
 

  

Abstract—The core task of dense video description is to 

identify all events occurring in an unedited video and generate 

textual descriptions for these events. This has applications in 

fields such as assisting visually impaired individuals, generating 

news headlines, and enhancing human-computer interaction. 

However, existing dense video description models often 

overlook the role of textual information (e.g., road signs, 

subtitles) in video comprehension, as well as the contextual 

relationships between events, which are crucial for accurate 

description generation. To address these issues, this paper 

proposes a multimodal dense video description approach based 

on event-context fusion. The model utilizes a C3D network to 

extract visual features from the video and integrates OCR 

technology to extract textual information, thereby enhancing 

the semantic understanding of the video content. During feature 

extraction, sliding window and temporal alignment techniques 

are applied to ensure the temporal consistency of visual, audio, 

and textual features. A multimodal context fusion encoder is 

used to capture the temporal and semantic relationships 

between events and to deeply integrate multimodal features. 

The SCN decoder then generates descriptions word by word, 

improving both semantic consistency and fluency. The model is 

trained and evaluated on the MSVD and MSR-VTT datasets, 

and its performance is compared with several popular models. 

Experimental results show significant improvements in CIDEr 

evaluation scores, achieving 98.8 and 53.7 on the two datasets, 

respectively. Additionally, ablation studies are conducted to 

comprehensively assess the effectiveness and stability of each 

component of the model. 

 
Index Terms—Dense Video Description, Transformer, 

Mult-imodal feature fusion, Event context, SCN Decoder 

 

I. INTRODUCTION 

N recent years, with the rapid growth of video data, the 

demand for cross-modal data processing has significantly 

increased, and dense video captioning technology has 

gradually attracted widespread attention. Dense video 

captioning technology constructs algorithms to perform 

event localization and proposal generation for videos 

containing multiple events, and presents the content in 
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natural language. This technology effectively bridges the 

semantic gap between low-level visual data and high-level 

abstract data in the field of artificial intelligence. Unlike 

traditional single-event video description tasks, dense video 

captioning does not require video editing but can directly 

generate coherent paragraph descriptions based on raw 

videos. This technology has broad application prospects in 

areas such as automatic narration, human-computer 

interaction, video summarization, video retrieval, and 

providing daily life support for visually impaired individuals. 

Therefore, how to enable computers to better understand 

video content and organize and describe it using language, 

similar to humans, has become an important research topic. 

With the rise of deep learning, computers can leverage 

their powerful representational capabilities to automatically 

optimize and extract feature information from videos using 

neural network models. This has enabled machines to possess 

human-like abilities to understand video content, 

significantly advancing the development of video 

understanding. Since 2017, when Krishna et al. [1] first 

proposed the dense video captioning method DCE (Dense 

Captioning Events), which addressed the issues of 

multi-scale and overlapping event proposals caused by video 

extension. DCE generates proposals through the event 

proposal module and independently describes each event, 

ensuring that each video segment contains only one 

describable event. Since then, scholars both domestically and 

internationally have carried out extensive research on dense 

video captioning tasks, proposing various optimized and 

improved dense captioning methods. For example, in 2019, 

Rahman et al. [2] first introduced audio features into the 

dense video captioning task and proposed methods such as 

multimodal scene fusion, penalty-based hybrid fusion, and 

multimodal Tucker decomposition, aimed at combining 

visual and audio features from videos. With these methods, 

the model can better integrate information from different 

modalities and then feed it into a GRU-based description 

decoder to generate textual descriptions of the video. 

However, this method only combines visual and audio 

features, neglecting textual features, which limits the model's 

comprehensive understanding of video semantics. 

Additionally, the model uses weakly-supervised learning, 

leading to unsatisfactory description results, as it fails to fully 

leverage multimodal features to significantly improve the 

quality of the descriptions. In 2020, Iashin et al. [3] proposed 

a dense video captioning method based on open video 

datasets, which extracts multimodal features of videos 

through different pre-trained models: I3D convolutional 

networks [4] for visual features, VGGish networks [5] for 

audio features, and automatic speech recognition systems to 

obtain spoken text in the video. Then, independent 
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Transformer models are trained for each of these three modal 

features, and their output features are fused by concatenation 

to generate the final video description. Although this method 

effectively integrates multimodal information, the feature 

fusion approach is overly simplistic and inefficient, failing to 

fully exploit the synergistic effect of multimodal features. 

Furthermore, the event detection in the model is based only 

on visual features, which contradicts the original intention of 

multimodal methods.  

Dense video captioning not only requires a general 

description of the entire video but also needs to capture a 

series of fine-grained events within the video and generate 

accurate and coherent textual descriptions for each event. 

Events in videos typically have temporal order and causal 

relationships, meaning that dense video captioning tasks 

must consider not only the individual features of each event 

but also fully utilize contextual information to understand the 

relationships between events. Most existing dense video 

captioning methods primarily rely on visual features from the 

video, neglecting the role of audio and textual features. Audio 

features provide additional cues, such as dialogues, 

background sounds, and sound effects, which help in more 

accurately understanding the context of events. Textual 

features (e.g., subtitles, text in images, labels, or tags) are also 

important contextual clues. These textual features can 

provide clear indicators that help quickly comprehend the 

video content and its events. 

