 architecture with
convolution blocks, and passing the extracted features to
YOLOv8’s head for final detection results. The model is
further optimized through transfer learning and end-to-end
training.

Integrating ConvNeXt V2 as the backbone in YOLOv8
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Fig. 2 DASI Module Structure Diagram.

enhances feature extraction, improving accuracy and effi-
ciency in dangerous driving target detection. This combina-
tion leverages ConvNeXt V2’s efficient convolution design
and YOLOv8’s powerful detection capabilities, excelling in
complex dangerous driving behavior detection tasks.

C. Dimension-Aware Selective Integration (DASI)
The DASI (Dimension-Aware Selective Integration) mod-

ule [14], [15] is designed to enhance feature expression
capabilities in computer vision models, particularly for tasks
such as object detection and image classification. The pri-
mary purpose of the DASI module is to selectively integrate
multi-scale features through a dimension-aware mechanism,
thereby improving model performance. The DASI module
design is inspired by attention mechanisms and multi-scale
feature fusion. By incorporating a dimension-aware mecha-
nism, DASI effectively selects and integrates features across
different scales, enhancing the model’s feature expression
capability and generalization performance. The structure of
the DASI module is illustrated in Fig. 2.

The core part of the DASI module includes multiple
components: firstly, multi-scale feature extraction is per-
formed by using convolution kernels of different scales to
capture objects of different sizes and detailed information
in the input features; secondly, a dimensionality awareness
mechanism is introduced to analyze the channels of the
feature map. The dimensions and spatial dimensions are
weighted to selectively emphasize important features, thereby
paying more attention to the dimensional information of the
features; finally, the multi-scale features that have been

dimensionally weighted are fused to form the final output
feature map.

The DASI module enhances dangerous driving target de-
tection tasks by effectively integrating multi-scale features,
which improves model accuracy. It is well-suited for process-
ing complex scenes and multi-scale object detection tasks.
The DASI module improves feature expression through its
dimension-aware mechanism and multi-scale feature fusion,
demonstrating strong performance in handling complex tar-
get detection tasks and significantly enhancing both target
detection and image classification performance.

D. SCConv

The convolutional Conv module performs effectively in
detecting dangerous driving behaviors but demands substan-
tial computational resources and incurs high costs due to
redundant features. To address these issues, a related paper
introduced the SCConv module [16] , which stands for
Spatial and Channel Reconstruction Convolutional Module.
SCConv comprises two key components: the Spatial Recon-
struction Unit (SRU) and the Channel Reconstruction Unit
(CRU).

The Spatial Reconstruction Unit (SRU) mitigates spa-
tial redundancy using a separation-reconstruction approach,
while the Channel Reconstruction Unit (CRU) employs a
segmentation-conversion-fusion strategy to reduce channel
redundancy. The SRU applies convolution operations to
merge information across the spatial dimension, capturing
spatial features at various scales and enhancing the spatial
structure of the input feature map. The Spatial Reconstruction
Unit (SRU) extracts multi-scale spatial information using
convolution kernels of various sizes and receptive fields,
integrating this information into a feature map. The Channel
Reconstruction Unit (CRU) performs fusion in the channel
dimension to efficiently manage information interactions
between channels, aiming to enhance the expressiveness
of feature maps in this dimension. By adjusting channel
weights, CRU strengthens important channel features while
suppressing less relevant ones. Through spatial and channel
reconstruction, the SCConv module extracts rich feature
information across different scales, enhancing its ability
to capture complex contextual relationships. By combining
dual information reconstruction of both spatial and channel
dimensions, SCConv improves the expressiveness of feature
maps and demonstrates strong adaptability. Additionally,
SCConv can be integrated into existing convolutional neural
networks as an independent module, enhancing the perfor-
mance of models for detecting dangerous driving behaviors.

SCConv enhances the feature extraction capabilities of
convolutional neural networks by combining spatial and
channel reconstruction strategies. Its approach to multi-scale
and multi-dimensional information fusion enriches and re-
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fines the expression of feature maps, making it an effective
method for improving model performance.

III. THE PROPOSED ALGORITHM

This section offers a thorough introduction to the enhanced
YOLOv8s algorithm, designated as the YOLOv8s-CDS algo-
rithm. It commences by delineating the primary structure of
the algorithm and its detection methodology. Subsequently,
this section elaborates on the architecture of ConvNeXt V2,
emphasizing its advantages relative to other architectures and
elucidating its integration into the model. Furthermore, it
discusses the principles underlying the DASI module and
its contributions within the framework. Additionally, the
SCConv module is incorporated to augment the precision
of detecting hazardous driving behaviors.

