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Abstract—This paper addresses the low-computation neural
output feedback control issue for a class of strict-feedback non-
linear systems (SFNS) with dynamic event-triggered. Based on
the prescribed performance technology, a novel state observer
based on the radial basis function neural networks (RBFNNs)
is introduced, such that the proposed low-computation method
can ensure that all signals in the closed-loop system are
bounded. Different from the existing results, RBFNNs only re-
ceive system state estimation as input. In this way, the explosion
of complexity problem in backstepping and RBFNNs methods
is avoided without using dynamic surface control and filtered
commands. On the other hand, in order to reduce the number of
system communications, this paper also reconstructs the event
condition based on the function of error transformation. The
effectiveness of the provided method is demonstrated through
numerical simulation.

keywords—Nonlinear systems, neural adaptive control, low-
computation, output-feedback, dynamic event-triggered, pre-
scribed performance control (PPC)

I. INTRODUCTION

IN order to guarantee the transient performance of the
control system, Bechlioulisa et al. [1] proposed a PPC

approach for the first time to keep the tracking error within
a given range. With the continuous development of the PPC
method, it is widely applied in various types of nonlinear
system control [2]–[6]. In [2], Hua and Li proposed a
different state transformation based on the output feedback
and PPC for a class of time-delay systems with unknown
Prandtlshlinskii hysteresis. In [3], the PPC method was
applied to a class of switched nonstrict-feedback nonlinear
uncertain systems and the problem of adaptive NNs-based
decentralized PPC was solved. In the work of Tang et al.
[4], the authors solved the PPC problem of multi-input multi-
output nonlinear systems with actuator failure and provided
a new error transformation. The work in [5] solved the PPC
problem based on high-order stochastic nonlinear systems,
and designed a new variable of error transformation . Further,
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based on the work in [5], Zhang et al. [6] studied the PPC
for high-order nonlinear multi-agent systems.

Since most state variables of nonlinear systems in practical
systems are unmeasurable, the development of the output
feedback controller is necessary. In this case, output feedback
control methods have achieved significant progress in fields
such as uncertain nonlinear systems [7]–[9], switched non-
linear systems [10]–[12] and nonlinear multi-agent systems
[13]–[15]. In [7], Zhou et al. designed a dynamic feedback
control strategy that is based on fuzzy logic system and
output feedback controller. In [8], the control problem of
non-triangular stochastic nonlinear systems with unmodeled
dynamics was further developed by using the robust adaptive
output-feedback control. The work in [10] developed a new
output-feedback control strategy with PPC for the nonstrict-
feedback switched nonlinear systems. In this strategy, the
uncertain states were estimated by a linear state observer.
In [14], a design method of distributed controller based
on output feedback control was proposed. By introducing
m cascaded compensators, the leader-follower consensus
problem of a multi-agent system with output delay was
solved.

Despite the maturity of output feedback control, the
problem of exploding computational complexity caused by
the backstepping method remains an open issue. Aiming
at this problem, Swaroop et al. [16] designed a dynamic
surface control method based on low-pass filters to avoid the
complexity caused by the explosive growth of terminology. In
addition, Dong et al. [17], [18] designed a command filtered
method based on backstepping technology. However, due to
the addition of filters, the structure of the controller becomes
complex, which in turn increase the burden of calculation.
Therefore, Zhang et al. [19] designed a backstepping-like
control scheme based on PPC. This scheme solved the
exploding computational complexity problem by proving the
boundedness of each order closed-loop signal under the
constraint of PPC. In [20], the author extended this low-
complexity control method to the unknown nonlinear system
with an actuator dead zone and added 2-bit-triggered tracking
control to reduce the number of communications.

In data transmission, two main methods are usually used,
namely periodic sampling and ETC, to determine the trans-
mission and sampling time to achieve control of the system
and ensure its stability. As a traditional method of data
transmission, the periodic sampling strategy will result in
an increase in the cost of communication resource of system
data transmission. But, ETC is an effective control strategy,
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which can reduce control frequency and avoid unnecessary
waste of resources. The control instants of the ETC systems
are resolved by the occurrence of the wittily designing event
conditions that are related to the previous state of the system
[21]–[27]. The authors in [21] designed an event-triggered
controller for tracking the desired value of nonlinear systems
with exogenous inputs. In [22] Xing et al. designed a new
switching threshold strategy, which was formed by concate-
nating the fixed and relative threshold strategy. In addition,
Xing et al. [23] designed an encoding-decoding method in
which only a one-bit signal transmitted between the actuator
and controller, thus occupying less channel bandwidth. With
the development of event-triggered control, the DETC [28]–
[30] scheme, which can dynamically adjust event conditions,
is favored by researchers. In [31], the authors proposed a
DETC scheme for SFNS to achieve zero tracking error.