To address the above issues, this paper proposes a 

multimodal dense video captioning method based on event 

contextual features, with the following main contributions: 

1. Text Information Extraction Using OCR: This paper 

proposes using OCR to extract textual information from the 

video (i.e., video textual features) and integrate it into 

multimodal features to enhance the model's ability to 

understand the video content. By combining information 

from the visual, audio, and textual modalities, the model can 

leverage the complementarity of these modalities to achieve a 

more comprehensive understanding of the events in the video, 

thereby improving overall event comprehension. 

2. Multimodal Context Fusion Encoder: A multimodal 

context fusion encoder is designed to integrate temporal 

semantic consistency and multimodal information, capturing 

both local and global context. This improves the coherence, 

fluency, and diversity of the descriptions. Additionally, it 

effectively models the dependencies between events, making 

the generated descriptions more logical and richer. 

3. SCN Decoder for Fine-Grained Description Generation: 

The SCN [6] semantic decoder is used in the decoding phase. 

The SCN decoder enhances the semantic consistency, 

detail-capturing ability, long-term dependency handling, and 

fluency of natural language generation through fine-grained, 

word-by-word generation. It also effectively integrates 

multimodal information, addressing issues such as semantic 

incoherence and imprecise descriptions that are common in 

traditional video captioning methods. 

II. RELATES JOBS 

A. Video captioning 

Early video description techniques primarily relied on 

predefined templates [7], which dominated the field of video 

description research before 2014. These methods initially fed 

videos into detection networks, where classifiers identified 

key elements in the videos, such as objects, actions, and 

scenes, and mapped these elements to basic components of 

sentences, such as subjects, predicates, and objects. 

Subsequently, based on these key elements, relationships 

between words were constructed, and appropriate 

conjunctions were inserted to generate complete natural 

language descriptions. Although this method was simple and 

could quickly produce descriptions, it had significant 

limitations. On one hand, embedded models were typically 

trained for specific topics, and when the topic changed, 

retraining was necessary, limiting their generalization 

capabilities. On the other hand, the setting of templates and 

vocabulary depended on human input, and the description 

generation process was merely the filling in of keywords, 

lacking flexibility and failing to match the expression of 

human natural language. 

With the continuous advancement of research, video 

description methods based on templates have seen significant 

improvements in the precision and efficiency of video feature 

extraction. The rapid development of deep learning has led to 

the introduction of more related technologies, which are used 

to extract richer feature vectors and to process multimodal 

data such as optical flow, RGB images, and text, thereby 

more accurately identifying video content and themes. 

Currently, models based on the encoder-decoder architecture 

have become the mainstream in the field of video description. 

These models, inspired by machine translation, adopt a 

sequence-to-sequence transformation approach. Specifically, 

they first vectorize the features of the video and then use 

trained models to transform these features into descriptive 

natural language. The entire process is roughly as follows: In 

the video feature processing stage, to consider the motion 

information brought by temporal changes, optical flow 

modules are typically introduced or the network structure is 

enhanced with a temporal dimension to handle sequential 

information. Subsequently, Convolutional Neural Networks 

(CNN) are used to extract video features, which are then 

encoded into vectors and passed to the decoder. The decoder 

usually employs a recurrent neural network or a Transformer 

[8] structure, focusing on the contextual relationships of 

video features during language generation. Based on the 

already generated vocabulary, it further guides the generation 

of descriptions, ensuring that the output language is more 

natural and fluent. 

B. Transformer-based video captioning 

In video captioning tasks, the self-attention mechanism of 

Transformer offers significant advantages, particularly in 

capturing the complex spatiotemporal relationships between 

video frames. Unlike traditional video captioning methods 

based on Recurrent Neural Networks (RNNs), Transformer 

can simultaneously process both visual information and 

temporal dynamics of the video. This allows it to effectively 

capture temporal dependencies between frames, resulting in 

more coherent and natural captions. While RNNs often 

struggle with issues like vanishing or exploding gradients 

when processing long sequences, Transformer alleviates 

these challenges through global dependency modeling, 

leading to more stable and fluent video caption generation. 
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In recent years, the application of the Transformer 

architecture in the field of video understanding has garnered 

increasing attention, particularly in the area of multimodal 

learning where significant advancements have been made. 

Models such as VideoBERT [9] and ViLBERT [10] have 

integrated visual and linguistic information, utilizing 

end-to-end training to enable the simultaneous learning of 

visual features from videos and linguistic features from text. 

VideoBERT employs a joint pre-training method combining 

Transformer [8] and BERT [11], while ViLBERT processes 

video and language information through a dual-stream 

architecture, achieving remarkable results in tasks such as 

video description generation and video question answering. 

To more effectively model spatiotemporal information in 

videos, improvement schemes such as TimeSformer [12] 

have proposed the novel idea of separating the temporal 

dimension from the spatial dimension. TimeSformer uses 

independent self-attention mechanisms to model spatial and 

temporal features separately, thereby enhancing the 

efficiency and effectiveness of video processing. Similarly, 

the Video Transformer [13], [14] model, by adopting the 

Transformer architecture, has realized efficient modeling and 

description generation of video content. These innovations 

have demonstrated powerful performance in capturing 

spatiotemporal dependencies, modeling long-term 

dependencies between video frames, and fusing multimodal 

information, enabling the model to provide more accurate, 

smooth, and context-rich natural language descriptions in 

video description generation tasks, especially when dealing 

with long videos, complex scenes, and multimodal tasks. 

