
 

 
Abstract—Aiming at the problems of unbalanced railway 

accident categories and incomplete reason analysis for 
different types of accidents, a railway accident type prediction 
method based on the Whale Optimization Algorithm (WOA) to 
improve the Extreme Gradient Boosting (XGBoost) is 
proposed. The SHAP method is adopted to analyze the reasons 
for diverse types of railroad accidents. Firstly, railway 
accidents are divided into six types such as derailment and 
collision. The SMOTE algorithm is used to resample 
unbalanced accident data. Secondly, WOA-XGBoost is 
constructed to classify and predict different types of railway 
accidents. Finally, SHAP (Shapley Additive Explanation) is 
introduced to explain the WOA-XGBoost model with the best 
performance, identify the important factors affecting the model 
output, and analyze the causes of different types of railroad 
accidents. The results demonstrate that the accuracy of the 
proposed model is 0.817, the precision is 0.809, and the F1 
value is 0.761. The WOA-XGBoost model outperforms the 
decision tree, the gradient boosting decision tree, and the 
XGBoost model in terms of performance. According to the 
SHAP method, mechanical failure, human error, and speed are 
the important factors leading to different types of accidents. 

 
Index Terms—  railway accident type prediction; extreme 

gradient boosting; whale optimization algorithm; SHAP cause 
analysis 
 

I.  INTRODUCTION 
ailroad accidents contain risk factors, accident types, 
severity, and other information. Determining the key 

factors that need to be focused on controlling from plenty of 
recorded accident information is significant for accident 
prevention. The prediction and reasons analysis of railroad 
accidents is an important aspect of railroad safety. Therefore, 
based on the historical data of railway accidents, it holds 
substantial practical implications to forecast what types of 
railroad accidents will occur in a specific situation, identify 
the risk factors that need to be strengthened in different 
types of railroad accidents such as derailment and collision, 
and explore the reasons of railroad accidents, to improve the 
level of railway safety management. 
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The existing railroad accident prediction research took 
human error, management organization, environment, 
equipment failure, and other influencing factors as 
independent variables and took accident severity [1], risk 
level, number of accidents, loss amount, or accident type as 
dependent variables. In the existing research, traditional 
algorithms such as Decision Tree (DT) [2], Support Vector 
Machine [3], and Logistic Regression [4] were mainly used 
to build accident prediction models. However, the prediction 
of railway accident types has the problem of category 
imbalance, which will make the model biased toward most 
class samples, thus affecting the model’s performance [5]. 
The above algorithms are mainly applicable to simple and 
balanced data. However, for railway accident records with 
large sample sizes and unbalanced categories, the 
performance of the prediction model needs to be enhanced. 
The focus of current research is on further improving the 
model’s performance. 

In comparison to traditional algorithms, the ensemble 
learning algorithm improves the prediction performance by 
merging numerous models and performs better on accident 
data with unbalanced categories. Moreover, it can evaluate 
the contribution of independent variables to the model 
through feature importance. Therefore, relevant scholars 
have introduced ensemble learning algorithms into road 
traffic safety [6], [7], ship safety analysis [8], and railway 
safety research. Zhou et al. [9] adopted the Random Forest 
(RF) algorithm to predict accidents at highway-railroad 
crossings. The results demonstrated that the RF model can 
mitigate the adverse impacts caused by imbalanced data. R. 
Bridgelall et al. [10] adopted the Extreme Gradient Boosting 
(XGBoost) to predict derailment and non-derailment and 
identified the important factors of derailment accidents 
through feature importance and principal component 
analysis. Zhong et al. [11] proposed an algorithm based on 
the Gradient Boosting Decision Tree (GBDT) for predicting 
the types of railroad accidents and analyzing the causes. The 
conclusion showed that derailment and collision accidents 
are closely related to location, train speed, temperature, and 
personnel factors. H. Meng et al. [12] proposed an 
AdaBoost-Bagging algorithm to predict railway accidents 
and examined the reasons based on the importance of 
features. Although these studies have provided valuable 
insights and useful references for railway accident analysis, 
they have limitations in analyzing accident causes in depth. 
Specifically, they have mainly focused on using feature 
importance to identify important factors in models. However, 
the influence of variable values on accidents is different, and 
they fail to analyze the influence of variable values on 
accidents in detail. Therefore, a more comprehensive 
approach is essential to analyze the causes of diverse 
categories of railroad accidents. 
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Fig. 1.  Railway accident type prediction and cause analysis framework