Based on the motivation of the above analyses, this
brief investigates a low-computation neural output feedback
dynamic event-triggered control for a class of SFNS with
unmatched disturbances. This scheme avoids the explosive
growth of terminology and saves communication resources.
The highlights of this study, in contrast to the prior research,
are as follows:

(1) Inspired by [19], [20], this paper realizes the low-
complexity calculation of nonlinear systems with unknown
states without using dynamic surfaces and command filters.

(2) Compared with [7]–[9], RBFNNs only receive sys-
tem state estimation as input. In order to realize the low-
computation control scheme, the state observer is recon-
structed based on this method.

(3) To adapt to the low-complexity control scheme, this
paper reconstructs the dynamic event-triggered condition
based on the function of error conversion , which can further
extend the trigger time interval compared with [22].

II. PROBLEM DESCRIPTION AND BASIC
KNOWLEDGE

The plant is a continuous-time strict-feedback nonlinear
system described by

ẋi = fi(x̄i) + λi(t) + xi+1

ẋn = fn(x̄n) + λn(t) + u

y = x1

(1)

where x̄i = [x1, x2, · · · , xi]T ∈ Ri (i = 1, 2, · · · , n) denotes
the state vector, y ∈ R and u denote the output and input
respectively. fi(·), i = 1, 2, · · · , n represent the unknown
smooth system functions with fi(0) = 0. λi(t)(i = 1, · · · , n)
are the system’s unmatched disturbance, which satisfies
|λi(t)| ≤ λ̄i, λ̄i is constant. Assuming that only x1 is
measurable, while the other states xi, i = 2, . . . , n are
unmeasurable. Set the following coordinate transformation:{

z1 = x1 − yr
zi = x̂i − αi−1

i = 2, · · · , n (2)

where x̂i is the estimate of xi, yr and αi−1 denote the
trajectory signal and the virtual control law respectively. In
order to constrain zi, i = 1, · · · , n, the boundary function
ψi(t) defined as

ψi(t) = (ψi0 − ψi∞)e−τit + ψi∞ , i = 1, · · · , n (3)

where ψi0 , ψi∞ and ψi are positive constants, ψi0 > ψi∞ ,
ψi0 is the starting value, ψi∞ is the maximum allowable
size of steady-state error, and τi is the convergence rate of
prescribed tracking error. For the PPC scheme, the following
holds:

|zi(t)| < ψi(t), i = 1, . . . , n, t > 0. (4)

Further, (4) can be expressed as the following equation:

zi(t) = ψi(t)K(ξ(t)). (5)

And the function of error transformation ξ(t) is

ξ(t) = K−1(
zi(t)

ψi(t)
). (6)

Next, an auxiliary smooth function K−1(ι) is selected, such
that

lim
ι→−1

K−1(ι) = −∞ lim
ι→1

K−1(ι) = ∞. (7)

For instance, K−1(ι) = 2 tanh−1(ι) = ln( 1+ι1−ι ) or
K−1(ι) = tan(π2 ι) can be a candidate for K−1(ι). Based
on K−1(ι), the function of error transformation is designed
as

ξi(t) = K−1(ι) = K−1(
zi(t)

ψi(t)
) = ln(

ψi + zi
ψi − zi

). (8)

The dynamics of ξi(t) is defined by

ξ̇i(t) = 2Γi(żi −
ψ̇izi
ψi

) (9)

where Γi =
ψi

ψ2
i−z2i

.

Remark 1. It can be seen from the property of hyperbolic
tangent function that if K−1(ι) is bounded, then |ι| < 1

holds. When ι = zi(t)
ψi(t)

, under the initial condition |zi(0)| <
|ψi(0)| the value of zi(t) can be limited by the ψ1(t) for
t > 0. In this paper a suitable Lyapunov function Vn will be
constructed, when Vn is proved to be bounded, it is easy to
deduce that ξ2i is bounded, then the inequality | zi(t)ψ1(t)

| < 1
holds.

The control objective of this article is steering the output
y to track the desired value yr. In addition the system output
error and state error are constrained within the boundary
function. To achieve this goal, the following lemmas and
assumptions are given.

Assumption 1. The trajectory signal yr(t) is continuous and
bounded, together with its time derivative ẏr(t).

