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Abstract—This paper investigates active cancellation tech-
niques for radar stealth applications, focusing on linear fre-
quency modulated (LFM) and nonlinear frequency modulated
(NLFM) signals using the Nth-order spectrum spread and
compression (SSC) algorithm. A comprehensive analysis is
presented incorporating realistic radar cross section (RCS) fluc-
tuations through Swerling, chi-square, and mixed distribution
models. The relationships between cancellation effectiveness and
key parameters, including RCS calculation errors, signal delay
times, and algorithm order are examined. For LFM signals,
effective cancellation is achieved even with significant RCS
calculation errors through appropriate parameter adjustment.
Taylor window-based and tangent-based NLFM signals demon-
strate robust cancellation capabilities, particularly at small de-
lay times. The introduction of a novel mixed distribution model
reveals that the proposed cancellation approach remains effec-
tive under more realistic RCS fluctuation conditions, with opti-
mal performance achieved through slight under-cancellation.
Numerical simulations validate that the proposed approach
significantly reduces radar detection probability across vari-
ous operational scenarios and achieves omnidirectional stealth
capabilities for different aircraft configurations.

Index Terms—Radar stealth, RCS fluctuation, active cancel-
lation, cancelling signal, detection probability.

I. INTRODUCTION

RADAR Cross Section (RCS) is a critical parameter for
assessing the stealth performance of an aircraft target.

Radar stealth technology, also known as low-observable
technology, refers to methods that ensure a target is detected
with a very low probability. Although RCS is a significant
parameter of the target, it does not directly indicate the
detection probability when the target is exposed to searching
radar [1], [2], [3]. Radar detection fundamentally presents
a probabilistic challenge, and the target’s fluctuating RCS
values necessitate a probabilistic description of the target’s
detection performance. The dynamic RCS characteristics
of a target emphasize that detection occurs under realistic
conditions, where the target echo is influenced by both its
movement (including translational and micro-motion) and its
real-time varying attitude angle relative to the incident wave
[4], [5]. Therefore, constructing the target echo signal must
account for the target’s dynamic RCS characteristics.
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An efficient method to acquire the target RCS fluctua-
tion characteristics is through measurement. However, this
approach is costly and cannot capture all possible target
orientations. Classical statistical models are often employed
to describe the target’s fluctuating RCS data. Researchers
have proposed various distribution models from a statistical
perspective [6], [7], [8]. These models facilitate the descrip-
tion of target RCS characteristics and are used to quan-
titatively calculate radar detection probability, false alarm
probability, and the required signal-to-noise ratio (SNR) for
single or accumulated pulses. Commonly used fluctuation
models include the Swerling model [7], chi-square model
[9], log-normal model [10], and non-parametric model [11],
among others.

Active cancellation technology is an advanced stealth
technology based on the principle of coherent interference.
It has the potential to render a target completely invisible
in the direction of the radar antenna. Although achieving
this in engineering is challenging, both theoretical research
and practical applications have advanced rapidly in recent
years [12], [13], [14], [15]. Many scholars have studied the
underlying mechanisms and proposed various cancellation
methods. Xiang and Qu [16] discussed the cancellation
analysis of LFM interrupted continuous wave (LFM ICW)
signals using the group delay and ambiguity function. Xu
et al. [17] designed a cancellation system based on group
delay to address LFM signal cancellation problems and
proposed an active cancellation stealth system. They also
investigated a scheme for NFLM signal cancellation systems
[18]. Additionally, active cancellation stealth was analyzed
based on interrupted-sampling and convolution modulation
in [19]. Yi and Wang [20] studied the detection probability
of the Swerling model before and after cancellation. In Ref.
[21], they presented a method for generating the NFLM
cancellation signal based on the Nth-order SSC (Spectrum
Spread and Compression) algorithm. However, these studies
assumed a′RCS = 1 and φ′

RCS = 0 (see Eq. (2)), neglecting
the target’s amplitude-phase modulation of the echo signal,
which does not reflect actual conditions.