In addition to improvements in model architecture, 

researchers have also delved into cross-modal alignment. In 

2021, Chandra Sekhar et al. [15] introduced a multimodal 

attention mechanism that combines visual and linguistic 

information for video description generation, effectively 

addressing the alignment issues between visual information 

and language descriptions. By integrating textual information, 

this approach enhances the accuracy and naturalness of the 

generated descriptions, thus producing more precise and 

coherent descriptions. Furthermore, in 2022, Liu et al. [16] 

proposed a multimodal Transformer model that fuses visual 

and audio information, further enhancing the performance of 

video description generation. This method not only increases 

the diversity of description generation but also improves the 

model's ability to model relationships between different 

modalities, significantly enhancing the overall quality of 

video descriptions. 

To address challenges such as long videos and event 

overlap, many Transformer-based methods have undergone 

significant improvements. During the event proposal stage, 

researchers have developed specialized event proposal 

modules designed to detect key events within a video. These 

modules are often combined with advanced temporal 

dependency modeling techniques, helping to resolve issues 

like event overlap and boundary ambiguity, which can hinder 

accurate event identification [17]. In addition, several 

methods have focused on enhancing the contextual 

relationships between event proposals and the generated 

captions. By ensuring that the captions reflect the logical and 

temporal connections between events, these approaches 

improve the overall coherence and relevance of the generated 

descriptions [18], [19]. Moreover, mutual guidance and 

reinforcement mechanisms, which facilitate the interaction 

between event proposal and event description modules, have 

been widely adopted. These mechanisms help refine the 

accuracy of event detection and caption generation, ensuring 

that the events are both correctly identified and appropriately 

described [20], [21]. To further reduce redundancy and 

improve the diversity of the generated captions, some models 

have refined their event generation strategies, allowing for 

more precise and varied descriptions of the events [22]. 

Collectively, these innovations have significantly advanced 

the performance of dense video captioning tasks, leading to 

more accurate, coherent, and contextually rich descriptions 

that better reflect real-world scenarios. 

 

 

 

 
Fig. 1. The overall structure of the model in this article
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III. MODEL DESIGN 

This study proposes a video captioning model, as shown in 

Figure 1, which consists of three main components: 

multi-feature extraction with temporal alignment, a 

multimodal context fusion encoder, and an SCN decoder. 

Existing models often overlook the importance of textual 

information (e.g., road signs, subtitles) in enhancing event 

understanding, and fail to capture cross-event relationships in 

caption generation. To address these issues, our model 

integrates visual, audio, and textual features using 

multimodal context modeling and cross-modal interactions. 

Visual features are extracted with C3D, audio features with 

VGGish, and textual features through OCR. Temporal 

alignment ensures consistency across modalities. The context 

fusion encoder uses self-attention and AOA attention [23] to 

align and combine features, capturing dependencies between 

events and enhancing contextual understanding. Finally, the 

SCN decoder generates captions word by word, improving 

semantic consistency, logic, and fluency, overcoming the 

limitations of traditional models in handling event 

relationships and semantic expression. 

A. Feature Extraction and Temporal Alignment 

To synchronize the processing of multimodal features and 

ensure the alignment of visual, audio, and textual features on 

the same time scale, this paper proposes an alignment method 

based on sliding windows and temporal interpolation. This 

approach enables the model to capture corresponding 

multimodal information at each time point, providing a solid 

foundation for subsequent feature fusion and caption 

generation. Specifically, visual features (including 

spatio-temporal information), audio features (such as speech 

and background sounds), and textual features (e.g., subtitles, 

road signs, or speech-to-text) are extracted and temporally 

aligned to ensure consistency across modalities. 

1) Visual Feature Extraction and Alignment: In the 

process of visual feature extraction, to capture the 

spatio-temporal characteristics and dynamic information of 

the video, this paper extracts RGB video frames from the 

video at a sampling rate of 25 frames per second  and 

generates optical flow frames using PWC-Net. RGB frames 

are used to capture the static information of the scene and 

objects, while optical flow frames describe the dynamic 

motion characteristics of the objects. To ensure input 

consistency and computational efficiency, the shorter side of 

all frames is resized to 256 pixels, and a central crop is taken 

to obtain a 224×224 image region. 

These processed RGB and optical flow frames are then fed 

into the pre-trained C3D network to extract their 

spatio-temporal features. The C3D model analyzes 

approximately 2.56 seconds of video content (64 frames) and 

generates feature vectors that contain dynamic information, 

represented as: 

 3 ( )t tV C D Frame=  (1) 

 

Where  represents the visual features at time 

t , with 
vn  and 

vd  denoting the temporal steps and the 

dimensionality of the visual features, respectively. Through 

this process, visual features enriched with spatio-temporal 

and motion information are obtained. 