Lemma 1. Based on RBFNNs [32]–[36], the unknown
nonlinear function F (X̂) = [f1(ˆ̄x1), f2(ˆ̄x2), · · · , fn(ˆ̄xn)]T
defined on a compact set ΩZ can be appropriated as below

F (X̂) = θTΨ(X̂) + ε(X̂), |ε(X̂)| ≤ ε̄∗ (10)

where Ψ(X̂) = [Ψ1(ˆ̄x1),Ψ2(ˆ̄x2), · · · ,Ψn(ˆ̄xn)]T denotes the
basis function with n being the node number of RBFNNs, ˆ̄xi
is the estimated value of the states x̄i, θ = [θ1, θ2, . . . , θi]

T

and ε(X̂), ε̄∗ > 0 denote the weight vector and the approx-
imation error respectively. We select the basis function as
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below:

Ψi(ˆ̄xi) = exp

[
−(ˆ̄xi − ϑi)

T (ˆ̄xi − ϑi)

ϖ2

]
,

i = 1, 2, · · · , n
(11)

where Ψi(ˆ̄xi) is the Gauss functions, ϑi =
[ϑi1, ϑi2, · · · , ϑij ]T is the center vectors, and ϖ is
the width of Ψi(ˆ̄xi).

Remark 2. Compared with the traditional output feedback
control [7]–[10], in this paper, RBFNNs only take the system
state estimation as input. This can improve the accuracy of
approximation and reduce the computational complexity. At
the same time, only the tracking signal and the first derivative
of it need to be considered, making it easier to realize in
practical control.

III. MAIN DESIGN

A. Design of the state observer

Since the states xi, i = 2, . . . , n are unmeasurable, in
order to reconstruct the unmeasurable system states, the state
observer is designed as follows:

˙̂xi = x̂i+1 + θ̂Ti Ψi(ˆ̄xi) + bi(y − x̂1)

˙̂xn = u+ θ̂TnΨn(ˆ̄xn) + bn(y − x̂1)

i = 1, 2, · · · , n− 1

(12)

where bi is the designed parameters of the filter. Define ei =
xi − x̂i, θ̃ = θ − θ̂, based on (1) and (12), we get

ėi = ei+1 − bie1 + εi + λi + θ̃Ti Ψi(ˆ̄xi)

+ θTi (Ψi(x̄i)−Ψi(ˆ̄xi))

i = 1, 2, · · · , n− 1.

(13)

Define e = [e1, e2, · · · , en]T , Λ(t) = [λ1, · · · , λn]T ,
ε = [ε1, ε2, . . . , εn]

T , C = [0, . . . , 1]T , Ci =
[0, . . . , 1, . . . , 0]T ,M = [b1, b2, . . . , bn]

T and

B =


−b1

... In−1

−bn 0 · · · 0

 ,
where the ith element of the vector Bi is 1. Then, it follows
from (1), (12) and (13) that

ė = Be+ Λ+ ε+
n∑
i=1

Ciθ̃
T
i Ψi(ˆ̄xi)

+
n∑
i=1

Ciθ
T
i (Ψi(x̄i)−Ψi(ˆ̄xi))

˙̂x = Bx̂+ Cu+
n∑
i=1

Ciθ̂
T
i Ψi(ˆ̄xi) +My.

(14)

Here bi is chosen such that the matrix B is a strict Hurwitz
matrix, that is, there exists positive symmetric matrix Q and
P such that

BTP + PB = −Q. (15)

B. Controller Design

In this subsection, the low-Computation neural network
output-feedback controller and the DETC method are pre-
sented. The update law is chosen as

˙̂
θi(t) =aiΓiξiΨi(ˆ̄xi)− Γiθ̂i, (16)

where a1 > 0, and 0 < ai < 1(i = 2, · · · , n) are
design arguments, ξi is the abbreviation of ξi(t). In addition,
construct the virtual control law αi as

αi = −θ̂Ti Ψi(ˆ̄xi)− ciξi (17)

where c1 and ci > 1, (i = 2, . . . , n) are design positive
constants. In this case, the adaptive controller is defined as

ω(t) = αn. (18)

Next, we will present the proposed DETC scheme. Firstly,
the auxiliary dynamic variable δ is updated by the following
formula

δ̇ = −βδ + µΓn(η
2cn − 3

4
ξ2n − ϵ2), (19)

in which δ(0) > 0, β > 0, η ∈ (0, 1) and µ ∈ [0, 1] are
positive constants. The DETC strategy is given as

û(t) = ω(tk) , ∀t ∈ [tk, tk+1)

tk+1 = inf

{
t ∈

∣∣∣∣ρΓn(ϵ(t)2 − η
2cn − 3

4
ξ2n) ≥ δ

}
(20)

where ϵ(t) = u− ω(tk). From (20) we can obtain

δ̇ ≥ −βδ − µ

ρ
δ = −(β +

µ

ρ
)δ. (21)

Furtermore, we get

δ ≥ δ(0)e−(β+µ
ρ )t > 0. (22)

IV. STABILITY ANALYSIS

Lemma 2. If |zi(t)| < ψi(t), then the observer error e =
[e1, e2, · · · , en]T is bounded.