In this work, we consider the target’s amplitude-phase
modulation of the echo signal during the design stage of
the canceling signal. The canceling signals of LFM and
NFLM are generated using the Nth-order SSC algorithm. The
Swerling and chi-square fluctuation models are utilized to
simulate the target’s dynamic RCS characteristics. Besides,
the discrepancies between the exact and approximate RCS
fluctuation data are analyzed concerning their effect on can-
cellation. Finally, the corresponding detection probabilities
are calculated in the subsequent sections.
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II. LINEAR AND NONLINEAR FREQUENCY MODULATION
SIGNAL AND CANCELLING SIGNAL

The general expression for an FM chirp signal can be given
as follows:

u(t) = a(t) exp [jφ(t)], (1)

where a(t) and φ(t) denote the amplitude modulation func-
tion and the phase modulation function, respectively. For
simplicity, we assume a(t) = 1 for 0 ≤ t ≤ T .

In this paper, linear and two types of nonlinear fre-
quency modulation signals are considered. Their analytical
expressions are provided in Table I, where f0 is the car-
rier frequency, B is the bandwidth, T is the pulse width,
A(n) represents the coefficients of the finite series, and
β = arctan(α1), with α1 ∈ [0,∞) [22], [23], [24].

Suppose the echo signal of LFM and NLFM is

ur(t) = u(t)a′RCS exp(jφ′
RCS), (2)

where a′RCS is the target’s exact RCS phase and φ′
RCS is the

amplitude. Let λ′ = a′RCS exp(jφ′
RCS), then we can get

ur(t) = λ′u(t), (3)

where λ
′

satisfies the fluctuation model shown in Table III.
In Ref.[21], the authors proposed a method to generate

the cancelling signal of LFM and NLFM based on Nth-order
SSC algorithm. The same method will be used to generate
the cancelling signal.

Suppose the cancelling signals of LFM and NLFM are
that

uC(t) = [u(t− τ0)]
N
[u∗(t− τ0 − τ)]

N−1

a′′RCS exp[j(φ′′
RCS + π)],

(4)

where τ0 is the retransmitting delay time that satisfies τ0 =
(N−1)τ . Let λ′′ = α′′

RCS exp(jφ′′
RCS), then one can obtain

uC(t) = λ′′ [u(t− τ0)]
N
[u∗(t− τ0 − τ)]

N−1
exp[jπ], (5)

where α′′
RCS is the target’s approximate RCS phase and

φ′′
RCS is the amplitude. λ′′ satisfies the fluctuation model

the same as λ′ .
The final results of the cancelling signals of LFM and

NLFM can be written as Eq.(6), the detailed derivation
process may refer to the Refs. [21].

uC(t) = λ′u(t) exp[jθ(τo, N)], (6)

where θ(τ0, N) are listed in Table II.

III. OBTAINED CANCELLING SIGNAL ANALYSIS

In this section, the obtained cancelling signal is analyzed.
Given a hypothesis in the time domain, the cancelling wave
synchronizes with the target echo, and a′RCS , a′′RCS ̸= 1,
φ′
RCS , φ′′

RCS ̸= 0, the signal of received radar echo can be
expressed as

uo(t) = ur(t) + uC(t) = u(t) {λ′ + λ′′ exp [jθ (τ0, N)]} .
(7)

In the vast majority case, λ′ ̸= λ′′, but if one has

λ′′ = δ · λ′, (8)

where λ is called the errors between the exact and approxi-
mate RCS fluctuation data. Then

uo(t) = λ′u(t) {1 + δ exp [jθ (τ0, N)]} . (9)

After matching filter, one can get

uσ(t) = uo(t)∗h(t) = λ′ {1 + δ exp [jθ (τ0, N)]}u(t)∗h(t).
(10)

Let
γ = |1 + δ exp [jθ (τ0, N)]| , (11)

the cancellation effect is related to the magnitude of γ.
Cancellation effect does not exist when γ = 1, the cancelling
wave has cancellation effect when γ < 1. And the radar echo
will be strengthened by the cancelling wave when γ > 1.

In Ref. [21], the authors discussed the cancellation effect
with δ = 1 for various values of N and τ0. This section
extends the discussion to the cancellation effect for δ ̸= 1.