A. Improved YOLOv8s-CDS Network Structure

While YOLOv8s shares similarities with the stable
YOLOv5, it exhibits a more streamlined design. This algo-
rithm incorporates the Path Aggregation Network (PAN) con-
cept, which effectively mitigates issues related to information
loss and resolution degradation in semantic segmentation,
thereby enhancing both accuracy and detail retention within
the model. PAN employs a dual mechanism of feature propa-
gation that includes both top-down and bottom-up pathways.
The top-down pathway facilitates the transfer of high-level
semantic information to low-level features, enabling the
acquisition of more detailed data; conversely, the bottom-up
pathway conveys low-level features to high-level semantic
representations to furnish global context. By leveraging fea-
ture reuse and reorganization from the network’s intermediate
layers, PAN significantly reduces computational demands
while improving efficiency. During the path aggregation
phase, feature reorganization recombines information across
various scales, resulting in richer and more precise semantic
details. Through multi-scale feature fusion, PAN enhances its
capacity to capture intricate object details alongside broader
contextual information, thus bolstering performance, robust-
ness, and generalization capabilities in semantic segmenta-
tion tasks. This methodology adeptly addresses challenges
posed by variations in object scale and perspective.

The YOLOv8s algorithm initiates feature extraction
through the backbone network, subsequently enhancing these
features via both top-down and bottom-up pathways before
generating predictions based on feature maps of three distinct
sizes. The process unfolds as follows: a 640×640 three-
channel image is inputted, followed by a convolutional
layer that reduces its dimensions by half while augmenting
the channel count to 64. This is succeeded by a series
of convolutional layers combined with C2fneb2 modules,
further diminishing the image size to 160×160 and increasing
the number of channels to 128. This procedure is iterated
four times, ultimately reducing the dimensions to 20×20
while elevating the channel count to 1024. Subsequently, the
SPPF module executes pooling cascade operations. Features
extracted from the backbone layer are then upsampled to
double their original size and concatenated with correspond-
ing feature maps obtained from the C2f module within the
backbone architecture. The C2f module further refines these
features, with this enhancement process repeated twice to

achieve comprehensive top-down feature fusion. Finally, for
processing bottom-level feature maps, these maps are scaled
and concatenated with those derived from previous iterations
of the C2f module at equivalent sizes. Following this scaling
and enhancement using both C2f modules and convolutions
results in feature maps across three different scales: small-
sized feature maps predict large targets; medium-sized ones
cater to medium targets; whereas large-sized ones focus on
small targets. The structures of Conv, C2f, and SPPF modules
are depicted in Fig. 3.

This paper presents an integration of the ConvNeXt V2,
DASI, and SCConv modules into YOLOv8s, based on the
algorithms and modules previously discussed. The architec-
ture of the enhanced algorithm is depicted in the figure below.
By incorporating these advanced modules and strategies, the
YOLOv8s-CDS algorithm markedly improves the accuracy
of detecting dangerous driving behaviors. The model struc-
ture for YOLOv8s-CDS is illustrated in Fig. 4.

B. Feature Extraction
To integrate ConvNeXt V2 into the YOLOv8s model and

enhance its feature extraction capabilities, this study first
prepares a pre-defined ConvNeXt V2 model, which is an
advanced convolutional neural network specifically designed
as an efficient and robust feature extractor for various com-
puter vision tasks. Subsequently, it replaces the backbone
module in YOLOv8s with this model. The next step involves
adjusting the feature size and connections to ensure that the
output dimensions of ConvNeXt V2 align with the input
requirements of YOLOv8s. Finally, the improved YOLOv8s
model undergoes training and debugging to confirm proper
convergence and satisfactory performance on the validation
set.

In the original YOLOv8s architecture, the C2f module is
employed for feature extraction using standard convolutional
layers. Furthermore, within C2f, a Bottleneck module im-
plements a conventional bottleneck design that reduces com-
putational complexity by utilizing two convolutional layers.
To address overfitting and improve generalization capabili-
ties, DropPath functionality is incorporated; this mechanism
randomly discards portions of network paths during training.