Proof: Construct the Lyapunov function candidate as
follows:

V0 = eTPe. (23)

By combining (14) and (15), one gets

V̇0 = − eTQe+ 2eTP (Λ + ε) + 2eTP
n∑
i=1

Ciθ̃
T
i Ψi(ˆ̄xi)

+ 2eTP
n∑
i=1

Ciθ
T
i (Ψi(x̄i)−Ψi(ˆ̄xi)).

(24)

As ΨTi Ψi ≤ 1, by invoking the Young’s inequality, we have:

2eTP (Λ + ε) ≤ ||P ||2(||Λ||2 + ||ε||2) + 2||e||2 (25a)

2eTP
n∑
i=1

Ciθ̃
T
i Ψi(ˆ̄xi) ≤ ||P ||2

n∑
i=1

||θ̃i||2 + ||e||2 (25b)

2eTP
n∑
i=1

Ciθ
T
i (Ψi(x̄i)−Ψi(ˆ̄xi)) ≤||P ||2

n∑
i=1

||θi||2

+ ||e||2.
(25c)
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By substituting (25) into (24), it holds

V̇0 ≤− (λmin(Q)− 4)||e||2 + ||P ||2
n∑
i=1

||θ̃i||2

+ ||P ||2(||Λ||2 + ||ε||2 +
n∑
i=1

||θi||2).
(26)

Based on (16), if |zi(t)| < ψi(t), ||θ̃i|| and || ˙̃θi|| are
bounded. Denote ∆ = ||P ||2(||Λ||2+ ||ε||2+

∑n
i=1 ||θi||2)+

||P ||2
∑n
i=1 ||θ̃i||2, we can get ∆ is bounded and (26) can

be written as

V̇0 ≤ −(λmin(Q)− 4)||e||2 +∆. (27)

Therefor e ∈ L∞. The proof is completed.

Lemma 3. If ẋi is bounded, and for each i = 1, 2, . . . , n,

inequality (4), ||ˆ̄xi|| ∈ L∞ and || ˙̄̂xi|| ∈ L∞ hold, then α̇i ∈
L∞ also holds.

Proof. The derivative of (17) gives

α̇i = − ˙̂
θTi Ψi(ˆ̄xi)− ciξ̇i − θ̂Ti

∂Ψi
∂ ˆ̄xi

˙̄̂xi. (28)

From the proof of Lemma 2, if |zi(t)| < ψi(t), ||θ̃i|| ∈ L∞

and || ˙̃θi|| ∈ L∞ hold.
First, differentiating z1 yields

ż1 = ẋ1 − ẏd. (29)

Based on Assumption 1 and (4), it is easy to obtain ż1 and ψ̇1

are bounded. According to the design of (10), ||Ψi(x̄i)|| ∈
L∞ and ||∂Ψi

∂x̄i
|| ∈ L∞also holds. Finally, α̇1 is bounded as

|| ˙̂x1||∞ ∈ L∞.
Second, the derivative of zi we can obtain

żi = ˙̂xi − α̇i−1, i = 2, . . . , n. (30)

With α̇1 ∈ L∞, we can obtain that ż2, ξ̇2 and α̇2 are
bounded. Through recursion, we can obtain α̇i is bounded.

Next, the main result of this paper are summarized as
follow:

Theorem 1. Consider system (1) and the given initial
conditions (4), with the support of (10) and Lemma 2 the
control scheme guarantees that

(1) The output tracking error asymptotically falls into the
residual set (−ψi∞ , ψi∞);

(2) The boundedness of all other signals of the closed-loop
system is guaranteed;

(3) The Zeno behavior is avoided.

Proof. By seeking a contradiction, it can be proved that (4)
holds when ∀t ≥ 0. Define t ∆

= tk to denote the time instant
such that exists as follows:

|zk(tk)| ≥ ψk(tk), k ∈ {1, 2, . . . , n}. (31)

Define the time at which (4) is first violated as t1
∆
= min{tk}.