2) Audio Feature Extraction and Alignment: To obtain 

clear and consistent audio features, the audio signal is first 

preprocessed through the following steps: (1) The audio 

signal is resampled to 16kHz mono to ensure consistent 

sampling rate; (2) Noise suppression techniques are applied 

to remove background noise and enhance signal quality; (3) 

A band-pass filter is used to retain the frequency range from 

300 Hz to 3400 Hz, filtering out irrelevant low- and 

high-frequency noise; (4) Dynamic range compression and 

normalization techniques are applied to balance volume 

differences and ensure signal consistency. 

The processed audio signal is then divided into continuous 

segments and transformed into a spectrogram using 

Short-Time Fourier Transform (STFT) to capture frequency 

information. The spectrogram is subsequently converted into 

a 96×96 Mel spectrogram and fed into the pre-trained 

VGGish network to extract high-level audio features, 

represented as: 

 ( ( ( ))rawA VGGish MelSpectrogram STFT Audio=  (2) 

Since the temporal resolution of audio features is usually 

denser than that of visual features, this paper downsamples 

the audio features to match the temporal scale of the visual 

features using average pooling within a sliding window. 

Specifically, considering that the video is sampled at 25 

frames per second, where each frame represents 

approximately 40 milliseconds, and the sampling rate of 

audio features is typically higher, a pooling window size of 

40 milliseconds is used to ensure temporal alignment 

between the audio and visual features. 

In the pooling operation, 4 audio feature points 

(corresponding to a 40-millisecond time window) are 

selected as one pooling window. Through average pooling, 

the audio features are downsampled to match the temporal 

resolution of the visual features. The pooling process is 

represented as: 

 
1( ( : ))t raw nA Polling A t t=  (3) 

Where v an d

tA R


  represents the audio features at time t , 

with 
vn  and 

ad  denoting the temporal step and 

dimensionality of the audio features, respectively. Through 

temporal alignment, the audio features are synchronized with 

the visual features, providing rich information for 

multimodal fusion. 
3) Text Feature Extraction and Alignment: Text 

information in videos, such as subtitles, road signs, billboards, 

etc., typically appears in a scattered form across specific 

frames. To extract this text information and ensure its 

alignment with visual and audio features, this paper utilizes 

Optical Character Recognition (OCR) and a pre-trained 

BERT model for text feature extraction and encoding. The 

processing steps are as follows: 

The text content is detected and extracted from the video 

frames using OCR. The extracted text is then fed into a 

pre-trained BERT model to generate the corresponding text 

embedding vector, represented as: 

 ( ( ))t tT BERT OCR Frame=  (4) 

If no text is detected within a given time window, a zero 

vector is used for padding to maintain temporal alignment. 

This ensures that time periods with and without text are 

clearly distinguished, preventing the inclusion of irrelevant 
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features.Through this process, the text features are aligned 

with the visual and audio features in terms of time.  

Where v tn d

tT R


  represents the text features at time t , 

and 
vn  and 

td  denote the time step and the dimension of the 

text features, respectively. Through the sliding window and 

time interpolation process, the text features are synchronized 

with the visual and audio features, providing semantic 

supplementation for multimodal fusion. 

B. Multi-modal Context Fusion Encoder 

In the task of dense multimodal video captioning, videos 

not only contain rich multimodal feature information (such as 

visual, audio, and textual data) but also harbor complex 

contextual relationships. These pieces of information are 

crucial for generating accurate and coherent descriptions. 

Multimodal features help the model understand the content of 

the current video segment, while contextual relationships 

reveal the connections between different events, further 

enhancing the understanding of the overall scene. To address 

this, we propose a multimodal context fusion encoder, aimed 

at achieving deep fusion of multimodal information through 

cross-modal feature interactions and alignment, as well as 

capturing temporal relationships and semantic interactions 

between events. 

The model is based on an improved Transformer 

architecture, consisting of four components. The first part is 

event feature extraction, which extracts local event features. 

The second part is the self-attention mechanism, which 

encodes the three features separately. The third part is the 

AOA attention mechanism, which integrates event context. 

The fourth part is multimodal information fusion, which 

applies adaptive weighted fusion of visual, audio, and textual 

features to ensure that the weight of each modality is 

automatically adjusted based on its contribution to the current 

task. 

First, the self-attention mechanism is used to encode the 

three types of features separately. In the multimodal encoder, 

visual features serve as the core support, while textual and 

audio features act as semantic auxiliary features to 

complement and enhance the precision of video descriptions. 

The encoder then employs the AOA attention mechanism, 

which centers around the current event and guides the 

contextual information into the current feature, generating a 

contextual feature representation with global semantics. This 

approach not only strengthens the expression of each event 

but also optimizes the logical connections between events, 

helping the model more accurately depict independent events 

when generating descriptions, while improving the coherence 

and consistency of the captions. The structure of the encoder 

is shown in Figure 2. 

 

 

 
 

Fig. 2. The structure diagram of the Multi-modal Context Fusion Encoder 

 

 

 
Fig. 3. The structure diagram of the Event Context Relationship Module
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The core function of the event context relationship module 

is to capture the temporal relationships and semantic 

similarities between different events [24]. To achieve this, 

the module introduces a dual-branch network based on the 

attention mechanism, which separately assesses the temporal 

relationships and semantic associations between events. By 

performing a weighted fusion of these two relationship scores, 

the module effectively integrates global event features, 

generating more accurate and enriched context-enhanced 

event representations that improve the overall event 

representation capability. Figure 3 shows the structure of the 

event context relationship module. 