In recent years, scholars have applied the Shapley 
Additive Explanations (SHAP) to road and railway safety 
research to analyze accident factors more comprehensively. 
The SHAP method can calculate the contributions of 
variables and analyze the degrees of positive and negative 
impacts of different variable values on the prediction results. 
H. L. Ding et al. [13] analyzed the causes of bicycle 
collisions based on SHAP, and the results showed that 
population density is an important factor in bicycle 
accidents. R. Bridgelall et al. [14] applied machine-learning 
algorithms to study human-caused railway accidents. 
Through the SHAP game-theoretic model analysis, they 
concluded that human-caused accidents are usually 
correlated with derailments. J. Liu et al. [15] utilized SHAP 
to explain the influence of different features on the accidents 
and concluded that speed, visibility, and total tonnage are 
the key variables in the model. 

This paper takes advantage of the fast convergence speed 
and strong optimization capability of the Whale 
Optimization Algorithm (WOA) to effectively improve the 
performance of XGBoost model. Meanwhile, the SHAP 
approach provides a more adequate explanation for the 
predictive model, enabling a more comprehensive analysis 
regarding the reasons for different categories of accidents. 
Therefore, to tackle the problems of unbalanced accident 
types, poor performance of prediction models, and 
insufficient cause analysis, a railroad accident type 
prediction and reason analysis method based on ensemble 
learning is proposed. Firstly, the synthetic minority 
oversampling technique (SMOTE) is adopted to process the 
accident dataset. Then, an improved XGBoost algorithm 
grounded in the WOA algorithm is put forward for 
predicting railway accident types. Finally, SHAP is 
introduced to explore the causes of railroad accidents. The 
overall framework is shown in Fig. 1. 

II.    SMOTE ALGORITHM  
Oversampling techniques can address the problem of 

category imbalance for railway accident data. The 
traditional random over-sampling (ROS) technique balances 

the class distribution by randomly replicating minority 
samples, but this method tends to cause over-fitting in the 
model [16]. Compared with the ROS technique, SMOTE 
considers the similarity between samples of the same 
category and synthesizes new samples within the original 
minority sample space through specific strategies, which can 
effectively avoid the overfitting problem caused by simple 
replication [17]. The SMOTE algorithm is applied to 
mitigate the impact of data imbalance on the test results. The 
process is illustrated in Fig. 2.  
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Fig. 2.  SMOTE algorithm diagram 
 

The SMOTE algorithm flow is as follows.  
(1) Select minority sample: Select sample ix  from 

minority samples as the benchmark for synthesizing new 
samples, calculate the distance between the sample and 
other samples in the minority class based on the Euclidean 
distance, and find the k-nearest neighbor.  

(2) Select the nearest neighbor sample: The sampling rate 
is set according to the unbalanced proportion of the sample, 
and a neighbor ijx  is randomly selected from the k-nearest 
neighbors for ix  as the auxiliary sample. The operation is 
repeated N  times. 

(3) Synthesize new samples: Each randomly selected 
nearest neighbor sample ijx  is calculated according to (1). 
Interpolation is carried out between the reference sample 
and the nearest neighbor sample to construct a new sample. 
Finally, N  synthetic samples are produced. 

(0,1) ( )isynth i ijeticX x rand x x                 (1) 
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Where ix  is the i -th sample within the minority class, ijx  is 
the j -th nearest neighbor sample of ix . syntheticX is a sample 
synthesized by interpolation between ix  and ijx , (0,1)rand  
represents a randomly generated number between [0,1]. 

III. ACCIDENT TYPE PREDICTION BASED ON WOA-
XGBOOST 

A. XGBoost 
XGBoost is an improved ensemble learning algorithm 

based on GBDT [18]. XGBoost improves the prediction 
performance of the overall model by serially integrating 
multiple decision trees, which can provide a better 
prediction effect for railway accident data with numerous 
samples and imbalanced categories [19]. Based on the 
traditional loss function, the objective function adds a 
regular term to control the model’s complexity and improve 
the model’s generalization capacity. In the training process, 
the objective function is expanded by second-order Taylor 
expansion to improve the accuracy of the model [20]. 