For t < t1, it results in

|zi(t)| < ψi(t), i = 1, . . . , n (32)

and that there must exist zj guarantees that

lim
t→t−1

|zj(t)| = lim
t→t−1

|ψj(t)|, j ∈ {1, . . . , n}. (33)

Then, (33) is sufficient and necessary conditions for (34)

lim
t→t−1

|ξj(t)| = ∞, j ∈ {1, 2, . . . , n}. (34)

For t ∈ [0, t1), the above situation does not exist.
Step 1: Construct the Lyapunov function candidate as

below:

V1 =
1

4
ξ21 +

1

2a1
θ̃T1 θ̃1. (35)

From Assumption 1, the boundedness of x1 on [0, t1) is
ensured. According to (9) and ż1 = f1 + e2 + x̂2 + λ1 − ẏr,
we have

V̇1 =ξ1Γ1

(
f1 + e2 + x̂2 + λ1 − ẏr −

ψ̇1z1
ψ1

)
− 1

a1
θ̃T1

˙̂
θ1.

(36)

By analyzing (10), one gets

V̇1 =ξ1Γ1(θ
T
1 ∆Ψ1 +∆1) +

1

a1
θ̃T1 θ̂1 (37)

where ∆Ψ1 = Ψ1(x1)−Ψ1(x̂1), ∆1 = ε1 +λ1 − ẏd+ e2 +

z2 − ψ̇1z1
ψ1

. In view of |λi(t)| ≤ λ̄i, (3), (32) and Lemma 1,
we can obtain that there exists a positive constant ∆̄1 such
that

∆1 ≤ ∆̄1. (38)

Next, as ΨTi Ψi ≤ 1, by invoking the Young’s inequality, we
have:

ξ1Γ1θ
T
1 ∆Ψ1 ≤ c1Γ1

4
ξ21 +

Γ1

c1
||θ1||2, (39a)

ξ1Γ1∆1 ≤ c1Γ1

4
ξ21 +

Γ1

c1
∆̄2

1, (39b)

θ̃T1 θ̂1 ≤ −||θ̃1||2

2
+

||θ1||2

2
. (39c)

By substituting (39) into (37), it holds

V̇1 ≤− c1Γ1

2
ξ21 + Γ1(

1

c1
∆̄2

1 + (
1

2a1
+

1

c1
)||θ1||2)

− Γ1

2a1
θ̃T1 θ̃1.

(40)

For t ∈ [0, t1), based on (4) and Γ1, one has

Γ1 ≥ 1

ψ1
≥ 1

ψ1,0
. (41)

Finally, the boundedness of V1 is illustrated from two differ-
ent cases

Case 1: 1
c1
∆̄2

1 + ( 1
2a1

+ 1
c1
)||θ1||2 ≥ c1

4
ξ21 . Define

C11
∆
=min

{
1

ψ1,0
,
c1
ψ1,0

}
,

ς1
∆
=sup

{
Γ1(

1

c1
∆̄2

1 + (
1

2a1
+

1

c1
)||θ1||2)

}
,

(42)

we can obtain that

V̇1 ≤ −C11V1 + ς1. (43)

Case 2: 1
c1
∆̄2

1 + ( 1
2a1

+ 1
c1
)||θ1||2 <

c1
4
ξ21 . Define

C12
∆
=min

{
1

ψ1,0
,
2c1
ψ1,0

}
, (44)
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one gets
V̇1 ≤ −C12V1. (45)

Based on (43) and (45), through categorical discussions, we
can obtain

V̇1 ≤ −C1V1 + ς1 (46)

where C1
∆
= min{C11, C12}.

Step 2: From (2), (17) and (46), it is clear that ξ1, α1 and
x̂2 are bounded. Then, construct the Lyapunov function as

V2 =
1

4
ξ22 +

1

2a2
θ̃T2 θ̃2. (47)

According to (2) and (12), we can get

V̇2 =ξ2Γ2(α2 − b2x̂+ z3 −
ψ̇2z2
ψ2

+ θ̂T2 Ψ2(ˆ̄x2)

− α̇1)−
1

a2
θ̃T2

˙̂
θ2.