This paper substitutes the Bottleneck module in C2f with
ConvNeXt V2. The ConvNeXt V2 module utilizes 7×7 deep
convolutions along with layer normalization and an activa-
tion function for effective feature extraction. Additionally, it
integrates a path drop layer to randomly eliminate certain
paths during training while combining inputs and outputs
post-path dropping through residual connections.

Subsequently, we invoke the CNeB2 class to adjust
channel dimensions across different convolutional layers so
that features of varying dimensions are standardized to a
common dimension. After introducing n instances of Con-
vNeXtV2Block2d modules, consistency among channels is
ensured.

Finally, we define the C2fNeb2 module which calls upon
its parent class CNeB2 to facilitate replacement within the
overall model structure.

C. Feature Fusion
The modules are initialized at three distinct resolu-

tions—high, medium, and low—to extract features accord-
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Fig. 3. The Structures of Conv, C2f and SPPF

ingly. The features obtained from the processed high-
resolution and medium-resolution modules are separated
into channels and stored in x high blocks and x blocks,
respectively. For the low-resolution module, bilinear inter-
polation is applied post-feature extraction to resize it be-
fore channel separation and storage in x low blocks. When
high-resolution features are available while low-resolution
features are absent, the high- and medium-resolution fea-
tures are concatenated followed by convolutional processing.
Conversely, if only low-resolution features exist without
corresponding high-resolution data, the medium-resolution
and low-resolution features undergo concatenation prior to
convolution. In scenarios where both feature sets coexist
simultaneously, aggregation of these two feature types oc-
curs with repetition of the aforementioned steps. After con-
catenating all channel-specific features, residual connections
integrate original feature information to prevent loss during
processing. Finally, batch normalization along with activation
functions is applied to yield the final output of extracted
features.

This module enhances the model’s capacity for capturing
and fusing multi-scale resolution features through compre-
hensive multi-scale feature fusion techniques combined with
convolution operations. Particularly within complex scenes,
effective integration of these diverse feature representations
significantly bolsters detection accuracy and robustness.

The SCConv module further augments feature extraction
capabilities via a self-calibration mechanism that improves
performance across convolutional neural networks (CNNs).
Specifically designed to mitigate feature redundancy effec-
tively, this module not only reduces model parameters but
also computational demands while enhancing representa-
tional efficacy of extracted features. By offering a novel

perspective on CNNs’ feature extraction processes alongside
methods for optimizing spatial and channel redundancies,
SCConv contributes positively towards improving overall
model performance whilst minimizing redundant elements.

Experimental results indicate that models incorporating the
SCConv module achieve superior performance characterized
by substantial reductions in complexity as well as compu-
tational costs due to diminished redundant characteristics
within their architectures.

This study implements the SCConv module which facil-
itates decreased computational expenses alongside reduced
model storage requirements while concurrently enhancing
CNN performance through alleviation of prevalent spatial
and channel redundancies found in standard convolutions.
Through Spatial Redundancy Utilization (SRU) and Channel
Redundancy Utilization (CRU), redundancy within feature
maps is minimized leading to significant enhancements
in performance coupled with marked reductions in com-
putational load. This approach integrates seamlessly with
the C2f module resulting in a composite structure termed
C2fSCConv; a schematic representation illustrating both
C2fSCConv’s architecture along with its internal Bottleneck
component can be found in Fig. 5.

IV. EXPERIMENT

A. Experimental Data

The dataset used in this paper is a collection of open
source datasets of dangerous driving behaviors from the
Internet, including the Advance Driver Monitoring System
Dataset (ADMS) dataset, the Driver Inattention Detection
Dataset and some online images. This dataset focuses on
specific driver behaviors, such as drinking water, falling
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Fig. 4. The YOLOv8s-CDS Model Structure Diagram

asleep, playing with mobile phones, smoking, and yawning.
The dataset contains 13,000 images in 5 different categories,
providing a diverse and extensive collection for training
and validation purposes. In order to train the model, we
downsampled it, that is, randomly extracted about half of the
6,518 images, and divided the training set and validation set
into a ratio of 8:2, including 5,215 images in the training
set and 1,303 images in the validation set. The specific
distribution of these five dangerous driving behaviors in the
dataset is shown in Table I.