The temporal relationship primarily focuses on the time 

order and duration of events. For the current event 
iP  and 

other events  jP  in the video, position encoding is applied 

based on their relative distance and time length: 

 , log
i j j

ij

i i

c c l
P

l l

 −  
=   

   
 (5) 

Where 
ic  and jc  epresent the center positions of events 

iP  and  jP , respectively, and 
il  and jl  denote the 

corresponding durations of the events. The term i jc c−  is 

used to represent the temporal order between events, which 

helps distinguish their sequence, as many event annotations 

in video datasets contain temporal order words such as 

"then," "continue," and "end." 

Additionally, to eliminate the influence of the overall 

video duration on the model, the duration of the events is 

normalized to ensure the features are independent of the time 

scale. This normalization process helps the model better 

adapt to video data with varying lengths. 

After position encoding, the low-dimensional vector ijP  

may not have sufficient discriminative power, so a nonlinear 

function is applied to embed ijP  into a high-dimensional 

space, represented as ˆ
ijP , which is then further fed into two 

fully connected (FC) layers to predict the event score. The 

specific formula is as follows: 

 ( )ˆ
ij P ij PP ReLU W P b= +  (6) 

 ( )1 1 1
ˆ
ijh ReLU W P b= +  (7) 

 ( )2 2 2
ˆ
ijh ReLU W P b= +  (8) 

 2ijp S Sa W h b= +  (9) 

Where 
PW , 

1W , 
2W , and 

SW  are weight matrices, while 

Pb , 
1b , 

2b and 
Sb  are bias terms, each corresponding to 

position encoding mapping, high-dimensional space mapping, 

fully connected layer transformations, and score prediction, 

respectively. 

Unlike the temporal relationship, the semantic relationship 

focuses on capturing the similarity between event contents. 

Since video content can be quite lengthy, the semantic 

features of each event must account for both short-term and 

long-term information. To achieve this, an LSTM is used to 

encode all event features into recurrent representations, 

which are then concatenated with the frame features after 

mean pooling to obtain the event's semantic feature 
iS  

Subsequently, the scaled dot-product method is used to 

capture the linear correlations within the semantic space, and 

the semantic relationship score is computed as follows: 

 
( ) ( )

ij

T

Q i K j

s

E

W S W S
a

d
=  (10) 

Where 
QW  and 

KW  are learned linear mapping layers that 

project the semantic features 
iS  and 

jS  into a shared 

embedding space of dimension 
Ed . This method allows the 

model to efficiently capture the semantic similarity between 

event proposals. 

By calculating the temporal and semantic relationship 

scores between events, the context relationship features for 

the current event can be obtained, as expressed by the 

following formula: 

 ( ) ( )( )
ij ijp sscore softmax a X a X=   (11) 

 ( ) ( ) ( )( )
1

pN

i V j

j

Z X score X W S X
=

=    (12) 

Where pN  represents the number of events,
VW  is the 

linear embedding layer, and X  can represent visual, audio, 

or textual features. Using this approach, the context 

relationship features for the current event can be obtained for 

different modalities, including visual context features 
VZ , 

audio context features 
AZ , and textual context features 

TZ .  

In multimodal tasks, effective fusion of local and global 

features is crucial for improving model performance. This 

paper employs the AOA attention mechanism to enhance the 

feature representation of local events by leveraging the 

context relationship features of the current event. The context 

relationship features of the current event are combined with 

event features and passed into the AOA attention mechanism 

layer, where the context relationship features (global visual 

features) serve as keys (K) and values (V), and the event 

features (local features) serve as the query (Q). The attention 

mechanism then integrates the context information with the 

event information to enhance the semantic relevance of the 

local event features. The structure of the AOA attention 

mechanism is shown in Figure 4. Specifically, by calculating 

the correlation information based on the query and attention 

results, an attention gate is generated to control the strength 

of the information flow. Finally, through the multi-head 

attention mechanism, this information is fused to enhance the 

representational capacity of the local event features. 

 
Fig. 3. Attention on Attention 
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First, the standard attention mechanism is used to compute 

the similarity between the current event feature 
currentE  and 

the context event feature 
contextE , yielding a context-based 

weighted average result, as shown in the following formula: 

 ˆ ( , , )context current context contextE Attention E E E=  (13) 

Next, we introduce an information vector 
local globali −

 to 

represent the associative information between the current 

event and the context events. This information vector is 

extracted by applying a linear transformation to the current 

event feature and the attention result, capturing the contextual 

information: 

 ˆi i

local global q current v context ii W E W E b− = + +  (14) 

Where i

qW  and i

vW  are weight matrices, and 
ib  is the bias 

term. Then, an attention gate 
local globalg −

 is computed to 

control the contribution of each part of the information vector 

local globali − . This gate dynamically adjusts the strength of the 

information flow by evaluating the correlation between the 

current event and the context event: 

 ( )ˆg g

local global q current v context gg W E W E b− = + +  (15) 

Where   is the activation function, 
g

qW  and g

vW  are 

weight matrices, and gb  is the bias term. The attention gate 

local globalg −
 and the information vector local globali −

 are 

combined through element-wise multiplication to obtain the 

refined fused information ˆ
local globali −

, as follows: 

 ˆ
local global local global local globali g i− − −=  (16) 

Where  represents element-wise multiplication, 

ensuring that the attention gate dynamically adjusts the 

information based on the contribution of each part. 