(48)

By analyzing (10), one gets

V̇2 =ξ2Γ2(−c2ξ2 +∆2) +
Γ2

a2
θ̃T2 θ̂2 − Γ2ξ2θ̃

T
2 Ψ2(ˆ̄x2) (49)

where ∆2 = −b2x̂1 + z3 − ψ̇2z2
ψ2

− α̇1. Based on x1 ∈ L∞,
ˆ̄x2 ∈ L∞and Lemma 3, when t < t1, α̇1 ∈ L∞ can be
deduced. Similar to (38), we can obtain ∆2 ≤ ∆̄2, where
∆̄2 is a positive constant. Next by invoking the Young’s
inequality, we have:

Γ2ξ2θ̃
T
2 Ψ2(ˆ̄x2) ≤

Γ2

2
ξ22 +

Γ2

2
||θ̃2||2 (50a)

ξ2Γ2∆2 ≤ c2Γ2

2
ξ22 +

Γ2

2c2
∆̄2

2 (50b)

θ̃T2 θ̂2 ≤ −||θ̃2||2

2
+

||θ2||2

2
. (50c)

Substituting (50) into (49) one gets

V̇2 ≤− c2 − 1

2
Γ2ξ

2
2 + Γ2(

1

2c2
∆̄2

2 +
1

2a2
||θ2||2)

− 1− a2
2a2

Γ2θ̃
T
2 θ̃2.

(51)

According to (4) and Γ1, for t ∈ [0, t1) we can obtain

Γ2 ≥ 1

ψ2
≥ 1

ψ2,0
. (52)

Case 1: 1
2c2

∆̄2
2 +

1
2a2

||θ2||2 ≥ c2 − 1

4
ξ22 . Based on Γ2 ∈

L∞, denote

C21
∆
=min

{
1− a2
ψ2,0

,
2c2 − 2

ψ2,0

}
,

ς2
∆
=sup

{
Γ2(

1

2c2
∆̄2

2 +
1

2a2
||θ2||2)

}
,

(53)

one has
V̇2 ≤ −C21V2 + ς2. (54)

Case 2: 1
2c2

∆̄2
2 +

1
2a2

||θ2||2 <
c2 − 1

4
ξ22 . Denote

C22
∆
=min

{
1− a2
ψ2,0

,
c2 − 1

ψ2,0

}
, (55)

one further deduces that

V̇2 ≤ −C22V2. (56)

Denote C2 = min{C21, C22}, one has

V̇2 ≤ −C2V2 + ς2. (57)

Step i: By repeating the procedure similar to Step 2, it
is obtained that αi−1, α̇i−1 and xi are bounded on [0, t1).
Construct the Lyapunov function as

Vi =
1

4
ξ2i +

1

2ai
θ̃i
T
θ̃i. (58)

Consider (2) and (12), we can get

V̇i =ξiΓi(αi − bix̂1 + zi+1 −
ψ̇izi
ψi

+ θ̂Ti Ψi(ˆ̄xi)

− α̇i−1)−
1

ai
θ̃Ti

˙̂
θi.

(59)

By analyzing (10), one gets

V̇i =ξiΓi(−ciξi +∆i) +
Γi
ai
θ̃Ti θ̂i − Γiξiθ̃

T
i Ψi(ˆ̄xi) (60)

where ∆i = −bix̂ + zi+1 − ψ̇izi
ψi

− α̇i−1. Be similar to
last Step, it is clear that ∆i < ∆̄i. Then, the following
inequalities hold:

Γiξiθ̃
T
i Ψi(ˆ̄xi) ≤

Γi
2
ξ2i +

Γi
2
||θ̃i||2 (61a)

ξiΓi∆i ≤
ciΓi
2
ξ2i +

Γi
2ci

∆̄2
i (61b)

θ̃Ti θ̂i ≤ −||θ̃i||2

2
+

||θi||2

2
. (61c)

Substituting (61) into (60) we have

V̇i ≤− ci − 1

2
Γiξ

2
i + Γi(

1

2ci
∆̄2
i +

1

2ai
||θi||2)

− 1− ai
2ai

Γiθ̃
T
i θ̃i.

(62)

Applying the same method as Step 2, we can derive

V̇i ≤ −CiVi + ςi (63)

where Ci
∆
= min{ 1−ai

ψi,0
, ci−1
ψi,0

}, ςi
∆
= sup{Γi( 1

2ci
∆̄2
i +

1
2ai

||θi||2)}.
Step n: According to the analysis in Step i, xn ∈ L∞ is

ensured. Choosing the Lyapunov function as

Vn =
1

4
ξ2n +

1

2an
θ̃Tn θ̃n + δ. (64)

Differentiating (64) yields

V̇n =ξnΓn(u− bnx̂1 −
ψ̇nzn
ψn

− α̇n−1 + θ̂TnΨn(ˆ̄xn))

− 1

an
θ̃Tn

˙̂
θn + δ̇.