A railway accident-type prediction model is constructed 
based on the XGBoost algorithm. The dependent variable is 
the accident type, and the independent variables include 
speed, visibility, mechanical equipment failure, and other 
factors. There is a dataset }){( ,i iD x y , which has n  
railway accident samples and b  independent variables. The 
objective function of XGBoost is shown in (2) and the 
complexity is shown in (3). 
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Where  ˆ,i il y y  is the loss function, which is the deviation 
of the predicted value from the actual value of the railway 
accident type. n  is the number of samples imported into the 
k -th tree. The complexity  Ω tf  adjusts the penalty 
strength by   and   to regulate the model's complexity, 
with the aim of averting overfitting of the model. T  denotes 
the number of leaf nodes. j  denotes the weight of the j -th 
leaf node. 

The second-order Taylor expansion of (2) is carried out. 
In the t -th iteration, the objective function is transformed 
into (4). 
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Where ig  and ih  denote the first-order and second-order 
partial derivatives of the loss function, t  denotes the index 
of the tree, and tf  is the model corresponding to the t -th 
tree. 

In the t -th iteration, the value of ( 1)ˆ t
iy  is known. Then 
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  are also known constants. These 

constants are independent of optimizing the objective 
function, so (4) can be converted into (5). 
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In (4), the objective function is traversed on the accident 
samples. To discover the optimal tree during the t th 
iteration, the objective function is converted into the form of 
traversal on the leaf. The size of the objective function is 
directly related to the total count of leaf nodes, as shown in 
(6). 

 ( ) 2

1

1
2

Tt
j j j j

j
Obj G H T   



       
           (6) 

 
Where 

j
j i

i I
G g


  , 

j
j i

i I
H h


  . 

The partial derivative of j  is made to be equal to 0, and 

then j
j

j

G
H




 


 is obtained and substituted back to (6). 

The result is shown in (7). 
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As the value of the objective function decreases, the 
accuracy of the model improves, and the reliability of the 
classification increases. When the objective function reaches 
its minimum value, the optimal model can be obtained. 

B. WOA-XGBoost Model 
The XGBoost algorithm encompasses hyperparameters 

like the learning rate, the number of base learners, and the 
maximum depth of the tree. An improper setting of these 
hyperparameters will result in a decline in the accuracy of 
accident type prediction. Specifically, the settings of 

_n estimators  and max_depth  affect the complexity of the 
accident-type prediction model. The model is simpler when 
the values assigned to these two hyperparameters are 
relatively small. However, the model may not be fully 
trained, leading to under-fitting. Conversely, the model 
becomes more complex when the values set for these two 
hyperparameters are relatively large. Nevertheless, this 
increased complexity may reduce the model’s generalization 
ability, giving rise to overfitting. The learning rate can 
control the model’s iteration rate and prevent overfitting. 

WOA has strong global search ability and fast 
convergence speed [21], which can effectively search for the 
optimal parameter combination of the XGBoost algorithm 
and improve the performance of railway-accident prediction 
model. Thw WOA is used to iteratively optimize the above 
three important hyperparameters of XGBoost. 

The whale optimization algorithm, which takes whale 
hunting behavior as a reference, is a mathematical model 
that simulates contraction encirclement, spiral encirclement, 
and global random search of prey by whales [22]. When the 
whale shrinks and encircles the prey, supposing that the 
optimal solution represents the hunting target. The whale 
position closest to the target is the optimal individual spatial 
position. The rest of the whales update the position based on 
this as shown in (8). 

* *( 1) | ( ) |( ) ( )X tt X A C X t X t                (8) 

Where *( )X t  is the optimal individual space position vector, 
( )X t  is the current individual position vector. A  is 

calculated by (9) and C  is calculated by (9).  
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12A a r a                           (9) 

22C r                           (10) 
Where a  is a linearly decreasing convergence factor in the 
range of [0,2]. 1r  and 2r  represent random vectors whose 
components fall within the interval [0,1]. 