Finally, the generated fused information is further 

processed through a multi-head attention mechanism to 

obtain the context-enhanced feature of the current event. This 

step captures multidimensional interactions between event 

features by combining multiple attention heads, as shown in 

the following formula: 

 ( )ˆ ˆ ˆ( , , )current context local globalE X MultHead E E i −=  (17) 

Where MultiHead  denotes the multi-head attention 

mechanism, which can parallelly capture different interaction 

patterns between event features through multiple heads. X  

can represent visual, audio, or textual features. 

We represent the enhanced visual, audio, and textual event 

context features as ( )Ê V , ( )Ê A , and ( )Ê T , respectively. 

To effectively fuse these three modalities, we employ a 

modality-adaptive weighted fusion method. This method 

adjusts the weight of each modality based on its contribution 

to the current task, ensuring that the information from 

different modalities is appropriately emphasized during 

fusion. The formula is as follows: 

 ( ) ( ) ( )ˆ ˆ ˆ
fused V AE E V E A E T  = + +  (18) 

Where fusedE  represents the fused multimodal feature, and 

V , 
A , and 

T  are learnable weight parameters that denote 

the importance of each modality in the final fused feature. 

These weights can be adaptively adjusted during the training 

process to optimize the fusion results. 

C. SCN Decoder 

In the task of video description, traditional recurrent neural 

networks (RNNs) and long short-term memory networks 

(LSTMs) have been widely used to capture the temporal 

dependencies in sequential data. However, these networks 

often fail to fully exploit the interactions and semantic 

information between different modalities when processing 

multimodal information. To address this issue, we employ a 

Semantic Composition Network (SCN) as the decoder and 

introduce multimodal fusion features to further enhance the 

model's ability to express video content. 

At each time step t , the SCN-LSTM decoder updates its 

state through the LSTM unit. We use the multimodal feature 

fusedE  to initialize the LSTM’s hidden state and cell state: 

 0 ( )fusedh LSTM E=  (19) 

Where 
0h  is the initial hidden state of the LSTM, and 

fusedE  is the fused multimodal feature, which includes visual, 

audio, and textual information. At each time step, the LSTM 

updates its state based on the previous hidden state 
1th −
 and 

the current input 
tx . The specific calculations involve 

updating the input gate 
ti , forget gate 

tf , output gate 
to , and 

cell state 
tc , as follows: 

 ( )1t i i i t ii W x U h b −= + +  (20) 

 ( )1t f f f t ff W x U h b −= + +  (21) 

 ( )1t o o o t oo W x U h b −= + +  (22) 

 ( )1tanht c c c t cc W x U h b−= + +  (23) 

 
1t t t t tc i c f c −= +  (24) 

 ( )tanht t th o c=  (25) 

To improve the decoder's understanding of the video's 

semantics, the SCN-LSTM model introduces a semantic 

concept vector s . This semantic concept vector is extracted 

from the annotated text of the video and represents semantic 

information in the video, such as objects, actions, etc. It helps 

the model better understand the specific semantic content of 

the video and guides the decoding process. At each time step, 

the semantic concept vector s  is used to weight the 

parameters of the LSTM, making the decoding process more 

aligned with the video's semantic structure. Through this 

weighting mechanism, the semantic concept vector s  adjusts 

the set of LSTM parameters, thereby influencing the 

decoder's behavior at different time steps and ensuring that 

the generated description is more consistent with the video's 

semantic content and context. The formula is as follows: 

 
1

K

s k k

k

LSTM LSTM
=

=   (26) 

Where 
k  is the weight parameter influenced by the 

semantic concept vector s , used to adjust the influence of 

different LSTM units. 

During the decoding process, the LSTM generates the 

video description based on the multimodal features fusedE  at 

the current time step and the weighted parameters of the 
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semantic concept vector s . By capturing temporal 

dependencies and guiding with semantic information, the 

generated description can accurately and coherently express 

the video's content. 

IV. EXPERIMENTS AND ANALYSIS 

A. Datasets and Evaluation Indicators 

There are many publicly available datasets for video 

captioning, but many of them tend to focus on specific topics 

or scenarios, such as movies, sports, or food. To ensure the 

model's generalization ability and its applicability to a 

broader range of real-world scenarios, this paper selects two 

commonly used video captioning datasets that cover various 

scenes and contexts: the Microsoft Video Description 

(MSVD) [25] and Microsoft Research Video to Text 

(MSR-VTT) [26]. These two datasets offer high diversity and 

a large number of captioning samples, helping the model 

learn richer semantic and visual associations. Specifically, 

the MSVD dataset contains short videos from various 

everyday life scenes, with each video being annotated with an 

average of 41 individual sentences. On the other hand, the 

MSR-VTT dataset provides more diverse long videos with 

richer descriptions, where each video is annotated with about 

20 sentences. The diversity and large number of annotations 

in these datasets make them ideal choices for training and 

evaluating multimodal video captioning models. Table I lists 

the detailed information of these two datasets. 

This paper selects four widely recognized evaluation 

metrics to measure the performance of the proposed method: 

BLEU [27], ROUGE [28], METEOR [29], and CIDEr [30]. 