In the analysis, the pulse width is set to T = 50µs,
β = 1.4, and the bandwidth B = 10MHz. The variation
of the cancellation coefficient γ for LFM, Taylor window-
based NLFM, and tangent-based NLFM with respect to δ is
shown in Figs. 1, 2, and 3, respectively, for different values
of N and τ0.

It can be observed that the cancellation signal suppresses
the radar echo for δ ̸= 1, including cases where δ > 1.
This indicates that effective cancellation can still be achieved
even when there are discrepancies between the target’s exact
RCS and its approximate RCS. From Figs. 1a and 3a, the
radar echo is suppressed by the cancellation signal when δ →
1.8 (representing significant errors) by adjusting the order
N for both LFM and tangent-based NLFM. However, this
condition requires τ0 < 2µs (a very small value). The curves
in Figs. 2b and 3b demonstrate that the radar echo is canceled
by the cancellation signal only when δ < 1 for certain values
of N . Additionally, for LFM, effective cancellation occurs
with larger τ0 and δ, as illustrated in Fig. 1.

IV. RADAR DETECTION PROBABILITY FOR SOME
FLUCTUATING TARGET CASES

The fluctuation of the target’s RCS will reduce its detec-
tion performance. To measure the influence of the fluctuation
on the detection probability, the target RCS fluctuation char-
acteristic needs to be described. It is difficult to accurately
obtain the probability distribution function of each target’s
RCS as their complex shape structures and diversity. The
usual approach is to utilize a reasonable distribution model to
investigate the impact of target fluctuation on radar detection
performance. Plenty of researching work had been done and
classical models like Swerling model, chi-square model etc.
had been widely utilized. Table III introduces the classical
distribution model and their probability density functions in
accordance with the development sequence of the existing
model.

In previous studies of radar detection theory, the target’s
RCS was usually considered constant. However, for a target
in the optical zone, especially aircraft with edges, corners,
cavities, etc., the RCS rapidly changes with the shape and
surface roughness of the target, implying a non-fixed RCS.
The impact of RCS fluctuation must be considered when
studying radar detection theory for such targets.

As discussed in the research literature, the Swerling model
is a special case of the chi-square model. The detection prob-
ability of the chi-square model can be used to calculate the
radar target’s detection probability. The detection probability
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TABLE I: The expressions of Linear and nonlinear frequency modulation signal

LFM signal u(t) = exp[j2π(f0t+ µt2/2)]

Taylor window
waveform NLFM signal

u(t) = exp
[
j
(

πBt2

T
+ 2BT

∑5
n=1

A(n)
n

sin2
(
πnt
T

))]
Tangent-based

waveform NLFM signal
u(t) = exp

[
−j πBT

2β tan β
ln

∣∣cos (2β t
T

)∣∣]
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Fig. 1: Cancellation coefficient versus δ for different N, τ0 (LFM)
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Fig. 2: Cancellation coefficient versus δ for different N, τ0 (Taylor window NLFM)
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Fig. 3: Cancellation coefficient versus δ for different N, τ0 (Tangent-based NLFM)
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TABLE II: A The specific expressions of θ(τ0, N)

LFM signal θ(τ0, N) = πµτ20
(
1− 1

N

)
+ π

Taylor window waveform NLFM signal θ (τ0, N) = −πB
T

Nτ2
0

N−1
+ π+

2BT
∑5

n=1
A(n)
n

(
(N − 1) sin

(
πn
T

τ0
N−1

)
− sin

(πnτ0
T

))
Tangent-based waveform NLFM signal θ (τ0, N) = πBT

2β tan(β)

(
(N − 1) ln

∣∣∣cos( 2β
T

τ0
N−1

)∣∣∣)− ln
∣∣∣cos( 2βτ0

T

)∣∣∣ + π+

πBT
2β tan(β)

(
(N − 1) ln

∣∣∣1 + tan
(

2β
T

τ0
N−1

)∣∣∣)− ln
∣∣∣1 + tan

(
2βτ0
T

)∣∣∣
TABLE III: Typical RCS fluctuation model

Model Probability density function
Swerling I-II model f(σ) = 1

σ
exp

(
−σ

σ̄

)
, σ ≥ 0

Swerling III-IV model f(σ) = 4σ
σ2 exp

(
− 2σ

σ̄

)
, σ ≥ 0

Chi-square model with 2k degree of freedom f(σ) = k
(k−1)!σ̄

(
kσ
σ̄

)k−1
exp

(
− kσ

σ̄

)
, σ ≥ 0

PD for single pulse detection can be expressed as follows
[25]:

PD =

∫ ∞

0

∫ ∞

rb

p(A) · r exp
(
−r2 + SNR

2

)
I0

(r
√
SNR)drdA,

(12)

where rb =
√
2 ln 1

Pfa
is the threshold, Pfa is the false alarm

probability, and p(A) is the probability density function of
the amplitude of the backscattering pulse, which can be
computed as [26]:

cp(A) =

(
kA

Γ(k)mσ̄

)k−1

exp

(
− kA2

2mσ̄

)
, A > 0, (13)

where m is a constant depending on the radar system’s
working parameters, such as transmitting power, antenna
gain, etc., and the distance R. The SNR in Eq. (12) is the
signal-to-noise ratio and can be calculated as:

SNR =
2E

N0
, (14)

where E is the signal energy and N0/2 is the two-sided
white Gaussian noise spectral density.

The detection probability PD for non-coherent pulse ac-
cumulation detection can be written as follows [27]:

PD =

∫ ∞

0

∫ ∞

VT

p(A) ·
(

2r

n · SNR

)n−1
2

exp

(
−r − n · SNR

2

)
In−1(

√
2n · SNR)drdA,

(15)
where VT is the detection threshold. When the false alarm
probability Pfa is given, the threshold can be solved by
Eq.(16) as follows

Pfa =

∫ ∞

VT

xn−1 exp(−x)

(n− 1)!
dx. (16)

where VT is the detection threshold. When the false alarm
probability Pfa is given, the threshold can be solved using
Eq. (16) as follows:

Pfa =

∫ ∞

VT

xn−1 exp(−x)

(n− 1)!
dx. (17)

Calculating the radar target detection probability provides
a reference for radar target detection practice. To facilitate
engineering practice, researchers have derived approximate

formulations of detection probability for different fluctuating
models through mathematical approximation and experience,
greatly improving calculation speed while maintaining ac-
curacy. Table IV shows the approximate formulations of
detection probability for different fluctuating models [28],
[29]. In Table IV, Γ1(x,N) =

∫ x

0
exp(−v)vN−1

(N−1)! dv is the
incomplete gamma function, and S̄ is the mean of SNR Si,
which conforms to the chi-square model with 2k degrees of
freedom. The subsequent calculation of detection probability
will be performed using these approximate formulations.

V. THE EFFECT OF CANCELLATION ON THE DETECTION
PROBABILITY

As we all know, active cancellation can significantly re-
duce the echo gain. According to the interference principle of
coherent waves, the radar echo can be completely cancelled
out when the following conditions are satisfied [30]:

• In the time domain, the echo should be synchronized
with the peak point of the signal.

• The echo and the peak point of the signal need to be in
opposite phases for cancellation.

• The amplitude of the echo and the peak point of the
signal should be equal for cancellation.

Even with some errors in amplitude, phase, and frequency,
there is still a cancellation effect[21]. Next, we will primar-
ily discuss the influence of RCS fluctuation errors on the
cancellation effect, based on radar detection probability.

A. Swerling model distribution

If λ′ in Eq. (2) conforms to the Swerling model, its
probability density function can be obtained from Table III.
Using Eq. (10), the improved SNR after cancellation can be
approximately derived as

SNRL = |1 + δ exp[jθ(τ0, N)]| · SNR. (18)

By combining Eq. (17) with Tables II and IV, we can
obtain the detection probability curves for LFM and NLFM
signals versus SNR for different cases.