The spiral-up position update is mathematically modeled 
based on the separation between the present individual and 
the prey [23], with the expression shown in (11). 

'( 1) cos(2 ) ( )blX t D e l X t                (11) 

Where 'D  represents the distance between the current 
individual and the prey, b  represents a defined constant, and 
l  represents a randomly-generated number between [0,1]. 

According to probability p , WOA selects how to update 
the individual position and chooses to adopt the contraction-
surrounded method or the spiral rising position update 
method. The specific model is shown in (12). 
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Where p  denotes a random number in the range of (0,1) . 
It achieves the process of shrinking by reducing the value 

of a . When a  in (9) gradually decreases, A  also decreases. 
When | | 1A  , the whale shrinks and surrounds the prey. 
When | | 1A ≥ , the whale randomly searches for prey in the 
global range, and its mathematical model is shown in (13). 

( 1) rX t X A D                  (13) 
Where ( )rD C X X t  , rX  represents the random 
individual’s position in the whale population. 

The flowchart of WOA-XGBoost is illustrated in Fig. 3. 
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Fig. 3.  WOA-XGBoost flowchart 

IV. RAILWAY ACCIDENT CAUSE ANALYSIS METHOD BASED 
ON SHAP 

To improve the interpretability of the accident type 
prediction model, the SHAP method is introduced to 
visualize the decision-making mechanism of the prediction 
model. SHAP can more precisely capture the interaction 
between features. It can find out the key features affecting 
the model output and analyze the reasons for different types 
of railway accidents. 

SHAP explains the output of the black box model by 
calculating the contribution of the variables [24]. The 
contribution value ,i j  is calculated as (14). 
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(14) 
Where M  is a set of all variables in the railway accident 
data set, with a total of b  independent variables. S  is a 
subset selected from the set B . S  denotes the size of M . 
When the variable set S  is selected, the model’s prediction 
value of the i -th accident sample is  

ixf S . When the ,i jx  

is added to the set S , the model’s prediction value of 

sample ix  is   ,ix i jf S x . 

SHAP provides an additive interpretation model based on 
Shapley value in game theory [25]. The prediction result of 
each sample is the linear sum of the contribution values of 
all independent variables in the sample, modeled as shown 
in (15). 
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Where ( )if x  is the prediction result of the model for sample 

ix . b  is the number of features. If , 0i j  , it means that the 
j -th independent variable of the i -th accident sample acts 

positively on the outcome of the model. On the contrary, if 
, 0i j  , the j -th independent variable acts negatively on 

the prediction result. 

V.    SIMULATION AND RESULTS ANALYSIS 

A. Railway Accident Data Processing 
The data are derived from the railway equipment accident 

database published by the Federal Railroad Administration 
(FRA) [26]. The accident records from 2012 to 2023 are 
selected as experimental data. The database records railway 
accidents since 1975 in tabular form, including 144 
attributes such as accident type, location, speed, load, 
number of casualties, and loss amount. 

According to the actual situation of railway accidents, 
referring to the FRA accident type classification standard 
[27] and historical literature research [28], [29], the types of 
railway accidents are divided into six types, such as 
derailment and collision. The coding and statistics of 
railway accident types are shown in Table I. The number of 
type 0 (Derailment) is the largest, and the number of type 4 
(Fire/Violent rupture) and type 5 (Other) is very small, 
indicating that the categories of the data set are extremely 
unbalanced. 
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TABLE I 
CODE AND PROPORTION OF TYPE 

Code Accident type Proportion 
0 Derailment 57.87% 
1 Collision 24.59% 
2 Highway-rail crossing 8.53% 
3 Obstruction  3.73% 
4 Fire/Violent rupture 1.86% 
5 Other 3.43% 

 
Data preprocessing primarily involves three main aspects: 

data cleaning, feature encoding, and missing value 
imputation. Firstly, data cleaning is carried out to delete 
samples with outliers and eliminate sparse, redundant, and 
irrelevant features. Secondly, the unstructured data is 
encoded into structured data by Label-Encoding. Finally, the 
missing discrete data is filled by mode, and the missing 
continuous data is filled by mean. The preprocessed dataset 
contains 27118 accident records and retains 20 independent 
variables, including time, speed, weather, and the total 

number of cars. Some examples of categorical features and 
their coding descriptions are shown in Table II. 