TABLE I
DISTRIBUTION TABLE OF DIFFERENT TYPES OF IMAGES IN THE

DATASET

Dangerous Driving Behavior Image train val total

drinking 673 170 843

drowsy 932 239 1171

phone 1840 425 2265

smoking 953 218 1171

yawning 817 251 1068

total 5215 1303 6518

B. Experimental settings

In this experiment, all input dangerous driving behavior
images are uniformly resized to 640×640×3, and the epoch
is 200. This configuration is shown in Table II.

TABLE II
SYSTEM CONFIGURATION

Configuration Configuration Parameter

Operating System Ubuntu 20.04.6 LTS

CPU
Intel® Core™ i7-10700F CPU @

2.90GHz × 16

GPU RTX 3090

Memory 24GB

Deep learning framework PyTorch 1.10.1

CUDA version Cuda 11.3

Integrated dev. environment PyCharm

C. Performance Indicators

In order to evaluate the performance of the model proposed
in this paper in more detail, this study uses precision, recall,
mAP@0.5, frames per second (FPS), number of parameters
and model size as evaluation indicators.

Precision refers to the proportion of dangerous driving
behaviors detected that are actually dangerous driving, where
true positives (TP) refer to the number of samples where
the model correctly detects dangerous driving behaviors and
represent the number of samples correctly classified as pos-
itive examples, that is, they are actually positive examples.
False positives (FP) refer to the number of samples where
the model incorrectly detects dangerous driving behaviors.
The calculation formula is as follows (1):
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Fig. 5. The Structures of C2fSCConv and Bottleneck

TABLE III
COMPARISON OF DETECTION EFFECTS OF VARIOUS MODELS

Object Detection Algorithm Params(M) GFLOPS (G) Precision Recall mAP0.5 mAP0.5-0.95

Faster-RCNN 41.37 241.95 86.93 82.78 85.81 40.70

YOLOv5s 7.03 16.00 89.71 85.83 88.10 47.80

YOLOv7s 37.62 100.39 86.20 80.82 84.20 43.60

YOLOX 8.97 26.93 87.69 84.66 86.56 44.80

YOLOv8n 2.62 7.00 86.90 83.40 87.10 48.40

YOLOv8s 9.59 24.30 89.42 85.30 88.80 49.60

YOLOv8s-CDS 10.00 28.40 91.40 88.20 91.20 50.80

Precision =
TP

TP + FP
(1)

Recall refers to the proportion of all real dangerous driving
behaviors detected by the model, where false negatives (FN)
refer to the number of samples of real dangerous driving
behaviors that the model failed to detect and represent
the number of samples incorrectly classified as negative
examples, that is, they are actually positive examples. The
calculation formula is as follows (2):

Recall =
TP

TP + FN
(2)

AP is a comprehensive evaluation index for evaluating
precision and recall, which is used to calculate the average
accuracy of a single-class model. Among them, P is the
vertical coordinate precision of the P-R curve, and R is
the horizontal coordinate recall of the P-R curve. The value
of AP is the area under the interpolated precision and
recall curve, which represents the average accuracy of the
model at all recall values. The higher the AP, the better the
performance of the model in the target detection task. The
calculation formula is as follows (3):

AP =

∫ 1

0

P (R)dR (3)
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mAP is the average of the AP values of all categories. The
calculation formula is as follows (4):

mAP =

∑n
i=0 APi

n
(4)

Where n represents the total number of categories, and APi
is the AP value of the i-th category. FPS (Frames Per Second)
represents the number of frames processed per second to
measure the speed of the algorithm in the image processing
task. Higher FPS values indicate faster the algorithm in
processing images and is able to analyze and detect more
images in a shorter time.

D. Experimental Results Analysis

YOLOv8 provides users with multiple different ver-
sions to meet various application requirements. These ver-
sions mainly differ in model size, computational complex-
ity, architecture design, weights, and performance. Com-
mon YOLOv8 versions include YOLOv8n, YOLOv8s,
YOLOv8m, YOLOv8l, and YOLOv8x. This paper compre-
hensively considers the speed and accuracy of the model,
that is, fast processing but still high accuracy is required.
Therefore, we initially select YOLOv8s as the baseline
network model of this paper.

In order to further verify the effectiveness of the dangerous
driving behavior detection method based on the YOLOv8s
model, we conducted comparative experiments in the same
environment to evaluate the performance of this method
with the current mainstream target detection model. This
paper compares it with Faster-RCNN [17], the same series of
YOLOv5s [18], YOLOv7s [19], YOLOX [20] and YOLOv8n
salgorithms. As can be seen from Table III, compared with
the two-stage algorithm such as Faster RCNN, the one-stage
algorithm has a faster detection speed. Compared with the
first-stage algorithms such as YOLOv5s, YOLOv7s, YOLOX
and YOLOv8n, the detection accuracy of YOLOv8s has been
further improved.