1) LFM Case: Fig. 4 and Fig. 5 illustrate the detection
probability (PD) curves for LFM signals versus signal-
to-noise ratio (SNR) under the Swerling I target model
for various values of δ. These results indicate that
the cancelling signal effectively reduces PD, with the
suppression effect becoming more pronounced as δ
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TABLE IV: The approximate formulations of detection probability

Model Detection probability

Swerling III model

PD =


exp [−VT /(1 + SNR)] , n = 1

1− Γ1 ( VT , n− 1) +
(
1 + 1

n·SNR

)n−1
Γ1

(
VT

1+ 1
n·SNR

, n− 1

)
× exp [−VT /(1 + n · SNR)] , n > 1

Pfa = 1− Γ1 (VT , n− 1)

Γ1(x,N) =
∫ x
0

exp(−v)vN−1

( N−1)!
dv.

Swerling III-IV model

PD = exp
(

−VT
1+n·SNR/2

) (
1 + 2

n·SNR

)n−2 ×K0, n = 1, 2

K0 = 1 + VT
1+n·SNR/2

− 2(n−2)
n·SNR

PD =
V n−1
T

exp(−VT )

(1+n·SNR/2)(n−2)!
+ 1− Γ1 ( VT , n− 1) +K0 × Γ1

(
VT

1+2/n·SNR
, n− 1

)
, n > 2

Chi-square model with 2k degree of
freedom

PD = A1 +A2 +A3

A1 =
[
1 + k

n·S̄

]n−k [
1− I

(
Zb√
k
, k − 1

)]
A2 =

[
1+ k

n·S̄

]n−k+1
(n−k)[

1+n·S̄
k

] [
e−ZbZk−1

b
Γ(k)

− (1− I)

]
A3 =

[
1+ k

n·S̄

]n−k+2
(n−k)(n−k+1)

2
[
1+n·S̄

k

]2
[
(1− I)− e−ZbZk−2

b
Γ(k−1)

− e−ZbZk−1
b

Γ(k)

]
Zb = VT[

1+n·S̄
k

]
I(p, q) =

∫ p
√

1+q
0

e−vvq

q!
dv
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Fig. 4: PD versus SNR for Swerling I type target with different δ (LFM, Pfa = 10−11, n = 1)

decreases. When comparing subfigures 4a and 5a with
4b and 5b, it becomes evident that by appropriately
adjusting the cancellation order N , the radar echo can
be cancelled even when δ and τ0 are large. Furthermore,
the comparison between Fig. 4 and Fig. 5 demonstrate
that the cancellation effect diminishes with increasing
n. However, this attenuation can be mitigated or even
reversed by controlling δ. These results highlight the
flexibility and robustness of the cancellation approach
for LFM signals under varying conditions.

2) Taylor Window NLFM Case: Fig. 6 and Fig. 7 depict
the detection probability curves for Taylor window-
based NLFM signals as a function of SNR, evaluated
under the Swerling I target model with different δ
values. These figures confirm that the cancelling signal
achieves significant suppression of radar echoes across
a wide range of parameters, including τ0, δ, and n.
A detailed examination of Fig. 6a, Fig. 7a, Fig. 6b,

and Fig. 7b reveal that the cancellation effect is par-
ticularly strong when τ0 = 1µs, which aligns closely
with real-world radar systems. Additionally, from Fig.
6b and Fig. 7b, it is evident that the radar echo is
effectively suppressed only when δ < 1, and the
effectiveness decreases as n increases. These results
emphasize the importance of parameter optimization
in Taylor window-based NLFM signal cancellation to
achieve optimal stealth performance.

3) Tangent-Based NLFM Case: Fig. 8 and Fig. 9
show the detection probability curves for tangent-based
NLFM signals versus SNR, evaluated under the Swer-
ling III target model for various δ values. From Fig. 8a,
it is observed that PD is minimized when τ0 = 2µs
and δ = 1.2, achieving a 0.3 reduction in detection
probability. Compared to LFM and Taylor window
NLFM cases, tangent-based NLFM signals exhibit the
most significant suppression of PD, with reductions
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Fig. 5: PD versus SNR for Swerling I type target with different δ (LFM, Pfa = 10−11, n = 10)
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Fig. 6: PD versus SNR for Swerling I type target with different δ (Taylor window LFM, Pfa = 10−11, n = 1)

reaching up to 0.7. This observation underscores the
potential of tangent-based NLFM cancellation signals to
achieve complete radar stealth. However, the remaining
subfigures indicate that achieving such significant re-
ductions requires stringent conditions, particularly pre-
cise control of δ and τ0. These results highlight the
high sensitivity and performance potential of tangent-
based NLFM signals for stealth applications, albeit with
stricter design requirements.