To reduce the influence of category imbalance on the 
model’s prediction performance, the pre-processed FRA 
railway accident records are used as the data set. 80% of the 
data is chosen as the training dataset, while the remaining 
20% serves as the test dataset. The SMOTE algorithm is 
then employed to balance the accident type within the 
training dataset. Moreover, the principal component analysis 
(PCA) is applied to decrease the dimensionality of both the 
original training set and the balanced training set. The first 
three principal components are chosen to display the data 
distribution visually. Because different accidents have 
different data distribution characteristics and change trends, 
six data distributions are obtained for different accident 
types, as illustrated in Fig. 4. Fig. 4 demonstrates that the 
data distribution characteristics before and after sampling 
are similar, and the trend of change is consistent, indicating 
that the minority samples synthesized by SMOTE are close 
to the actual accident samples. 
 

TABLE II 
CATEGORICAL FEATURES 

Feature Code 
season 1 - spring, 2- summer, 3 - autumn, 4 - winter 

weather 1-clear, 2-cloudy, 3-rain, 4-fog, 5-sleet, 6-snown 
type_of_consist 1 - freight train, 2 - passenger train, 3 - locomotive, 4 - cars, 5 - work train, 6 - yard 
type_of_track 1 - main, 2 - yard, 3 - siding, 4 - industry 

trackcwr 0 - other, 1 - continuous welded rail track 

risk 

1 - brake, 2 - trailer or container on flatcar, 3 - body, 4 - draft system, 5 - truck components, 6 - axles and journal bearings,  
7 - wheels, 8 - locomotives, 9 - doors, 10 - general mechanical electrical failures, 11 - use of brakes, 12 - employee physical 

condition, 13 - flagging, fixed, hand and radio signals, 14 - general switching rules, 15-  main track authority, 16 - train 
handling / train make-up, 17 - speed, 18 - use of switches, 19 - miscellaneous, 20 - roadbed, 21 -  track geometry, 22 - rail, 
joint bar and rail anchoring, 23 - frogs, switches and track appliances, 24 - other structure, 25 - signal and communication, 

26 - environmental conditions, 27 - extreme weather conditions, 28 - loading procedures, 29 - violation of highway-rail 
crossing rules by highway users, 30 - obstacles on the track, 31 - others 

     
(a) Distribution of derailment data                     (b) Distribution of collision data                (c) Distribution of highway-rail crossing data 

  
(d) Distribution of obstruction data                     (e) Distribution of fire/violent rupture data                        (f) Distribution of other data 

Fig. 4.  The data distribution corresponding to different types of accidents before and after SMOTE

Engineering Letters

Volume 33, Issue 3, March 2025, Pages 732-742

 
______________________________________________________________________________________ 



 

B. Accident Type Prediction Results 
The WOA-XGBoost model is trained based on the 

balanced training set incident data. The whale population 
size of WOA is set to 20, the maximum iteration count is set 
to 100, and the accuracy of the model on the test set is taken 
as the fitness value. The convergence curve of the 
hyperparameters optimization process is shown in Fig. 5. 
The results of hyperparameters optimization are as follows: 
max depth is 8, number of estimators is 567, and learning 
rate is 0.09789. 
 

Fig. 5.  Hyperparameters optimization process of WOA-XGBoost 

    The WOA-XGBoost model is compared with the Decision 
Tree, GBDT, and XGBoost models. The prediction results 
of different models are visualized through the confusion 
matrix, as illustrated in Fig. 6. The horizontal coordinate of 
the confusion matrix is the predicted accident type, and the 
vertical coordinate is the actual accident type. 

In addition, Accuracy, Precision, Recall and F1-score are 
selected as the evaluation indicators to measure the 
performance of the model. The four indicators are computed 
according to the confusion matrix, as presented in (16) ~ 
(19). 