(65)

By taking (18) and u(t) = ω(t) − ϵ(t) into considered, one
gets

V̇n =ξnΓn(ω(t)− ϵ(t)− ψ̇nzn
ψn

− α̇n−1

− 1

an
θ̃Tn

˙̂
θn + δ̇,

(66)

ultimately we have

V̇n =ξnΓn(−cnξn − ϵ+∆n) +
Γn
an
θ̃Tn θ̂n

− Γnξnθ̃
T
nΨn(ˆ̄xn) + δ̇

(67)
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where ∆n = bne1 − ψ̇nzn
ψn

− α̇n−1. Be similar to last Step,
it is clear that ∆n < ∆̄n. Then, the following inequalities
hold:

ξnΓn∆n ≤ cnΓn
2

ξ2n +
Γn
2cn

∆̄2
n (68a)

θ̃Tn θ̂n ≤ −||θ̃n||2

2
+

||θn||2

2
(68b)

Γnξnθ̃
T
nΨn(ˆ̄xn) ≤

Γn
2
ξ2n +

Γn
2
||θ̃n||2 (68c)

Γnξnϵ ≤
1

4
Γnξ

2
n + Γnϵ

2. (68d)

Substituting (68) into (67) one gets

V̇n ≤− 2cn − 3

4
Γnξ

2
n + Γn(

1

2cn
∆̄2
n +

1

2an
||θn||2)

− 1− an
2an

Γnθ̃
T
n θ̃n + δ̇ + Γnϵ

2.
(69)

Inserting (19) into (69), one gets

V̇n ≤− (1− µη)
2cn − 3

4
Γnξ

2
n + Γn(

1

2cn
∆̄2
n +

1

2an
||θn||2)

− 1− an
2an

Γnθ̃
T
n θ̃n + (1− µ)Γnϵ

2 − βδ.

(70)

From (20) we have ϵ2 ≤ δ
ρΓn

+η 2cn−3
4 ξ2n. In addition, since

µ ∈ [0, 1], η ∈ (0, 1), and ρ > 1−ξ
β ,

V̇n ≤− (1− η)
2cn − 3

4
Γnξ

2
n + Γn(

1

2cn
∆̄2
n +

1

2an
||θn||2)

− 1− an
2an

Γnθ̃
T
n θ̃n + (

1− µ

ρ
− β)δ.

(71)

Applying the same method as Step i, we can derive

V̇n ≤ −CnVi + ςn (72)

where Cn
∆
= min{ 1−an

ψn,0
, 2cn−3
ψn,0,

, 1−µ−ρβρ },
ςi = sup{Γn( 1

2cn
∆̄2
n + 1

2an
||θn||2}. According to (46),

(57), (63) and (72), one has

Vi ≤ (Vi(0)− ςi), i = 1, . . . , n. (73)

By analyzing (35), (47), (58) and (72), we have

ξi ≤ 2
√
V i(0), t < t1, i = 1, . . . , n. (74)

In summary, ξi is bounded, which contradicts the definition
of ξi in (34). Thus, (4) is proved. Therefore, based on Lemma
2 and Lemma 3 and the derivation of each step, all the
closed-loop signals are bounded.

Consider the nonlinear systems (1) under the event-trigger
mechanism (20). Therefore, assuming that Zeno behavior
occurs in Theorem 1, there must exist a finite time T > 0
that satisfies

lim
t→∞

tk = T, k ∈ z+. (75)

That is, in the finite time interval [0, T ], there are infinite
triggering events. Since ϵ(t) = u− û, where û is a constant,
we can get

ϵ̇ = u̇, ∀k ∈ z+, t ∈ [tk, tk+1). (76)

Define t̄ ∈ [tk, tk+1) such that

|ϵ(t̄)| = 0, |ϵ(t̃)| > 0, ∀t̃ ∈ (t̄, tk+1). (77)

Based on (77), one has

d |ϵ|
dt

=
d
√
ϵ2

dt
=

ϵϵ̇√
ϵ2

≤ |ϵ| |ϵ̇|
|ϵ|

= |u̇| , t ∈ (t̄, tk+1). (78)

As fi(·), i = 1, · · · , n are at least (n+1− i)th-order smooth
functions, then u̇ ∈ L∞ holds. Therefore, there exists a
positive constant ϱ > 0, such that

d|ϵ|
dt

≤ |u̇| ≤ ϱ, t ∈ (t̄, tk+1). (79)

Based on (19) and (20), the following inequality holds:

|ϵ| ≤

√
δ(0)

ρ
e−(β+µ

ρ )t. (80)

Since ϵ(t̄) = 0, we have

tk+1 − tk ≥ tk+1 − t̄ ≥

√
δ(0)

ρ
e−(β+µ

ρ )t/ϱ. (81)

As t ∈ [tk, tk+1) ∈ [0, T ], one gets

tk+1 − tk ≥

√
δ(0)

ρ
e−(β+µ

ρ )T /ϱ = ν > 0. (82)

Therefore, there is a minimum value ν between any tk and
tk+1. Due to t ∈ [tk, tk+1) ∈ [0, T ], when k satisfies

k ≥ ⌈T
ν
⌉+ 1, (83)

where ⌈Tν ⌉ denote the smallest integer that is larger than T
ν .