B. Chi-square distribution

In this section, computational models representing stealth
aircraft types I and II were employed. Their geometric
configurations, designed using CATIA, are depicted in Figs.
10 and 11. Subsequently, these models were meshed using
HyperMesh and imported into FEKO for RCS analysis,
where their RCS followed the chi-square distribution. By
fitting their probability density curves and resolving the

degrees of freedom, the probability density function was
determined using Table III.

Utilizing Eq. (17), along with data from Table II and Table
IV, enabled the derivation of detection probability curves for
LFM and NLFM signals versus SNR for different stealth
aircraft.

1) LFM Case: Fig. 12 and Fig. 13 illustrate the detection
probability (Pν) curves for LFM signals versus SNR,
evaluated for chi-square model stealth aircraft I with
varying values of τ0, N , and nfa = 1010. Here,
nfa is a parameter that determines the false alarm
probability (Pfa) in radar signal processing. In the
context of this study, it signifies an extremely high false
alarm threshold, chosen to illustrate system performance
under minimal Pfa conditions. The results clearly show
that the cancelling signals can significantly reduce Pν ,
even for δ = 1.5. When the fitted probability density
curves closely align with the exact RCS values, the
cancelling signals effectively nullify the echo signals,
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Fig. 7: PD versus SNR for Swerling I type target with different δ (Taylor window LFM, Pfa = 10−11, n = 10)
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Fig. 8: PD versus SNR for Swerling III type target with different δ (Tangent-based LFM, Pfa = 10−11, n = 10)
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Fig. 9: PD versus SNR for Swerling III type target with different δ (Tangent-based LFM, Pfa = 10−11, n = 10)
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Fig. 10: Stealth aircraft I.

Fig. 11: Stealth aircraft II.

achieving substantial suppression of detection probabil-
ity. Moreover, the proposed cancelling signals demon-
strate resilience against inaccuracies in the numerical
RCS, maintaining their ability to cancel radar echoes
despite discrepancies from the exact RCS values. A
deeper analysis of Fig. 12b and Fig. 13b highlight that
the cancellation effect becomes more pronounced as
τ0 and n increase. This suggests that the cancellation
mechanism is particularly effective under conditions
of larger delay times and higher numbers of accumu-
lated pulses. Such findings underline the potential of
active cancellation technology to enhance the stealth
performance of stealth aircraft I across a wide range
of operational scenarios, making it a versatile tool for
reducing radar detectability.

2) Taylor Window Waveform NLFM Case: Fig. 14 and
Fig. 15 depict detection probability (PD) surfaces for
Taylor window-based NLFM signals as functions of
SNR and azimuth, analyzed for chi-square model stealth
aircraft II under various values of δ, τ0, and n. These
results reveal that the PD surfaces after cancellation are
consistently lower than those before cancellation, irre-
spective of the parameter combinations. This reduction
in PD spans a broad range of SNR levels and azimuth
angles, underscoring the effectiveness of the proposed
cancellation approach. The cancelling signals exhibit a
remarkable ability to suppress radar echoes across all
azimuth angles, effectively achieving omnidirectional
stealth for stealth aircraft II. This capability demon-
strates the robustness of active cancellation technology,
making it suitable for a variety of tactical environments.

A comparison of Fig. 14a and Fig. 14b indicate that
for larger τ0 values, successful cancellation is achieved
only when δ < 1. This suggests that controlling δ is
critical for maintaining effective cancellation at larger
delay times. Furthermore, the effectiveness of cancella-
tion diminishes as the number of pulse accumulations
increases, making smaller values of δ necessary for
optimal performance. Despite potential inaccuracies in
the target’s RCS, the cancelling signals designed in
this study continue to enhance the stealth performance
of stealth aircraft II. This robustness highlights the
practical value of the proposed methodology, ensuring
consistent performance even under conditions of RCS
fluctuation or modeling error. These findings reinforce
the feasibility of active cancellation as a key strategy for
reducing radar detectability in both linear and nonlinear
frequency modulation scenarios. The ability to achieve
significant reductions in detection probability across
different models and parameters makes this approach a
promising candidate for advancing stealth technologies.