1

1 C c c
c c c c c

TP TNAccuracy
C TP TN FP FN




            (16) 
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                 (17) 
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                  (18) 

21 Precision RecallF
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                  (19) 

Where C  is the total number of railway accident types, in 
this paper 6C  . cTP  denotes the number of those rightly 
predicted to be the c -th type, cTN  denotes the number of 
those rightly predicted not to be the c -th type, cFP  denotes 
the number of those incorrectly predicted to be the c -th 
accident type, cFN  denotes the number of those wrongly 
predicted not to be the c -th accident type. 

 

  

  
Fig. 6.  Confusion matrix 
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The performance comparison of four prediction models is 
shown in Table Ⅲ and Fig. 7. The results show that the 
precision of the WOA-XGBoost model is 0.8087, which is 
11.93% higher than the precision of decision tree algorithm, 
and other evaluation indexes are 4%~7% higher than that of 
the single decision tree, which proves that the performance 
of the ensemble learning model outperforms that of the 
single model. The WOA-XGBoost model achieves an 
accuracy of 0.8169, a recall of 0.732, and an F1 value of 
0.761. These values are better than those of the DT, GBDT, 
and XGBoost models. 

 
TABLE III 

COMPARISON OF MODEL PERFORMANCE 
Model Accuracy Recall Precision F1 

DT 0.7496 0.6896 0.6894 0.6890 
GBDT 0.8000 0.7050 0.7881 0.7302 

XGBoost 0.8086 0.7216 0.8014 0.7521 
WOA-XGBoot 0.8169 0.7320 0.8087 0.7610 

 

Fig. 7.  Performance comparison of four models 

C. Accidents Cause Analysis  
Compared with the traditional feature importance analysis 

of ensemble learning algorithms, SHAP can not only 
calculate the contribution of variables and rank the 
importance of features on the global model, but also 
qualitatively analyze the positive and negative influence of 
different values of individual variables on the prediction 
results, so that it can more comprehensively analyze the 
accident causative factors. 

The SHAP method is introduced to explain the WOA-
XGBoost model in this paper, and the important factors 
affecting the model’s output are analyzed. Taking 
derailment and collision accidents as examples, we analyze 
the causes of railway accidents. Each row on the left side of 
the SHAP value summary plot represents a variable, 
arranged in descending order based on the magnitude of the 
variable’s impact on the type of accident. The legend on the 
right side indicates the magnitude of the variable’s value, 
and the horizontal coordinate indicates the SHAP value. 

Fig. 8(a) summarizes the SHAP values of derailment 
accidents. Risk (including mechanical and electrical faults, 
track and subgrade factors, etc.) is the most influential 
feature of derailment accidents, followed by speed, the 

number of head locomotives, the total number of cars, and 
track class. 

Fig. 8(b) summarizes the SHAP values of collision 
accidents. Risk (including communication and signal faults) 
is the most influential feature of collision accidents, 
followed by type of consist, speed, and speed difference 
(difference between speed and track speed limit).  

 

 
(a) SHAP summary plot of derailment 

 

 
(b) SHAP summary plot of collision 

Fig. 8.  SHAP summary plot of derailment and collision 
 
To better understand how variables affect the model’s 

output, the SHAP summary plot is combined with the SHAP 
dependence plot, which can explain in more detail the 
effects of different values of variables on different types of 
accidents. In the SHAP dependence plot, each point 
represents an accident sample. The abscissa in the plot is the 
value of the feature, and the ordinate is the corresponding 
SHAP value.  

Fig. 9 demonstrates the partial feature dependence plots 
of the derailment accident. Fig. 9(a) shows that the SHAP 
values for risk factors 5, 6, and 7 are positive. The result 
indicates that the failure of truck components, axles, and 
wheel components in the mechanical failure factor leads to 
derailment accidents. Risk factors 21, 22, 23, and 24 all 
belong to track and roadbed factors, and their SHAP values 
are all greater than 0, indicating that these factors lead to 
derailment. 