Then, we can get tk > T , which is contrary to the assumption
in (75). This means that the number of events within the time
interval [0, T ] is limited. Therefore,the Zeno behavior does
not exist, then the proof is complete.
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Fig. 1. System output y(t) and its desired value yr(t) .
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Fig. 2. Tracking error z1 under the prescribed performance constraint ψ1.
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Fig. 3. State error z2 under the prescribed performance constraint ψ2.

V. SIMULATION STUDY

In this section, the effectiveness of the proposed controller
is demonstrated via a simulation example.

A second-order nonlinear system is considered as follows:

ẋ1 = f1(x̄1) + λ1(t) + x2

ẋ2 = f2(x̄2) + λ2(t) + u

y = x1

(84)

where f1(x̄1) = sin(x1), f2(x̄2) =
x1

x21 + x22
, λ1 =

0.2sin(t), and λ2 = cos(2t). Next, the simulation pa-
rameters are chosen as b1 = 2, b2 = 0.2, c1 = 2.9,
c2 = 3, a1 = 0.2, a2 = 0.2, β = 0.1, µ =
0.12, η = 0.49, ρ = 3 . The desired value yr(t) =
sin(t). Meanwhile, the PPC functions are φ1 = (1 −
0.05)e−1t + 0.05 and φ2 = (1− 0.05)e−1t + 0.05. The ini-
tial condition is [x1(0), x2(0), x̂1(0), x̂2(0), δ(0), θ̂1, θ̂2]

T =
[0, 0, 0.1, 0.1, 0.1, 0.1, 0.2]T . In addition, based on Lemma 1
, the RBFNNs basis of the Gaussian function is

Ψi(ˆ̄xi) = exp

[
−(ˆ̄xi − ri,j)

T (ˆ̄xi − ri,j)

ϖ2
i,j

]
,

i = 1, 2, j = 1, 2, · · · , 5
(85)

0 5 10 15
time(sec)
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6.4 6.6 6.8 7 7.2 7.4
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(t)

u(t)

(t)

Fig. 4. Control signal with the proposed scheme.
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Fig. 5. Control signal with the relative threshold strategy (Redraw according
to the relative threshold method in reference [22] under different parameters
and system conditions).
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Fig. 6. Time interval with the proposed scheme.

where ϖi,j = 2, r1,j = −3+ j, r2,j = [−3+ j,−3− j]. The
other design parameters for the relative threshold strategy are
set as m1 = 0.05, m̄1 = 2, δ = 0.1, ε = 0.5.

The simulation results are shown in Figs.1-7. Fig. 1
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Fig. 7. Time interval with the relative threshold strategy (Redraw according
to the relative threshold method in reference [22] under different parameters
and system conditions).

displays system output y(t) and its desired value yr(t). The
tracking error z1, the state error z2 and their boundaries
are shown in Figs. 2 and 3, respectively. And the control
signal is shown in Fig.4 and 5. In addition, in Fig. 6 the
number of event triggering for the DETC in this paper is 246,
while in Fig.7 the number of event triggering with relative
threshold strategy is 341. Through the comparison of Fig.
6 and 7, we can clearly see that compared with the relative
threshold scheme in [22], the scheme designed in this paper
can significantly reduce the number of communications.

VI. CONCLUSION

In this paper, a low-computation neural adaptive output-
feedback prescribed performance controller with dynamic
event-triggered has been first proposed for a class of SFNS
with unmatched disturbances. A backstepping-like method
based on PPC has been used to solve the complexity explo-
sion problem caused by the traditional backstepping method.
In this method, the high-order derivative information of the
reference signal is not required. In addition, RBFNNs only
accept the system state estimation as input, which simplifies
the calculation and makes it easier to be implemented in
practice. In addition, the DETC scheme we designed reduces
the communication burden of the system. Finally, the ef-
fectiveness of the proposed method is verified by numerical
simulation. In the near future, a DETC that is more consistent
with the PPC needs our attention and study.
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