These metrics are widely used in the field of video 

description generation and can effectively assess the quality 

of generated descriptions. Specifically, the BLEU metric 

measures the accuracy of descriptions by comparing the 

number of common words between the generated text and the 

reference text, focusing on precise word matching. The 

ROUGE metric, similar to BLEU, focuses on assessing the 

lexical overlap at the sentence level but places more emphasis 

on recall, that is, evaluating the completeness of the original 

information covered by the generated text. The METEOR 

metric takes into account both precision and recall, 

evaluating the quality of generated descriptions through 

grammatical structure and semantic similarity, providing a 

more comprehensive evaluation perspective. The CIDEr 

metric is designed based on human evaluation consensus and 

is tailored for image and video description tasks. It can 

accurately reflect the consistency between generated 

descriptions and human evaluations, thereby providing a 

more comprehensive and human-perception-oriented 

evaluation dimension for description quality. 

B. Experimental environment 

The experiments in this paper were conducted on a Linux 

operating system (Ubuntu 20.04 version), using the PyTorch 

deep learning framework for model training. The hardware 

configuration included an Intel Core i9-13900KF CPU paired 

with a Geforce RTX 4060 Ti GPU (16GB VRAM) and 32GB 

of RAM, which was sufficient to support the training of 

large-scale video data. During the training process, the Adam 

optimizer was used with an initial learning rate set at 0.0001, 

combined with L2 regularization (weight decay rate of 

0.0005) to prevent overfitting. The optimizer's momentum 

was set to 0.9 to accelerate convergence. The batch size was 

set to 64 with 5000 iterations. To further prevent overfitting, 

Dropout regularization was applied with a rate of 0.2, 

reducing model complexity and enhancing generalization by 

randomly dropping some connections in the neural network. 

The Transformer encoder was configured with 6 layers, each 

containing 8 self-attention heads, effectively capturing 

long-range dependencies within video frames. The LSTM 

decoder's hidden layer size was set to 512, optimizing the 

video-to-text generation task. Beam Search with a beam size 

of 5 was employed to improve the quality of text generation. 

C. Comparative Experimental Analysis 

To objectively evaluate the video description generation 

model proposed in this paper, we conduct comparative 

experiments with current state-of-the-art video description 

generation models, including POS-CG [31], ORG-TAL [32], 

SAAT [33], NACF [34], and SGN [35], and perform 

evaluations on the same datasets. To comprehensively assess 

the model's performance, we use four common evaluation 

metrics: BLEU, CIDEr, METEOR, and ROUGE-L, to 

quantitatively analyze the generation results of each model. 

The experimental results are summarized in Tables II and III, 

which show the scores of each model on different metrics. 

As shown in Table II, on the MSVD dataset, the proposed 

model outperforms other models in all metrics. The most 

significant improvement is observed in the CIDEr score, 

which increased by 2.5%. CIDEr, specifically designed for 

descriptive tasks, aligns most closely with human judgment, 

thus confirming the effectiveness of the proposed model. 

This demonstrates that incorporating the event context 

enhancement module to capture the temporal and semantic 

relationships between events can significantly improve the 

model's performance.From Table III, it can be seen that on 

the MSR-VTT dataset, all metrics show improvement: 

BLEU-4 increased by 1.3%, METEOR by 1.0%, CIDEr by 

2.3%, and ROUGE by 1.7%. Once again, the significant 

improvement in the CIDEr score indicates that the 

introduction of the multimodal context fusion encoder 

enables a deep integration of visual, audio, and textual 

features, leading to better description performance. 

 
TABLE I 

DATASET DETAILS 

Datase Total Number of Videos Average Duration Common Split Total Vocabulary Conversion from Gaussia 

MSVD 1970 10sec 12000/100/670 607399 13010 

MSR-VTT 10000 20sec 6513/497/2900 1856523 29316 
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TABLE II 
COMPARATIVE RESULTS OF DIFFERENT METHODS ON MSVD DATASET 

Methods BLUE-4 METEOR CIDEr ROUGE 

POS-CG 52.5 34.1 88.7 71.3 

ORG-TAL 54.3 36.4 95.2 73.9 

SAAT 46.5 33.5 81.0 69.4 

NACF 55.6 36.2 96.3 - 

SGN 52.8 35.5 94.3 72.9 

Ours 56.1 37.8 98.8 75.6 

 
TABLE III 

COMPARATIVE RESULTS OF DIFFERENT METHODS ON MSR-VTT DATASET 

Methods BLUE-4 METEOR CIDEr ROUGE 

POS-CG 38.3 26.8 43.4 60.1 

ORG-TAL 43.6 28.8 50.9 62.1 

SAAT 460.5 28.2 49.1 60.9 

NACF 42.0 28.7 51.4 - 

SGN 40.8 28.3 49.5 60.8 

Ours 44.9 29.8 53.7 63.8 

 
 

 
 

 

Fig. 4. Visualization results on MSVD Data 
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Fig. 5. Visualization results on MSR-VTT Data 
 

In this paper's experiments, the standard Transformer 

structure is used as the baseline model. Figures 5 and 6 show 

the visual results of the proposed model (Multimodal Context 

Fusion Based Dense Video Captioning Method, MCF-DVC) 

and the baseline model on the MSVD and MSR-VTT datasets, 

respectively. 