Fig. 9(b) shows that the SHAP values of the number of 
cars in the range of 150-250 are significantly higher than 
those in the range of 1-150, indicating that the effect on 
derailment accidents is more significant when the number of 
cars is greater than 150. In addition, in the range [150,250], 
the SHAP value gradually increases with the number of cars, 
indicating that more cars increase the risk of collision. 
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(a) Effect of risk on derailment                                  (b) Effect of total number of cars on derailment 

 
(c) Effect of temperature on derailment                       (d) Effect of track welding situation on derailment 

Fig. 9.  SHAP feature dependence plots of derailment 
 

Fig. 9(c) shows that the temperature corresponds to a 
positive SHAP value when it lies in the range of [-20, -10] 
and [35, 40]. This result indicates that high and low 
temperatures increase the likelihood of derailment accidents. 
Because the track material is affected by temperature, there 
is a risk of contraction of the track when the temperature is 
below -10°C. Moreover, when the external temperature 
exceeds 35°C, geometric deformation of the track may occur, 
further increasing the likelihood of derailment accidents. 

Fig. 9(d) shows that most SHAP values are positive when 
trackcwr=0, indicating that derailment accidents are more 
likely to occur on non-continuously welded tracks. Most of 
the corresponding SHAP values are negative when 
trackcwr=1, meaning that the continuously welded track 
plays a specific negative role in the occurrence of derailment 
accidents. 

Fig. 10 shows the partial feature dependence plots of the 
collision accident. Fig. 10(a) demonstrates that the SHAP 
values exceed 0 when the risk factors are 11, 12, 13, 14, 15, 
and 17. These factors, namely improper use of braking 
devices, insufficient judgment ability and operational 
proficiency, improper use or disposal of signals, failure to 
comply with general switching rules, failure to comply with 
main track authority, and excessive speed, all contribute to 
collision accidents. Additionally, most of the corresponding 
SHAP values are negative when the risk factors are 1 and 4, 
indicating that the malfunction of the braking system and the 

coupler and draft gear system contribute to collision 
accidents. 

Fig. 10(b) demonstrates that the SHAP values exceed 0 
when the types of consist are 3, 4, 5, and 6. The result 
suggests that the likelihood of collisions increases when the 
consist type is locomotives, cars, work trains, or yards. 
Because the Federal Railroad Administration may have 
relatively less stringent safety requirements for shunting and 
work train operations. 

Fig. 10(c) shows that the SHAP values corresponding to 
the track type of 2 are greater than 0, indicating that the 
track type of yard contributes to the occurrence of collision 
accidents. The characteristics of the yard track, such as its 
specific layout and traffic patterns, might increase the 
likelihood of collisions under certain circumstances. 
Moreover, most of the SHAP values corresponding to track 
type 4 are greater than 0, indicating that the track type of 
industry has a certain influence on causing collision 
accidents. For instance, the industrial track may involve 
complex operation procedures and frequent interactions, 
which could lead to a higher risk of collision accidents. 

In this paper, a negative speed difference implies the train 
is overspeeding. Fig. 10(d) demonstrates that the SHAP 
values exceed 0 for a negative speed difference, indicating 
that overspeeding contributes to the collision. The majority 
of the SHAP values of the speed difference in the range of 
[0,7] are greater than 0, indicating that the train traveling 
speed close to the speed limit plays a role in the collision. 
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                        (a) Effect of risk on collision                                        (b) Effect of type of consist on collision 

 
                  (c) Effect of type of track on collision                               (d) Effect of speed difference on collision 

Fig. 10.  SHAP feature dependence plots of collision 
 

D. Railway Safety Management Recommendations 
The findings of this paper can provide some insights and 

references for railway safety agencies. The relevant 
authorities can reduce the occurrence of different types of 
railway accidents in the following ways. 

(1) Infrastructure improvements. Railway management 
departments should improve track layouts and upgrade 
related systems and facilities to reduce derailment accidents. 
In addition, relevant authorities should improve warning 
devices, gates, lighting, and other equipment for highway 
railway crossings where accidents are frequent. 

(2) Formulate a perfect equipment maintenance plan. 
Timely inspecting axles, sliding bearings, wheels, and other 
mechanical devices for failures can reduce derailment 
accidents. Since the failure of the braking system, coupler, 
and draft system can contribute to collisions, regular 
maintenance and overhaul are necessary. Besides 
maintaining mechanical devices, railway employees should 
strengthen the maintenance of track, roadbed, and other 
infrastructure, especially paying attention to the non-
continuous welded portion of the track. 