The table shows the detection performance of these al-
gorithms on five sets of images. We observed that although
the Faster-RCNN algorithm showed high detection accuracy,
its two-stage nature led to a slower detection speed, and
its large network parameters made it very challenging to
use on mobile devices with limited computing and storage
resources. In contrast, although the number of parameters of
YOLOv7s has been greatly improved compared to the two-
stage Faster-RCNN algorithm, the YOLOv5s ,YOLOX and
YOLOv8n algorithms have been further improved compared
to YOLOv7s, but based on the dataset used in this experi-
ment, they are not as accurate as the YOLOv8s model. In
summary, compared with other target detection methods, the
method proposed in this paper has superior advantages in
comprehensive performance. Therefore, this experiment was
finally determined to be based on YOLOV8s.

Through the improvement of the method of adding mod-
ules to the head and neck network model in this paper, the
number of parameters in the model can be greatly reduced,
and the detection accuracy can also be greatly improved.

E. Ablation Experiment

As can be seen from Table IV, the detection accuracy
of YOLOv8s is relatively high, but the number of network

parameters is large, and the amount of computation required
by the network is also large, which is not conducive to
use on embedded mobile terminals. Therefore, this paper
makes improvements based on the YOLOv8s model. The
improvements include: using the ConvNeXt V2 module to
improve the backbone network; using the DASI module
to improve the feature fusion module; and introducing the
SCConv module through the improvements of the above
methods, the number of parameters in the model can be
greatly reduced, and the detection accuracy can also be
greatly improved. In order to verify the effectiveness of each
module, we used the same data set and the same training
hyperparameters to conduct an ablation study and compared
it with the original model. The experimental results are
shown in Table IV.

Table IV highlights the good performance of YOLOv8s on
various enhancement points. First, integrating the ConvNeXt
V2 module into the original YOLOv8s model can learn
global and local features of the image, thereby improving
its generalization ability, resulting in a 0.80% increase in
mAP@0.5. Adding DASI and SCConv modules to enhance
the neck network further improves the accuracy, with a
1.20% increase in mAP@0.5. By combining the advantages
of each module, the algorithm finally achieves 91.20% of
mAP@0.5, 2.4% higher than the YOLOv8s algorithm.

Fig.6 is the normalized confusion matrix of the exper-
iment, that is, the performance of the model on different
categories after the prediction results of each category are
standardized to relative proportions. The diagonal elements
represent the correct prediction ratio of the model on each
category, that is, the recall rate. A higher diagonal value
indicates that the model performs well on this category. For
example, the recall rate of the drinking category is 0.88,
which means that the model correctly classifies 88% of the
drinking samples. The non-diagonal elements represent the
confusion between categories. For example, the proportion
of drinking being misclassified as background is 0.23, which
means that 23% of drinking behaviors are misclassified as
background.

Fig. 7 compares the mAP 0.5 curves of the improved
YOLOv8s-CDS algorithm with those of the YOLOv8s,
YOLOv8s-C, and YOLOv8s-DS algorithms. As shown in
Fig. 7, the introduction of the ConvNeXt V2 module, the
DASI module, and the SCConv convolution module increases
the mAP 0.5 of the YOLOv8s-CDS algorithm to 91.2%,
which is 2.4% higher than that of the YOLOv8s algorithm.

The mAP of all models in the figure shows an upward
trend with the increase in the number of training rounds,
which indicates that the model continuously improves its
detection performance during the training process. The mAP
curve rises rapidly in the first 50 rounds and then enters a
gradual improvement stage, which indicates that the model
gradually converges. By the 200th round, the mAP values of
all models tend to be stable, indicating that the model has
converged and there is no obvious performance improvement.
The enlarged graph of the mAP 0.5 curve in the ablation
experiment is shown in Fig. 8.