Based on the experimental results above, the model is able 

to accurately identify the subject, object, and verb in the 

sentences, particularly excelling in recognizing the number 

of participants in an activity. For example, it can correctly 

identify "A man" and "An elderly gentleman speaker". This 

further confirms that, under the influence of the multimodal 

context fusion encoder and attention mechanism, the model 

not only accurately identifies and associates the subject and 

object of the activity, but also reasonably infers the number of 

participants in the event. This enhances the semantic 

consistency and accuracy of the generated descriptions. 

These findings suggest that the proposed model possesses 

strong semantic understanding and expressive capabilities in 

the video description task, enabling it to generate descriptions 

that are more aligned with human intuition. 

D. Ablation Experiments 

To validate the rationality and effectiveness of the 

proposed model, this paper conducts ablation experiments 

and uses a controlled variable approach to analyze the 

contribution of each module to the overall performance of the 

model. The experimental results are shown in Tables IV and 

V. The ablation experiments consist of four parts, using the 

standard Transformer structure as the baseline model. A, B, 

and C represent the control experiments based on the baseline 

model, where only text features (such as road signs, subtitles, 

etc.) are fused, only the multimodal context fusion encoder is 

introduced, and only the SCN decoder is used, respectively. 

"Ours" refers to the complete model  proposed in this paper. 

As shown in Tables IV and V, each individually 

introduced module provides some improvement to the model, 

and the combination of all three modules in MCF-DVC 

yields the best performance. From the results, it can be 

observed that models A, B, and C, when compared to the 

baseline model, show improvements in multiple evaluation 

metrics to varying degrees. Notably, the CIDEr (C) score of 

model B shows the most significant improvement, increasing 

by 8.3% and 6.6% on the two datasets, respectively. This 

metric emphasizes the semantic consistency between the 

generated text and multiple reference descriptions, 

confirming that the multimodal context fusion encoder in 

model B effectively considers the matching of context and 

key vocabulary. 

Furthermore, by comparing MCF-DVC with the baseline 

model, the experimental results demonstrate that each 

module proposed in this paper has a significant impact on the 

overall model's performance, validating the synergistic effect 

between different modules. These modules help the model 

better understand the relationships between different 

modalities and capture the subtle connections between events, 

thereby enhancing features and improving the accuracy and 

richness of the generated descriptions. 
TABLE IV 

COMPARISON OF ABLATION EXPERIMENT RESULTS. ON MSVD DATASET 

Methods BLUE-4 METEOR CIDER ROUGE 

Baseline 49.4 33.3 90.0 69.2 

A 50.6 35.8 92.7 71.8 
B 50.9 36.6 98.3 72.0 

C 52.7 34.0 93.5 75.3 

Ours 56.1 37.8 98.8 75.6 

 
TABLE V 

COMPARISON OF ABLATION EXPERIMENT RESULTS. ON MSR-VTT DATASET 

Methods BLUE-4 METEOR CIDER ROUGE 

Baseline 37.4 26.5 46.8 56.6 

A 40.4 27.8 48.1 57.9 
B 40.8 28.6 53.4 58.2 

C 42.7 27.0 49.0 63.7 
Ours 44.9 29.8 53.7 63.8 
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V. CONCLUSION 

This paper proposes a Multimodal Context Fusion-based 

Dense Video Description method, which utilizes OCR 

technology to extract textual information and considers three 

different modalities: video, audio, and text features. This 

approach enhances the model's semantic understanding of 

video content and ensures the temporal consistency of 

multimodal features through sliding window and time 

alignment techniques. Based on this, a multimodal context 

fusion encoder is employed to capture the temporal and 

semantic relationships between events, enabling the deep 

fusion and alignment of multimodal features. Additionally, 

an SCN decoder is used to improve the semantic consistency 

and fluency of the generated descriptions through 

word-by-word generation and fine-grained semantic 

processing. 

In the experimental section, comprehensive experiments 

are conducted on the MSVD and MSR-VTT datasets to 

validate the effectiveness of the proposed Multimodal 

Context Fusion Based Dense Video Captioning method. A 

series of ablation experiments are also performed to further 

analyze the contributions of each module. The experimental 

results show that the proposed model outperforms current 

state-of-the-art models on multiple common evaluation 

metrics, particularly in CIDEr, where the MCF-DVC model 

improves by 2.5% and 2.3% on the two datasets, respectively. 

Moreover, the descriptions generated by the model exhibit 

outstanding semantic consistency and logical coherence, 

capturing the temporal relationships and detailed information 

in the video more accurately. Compared to traditional 

methods, the generated descriptions are more natural, 

coherent, and accurate. 

In future work, we plan to further optimize the model's 

decoding process and explore the integration of 

reinforcement learning to enhance the diversity and creativity 

of generated descriptions. By guiding the model to explore 

more diverse and rich generation paths during training, 

reinforcement learning can better capture long-range 

semantic dependencies. Additionally, we will focus on 

improving the model's inference speed, considering the 

introduction of knowledge distillation techniques to 

compress the complex multimodal model into a lightweight 

version, thereby enhancing its efficiency and real-time 

performance in practical applications. 
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