(3) Take timely measures in high-risk conditions. For 
example, in low-temperature conditions, clean up the snow 
in time and install snow-melting devices at turnout. 
Moreover, in high-temperature conditions, railway 
employees should check the geometric deformation of the 
track. Timely maintenance can effectively reduce the risk of 

derailment accidents. Employees should regularly use 
lighting devices in night conditions to reduce highway 
railway crossing accidents. 

(4) Enhance employee training. Managers should develop 
comprehensive training programs to improve railway 
employees’ ability to maintain faulty equipment. Relevant 
authorities need to emphasize the correct standard of 
operation regularly. 

(5) Check the condition of employees before they go on 
duty. The railway department should strictly check the 
physical and mental conditions of the employees. Moreover, 
to ensure the employees’ ability during work time, it should 
be strictly prohibited for employees to work under the 
influence of alcohol or excessive fatigue. 

VI.    CONCLUSIONS 
A railway accident type prediction model based on WOA-

XGBoost is proposed in this paper, and the SHAP method is 
introduced to analyze the causes of railway accidents. The 
following conclusions are obtained. 

(1) SMOTE is used to synthesize new minority samples 
to address the problem of unbalanced data types of railway 
accidents in the paper. The distribution characteristics and 
change trends of the data synthesized by SMOTE are 
consistent with those of the original data. In this paper, the 
newly synthesized data is appended to the original data set 
to equalize the distribution of the accident dataset. Training 
the model with balanced data effectively reduces the impact 
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caused by the data imbalance problem and improves the 
model's predictive ability for minority-class samples. 

(2) We improve the XGBoost algorithm by using the 
whale optimization algorithm. Then, the WOA-XGBoost 
model is used to predict six types of railroad accidents. The 
results suggest that WOA-XGBoost model’s accuracy is 
0.817, the recall is 0.732, the precision is 0.809, and the F1 
value is 0.761. The accuracy of the WOA-XGBoost model 
is 6.7% higher than that of the DT model and 1.7% higher 
than that of the GBDT model. Regarding the F1 - score, the 
WOA-XGBoost model outperforms the DT model by 7.2% 
and the GBDT model by 3.1%. Overall, the WOA-XGBoost 
model outperforms the DT, GBDT, and XGBoost models in 
terms of performance. 

(3) The SHAP method can not only mine the critical 
factors of diverse types of railroad accidents but also explore 
the impact and degree of each factor. This paper uses the 
SHAP method to analyze reasons for different types of 
accidents. The findings suggest that risk, speed, the number 
of cars, load, and temperature are important factors in 
derailment accidents. Specifically, failures of mechanical 
components such as bogies, axles, and wheels can lead to 
derailments. High temperatures ( ≥ 35°C) and low 
temperatures (≤-10°C) increase the risk of derailments. The 
impact on derailment is more significant when the total 
number of cars is greater than 150. The results indicate that 
risk, track type, and difference between speed and speed 
limit are significant factors in collision accidents. Improper 
use of braking devices in manual operation and failure to 
comply with shunting operation rules contribute to collision 
accidents. The tracks in the shunting yard area have a higher 
propensity for collisions. Train speeds approaching or 
exceeding track speed limits increase the likelihood of 
collisions. The SHAP method is suitable for analyzing 
different types of railway accidents, which is crucial for 
improving safety levels. 

(4) This paper puts forward suggestions on railway safety 
management in five aspects. These suggestions can provide 
certain references for the relevant departments. Railways 
should enhance infrastructure facilities, maintenance 
programs, and staff training. Railway employees should 
implement preventive actions in high-risk situations such as 
low-temperature, high-temperature, and low-light conditions. 
The results can help railway departments formulate safety 
management strategies and prevent railway accidents. 

(5) Future work will use the method presented in this 
paper to study more types of railway accidents, enabling a 
more detailed analysis of the causes of a wider range of 
accidents. In addition, although the method in this paper 
achieves good performance in accident prediction and causal 
analysis, it is highly dependent on the data quality. More 
advanced data mining methods will be combined with 
profound railway expertise to enhance the quality of railway 
accident data. Therefore, analyzing railway accidents by 
combining advanced data mining techniques is also a 
direction for further research. 
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