In summary, YOLOv8s-CDS is the optimal model in this
experiment because it has the fastest convergence speed and
the highest final mAP, which shows that it is suitable for dan-
gerous driving detection and can improve the performance of
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TABLE IV
INFLUENCE OF DIFFERENT INPUT SIZES ON THE DETECTION EFFECT

Method ConvNeXt V2 DASI+ SCConv mAP0.5

YOLOv8s - - - 88.80

Proposed method1 ✓ ✓ - 89.60

Proposed method2 ✓ ✓ - 90.00

Proposed method3 ✓ ✓ ✓ 91.20

Fig. 6. Model normalized confusion matrix plot

dangerous driving detection projects.
Fig. 9 is a comparison curve of mAP:0.5 0.95 and epoch

between the improved YOLOv8s-CDS algorithm and the
YOLOv8s, YOLOv8s-C and YOLOv8s-DS algorithms. The
figure shows that the YOLOv8s model gradually converges
with the increase of epochs, and the final mAP reaches
about 0.45. The performance of the YOLOv8s-C model is
significantly higher than that of the YOLOv8s. Its rising
speed in the early stage is close to that of the YOLOv8s, but
in the middle and late stages, the mAP maintains a higher
level, and finally slightly exceeds 0.47. The performance of
the YOLOv8s-DS model is close to that of the YOLOv8s-C,
but it is more stable throughout the training process, and the
final mAP is close to 0.48. The YOLOv8s-CDS model has
the best performance. During the entire training process, the
mAP rises the fastest, and the final mAP reaches close to
0.5, which is the best performing model.

All models converged around 75-100 rounds, at which

time the mAP began to stabilize without obvious increases
or fluctuations. This indicates that the model has learned the
best features in this range, and continued training may have
limited performance improvements. In the first 25 rounds, the
mAP of all models experienced a rapid increase, that is, in the
initial stage, the model quickly learned some basic features
from the data. However, as the rounds increased, the speed
of model performance improvement gradually slowed down,
especially after 50 rounds, the mAP growth of all models
became relatively slow. Among them, the YOLOv8s-CDS
model performed outstandingly, with the fastest convergence
speed, while other models required more epochs to reach a
similar performance level, that is, they could achieve higher
accuracy in less training time.

The enlarged graph of the mAP 0.5:0.95 curve in the
ablation experiment is shown in Fig. 10. It can be clearly seen
that YOLOv8s-CDS improves the detection performance of
the model, especially in the dangerous driving detection task.
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Fig. 7. Comparison curve of mAP 0.5 and epoch of the
improved YOLOv8s-CDS model

Fig. 8. Enlarged map 0.5 comparison curve

The results of the enhanced dangerous driving detection
model are presented in Fig. 11, which provides clear evidence
of the model’s outstanding performance in both efficiency
and accuracy. This advanced model demonstrates its capabil-
ity to successfully identify a wide range of dangerous driving
behaviors, such as speeding, abrupt lane changes, tailgating,
and distracted driving.

By accurately detecting and distinguishing various forms
of hazardous driving, the model empowers traffic man-
agement authorities and law enforcement agencies to take
timely and targeted preventive measures. These measures
could include issuing early warnings, implementing stricter
enforcement, or conducting driver education programs, all of
which work together to reduce the frequency of traffic acci-
dents. Ultimately, this improved detection model contributes
to creating safer roadways, protecting the lives and well-
being of every road user, and fostering a more responsible
driving culture in society.

Fig. 9. Comparison curve of mAP 0.5:0.95 and epoch of
the improved YOLOv8s-CDS model

Fig. 10. Enlarged map 0.5:0.95 comparison curve

V. CONCLUSIONS

This study conducted a high-precision optimization of
the YOLOv8s target detection algorithm for dangerous driv-
ing scenarios. Through in-depth analysis and experimental
verification, it was concluded that the improved YOLOv8s
method enhances detection capabilities in dangerous driving
behaviors. The method maintains high detection accuracy
and a low false alarm rate, effectively meeting the needs
for dangerous driving behavior detection. Additionally, the
proposed detection method demonstrates high practical value
in real-world applications by identifying dangerous driving
behaviors and effectively preventing traffic accidents.

However, this method still has certain limitations. This
research primarily focuses on improving accuracy, with less
emphasis on accelerating detection speed. In the future,
we aim to explore and develop a more lightweight deep
learning model to enhance the detection speed. Additionally,
future detection systems could leverage in-vehicle cameras
and Internet of Vehicles technologies to collect and analyze
driving behavior data in real-time, thereby providing safety
guarantees for intelligent transportation systems.
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Fig. 11. Dangerous driving detection results diagram
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