C. Mixed Distribution Model Analysis
To provide a more comprehensive analysis of radar de-

tection probability under realistic conditions, we developed
a mixed distribution model that combines the characteristics
of Swerling I, Swerling III, and chi-square distributions. The
probability density function of this mixed model is given by:

fmixed(σ) = w1fSI(σ) + w2fSIII(σ) + w3fχ2(σ) (19)

where w1, w2, and w3 are weighting coefficients satisfying∑3
i=1 wi = 1, and fSI , fSIII , and fχ2 are the probability

density functions of Swerling I, Swerling III, and chi-square
distributions respectively.

Fig. 16 and Fig. 17 present the detection probability
curves for different false alarm probabilities Pfa and pulse
numbers n, with varying cancellation factors δ. For single-
pulse detection n = 1, as shown in Fig. 16a and Fig. 17a,
the cancellation method effectively reduces the detection
probability across all SNR values. The reduction is most
pronounced when δ = 0.8, where we observe a substantial
rightward shift in the detection probability curve, indicating
that a higher SNR is required to achieve the same detection
probability as before cancellation.

With increased pulse accumulation (n = 5), depicted
in Fig. 16b and Fig. 17b, the overall detection probability
improves for all cases due to the coherent integration gain.
However, the cancellation effect remains significant, partic-
ularly for δ = 0.8 and δ = 1.3. Notably, under Pfa = 10−2,
we observe a unique oscillatory behavior in the detection
probability curves for n = 5 (Fig. 16b), suggesting a com-
plex interaction between pulse accumulation and cancellation
effects.

The comparison of results under different false alarm
probabilities reveals that stricter requirements (Pfa = 10−6

versus Pfa = 10−2) lead to several key observations. A
rightward shift occurs in all detection probability curves,
indicating higher SNR requirements. There is more pro-
nounced separation between curves with different δ values.
The cancellation effects become more stable and predictable,
particularly evident in the absence of oscillatory behavior in
Fig. 17b compared to Fig. 16b.
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Fig. 12: PD versus SNR for chi-square model stealth aircraft I(LFM, nfa = 1010, n = 1)
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Fig. 13: PD versus SNR for chi-square model stealth aircraft I(LFM, nfa = 1010, n = 10)

(a) τ0 = 1ms,N = 9 (b) τ0 = 20ms,N = 4

Fig. 14: PD versus SNR, azimuth for chi-square model stealth aircraft II (Taylor window NLFM, nfa = 1010, n = 1)
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(a) τ0 = 1ms,N = 9 (b) τ0 = 20ms,N = 9

Fig. 15: PD versus SNR, azimuth for chi-square model stealth aircraft II (Taylor window NLFM, nfa = 1010, n = 10)
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Fig. 16: PD versus SNR for for the mixed distribution model under Pfa = 10−2.
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Fig. 17: PD versus SNR for for the mixed distribution model under Pfa = 10−6.
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The experimental results confirm that our cancellation
method maintains its effectiveness even under this more
realistic mixed distribution model. The system demonstrates
robust performance across various operational parameters,
with the most effective cancellation achieved at δ = 0.8,
suggesting that slight under-cancellation may be preferable
to over-cancellation in practical applications.

VI. CONCLUSION

The cancelling signals generated for LFM and NLFM
signals through the Nth-order SSC algorithm, accounting for
the target’s amplitude-phase modulation, effectively mitigate
the target echo. Remarkably, this cancellation effect persists
even when errors are present (δ ̸= 1). By appropriately
selecting the order N and controlling the error δ, the de-
tection probability for RCS fluctuation models indicates a
reduction at large delay times. Moreover, for non-coherent
pulse accumulation detection, the cancelling signals continue
to nullify the echo signals under certain error conditions.
These proposed cancelling signals are well-suited for engi-
neering applications, accommodating large delay times and
errors. Importantly, the implementation of active cancellation
technology paves the way for achieving omnidirectional
stealth capabilities for stealth aircraft.
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