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Abstract—This paper presents an improved artificial bee
colony (ABC) algorithm, named ABC NPME, to overcome the
limitations of traditional ABC approaches. ABC NPME intro-
duces a novel probability selection mechanism that enhances the
basic ABC’s fitness-based selection. This mechanism considers
not only the fitness values of individuals but also their ability
to improve search efficiency in their vicinity, allowing for the
selection of higher-quality potential solutions. Additionally, we
propose a new movement equation for onlooker bees, derived
from an asymmetric opposite search strategy near the popula-
tion’s optimal solution, which facilitates more effective position
updates. The advantages of ABC NPME include enhanced ex-
ploration, robust performance, adaptability to various optimiza-
tion landscapes, and improved convergence. Comprehensive
numerical experiments validate that ABC NPME outperforms
some existing state-of-the-art optimization algorithms.

Index Terms—Artificial bee colony; Swarm intelligence;
Probability mechanism; Movement equation

I. INTRODUCTION

THE ABC algorithm, introduced in 2005, simulates the
collective intelligence of bee swarms for solving opti-

mization problems [1]. Since then, it has been successfully
applied in various fields. It is important to note that the
selection mechanism within the algorithm significantly af-
fects its performance. Studies indicate that both the selection
mechanism and the movement equation have a substantial
impact on the evolution of populations In these two areas,
researchers have conducted extensive studies. For example,
in the study of selection mechanisms, they have suggested
various strategies to improve the selection of individuals
within the swarm, thereby improving the overall efficiency
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and quality of the algorithm’s solutions [2-9]. (1) Fitness-
based selection: This approach prioritizes individuals with
higher fitness values, increasing the chances of identifying
optimal solutions. While it can improve search efficiency
and typically lead to better solution quality, a strong focus
on fitness can result in premature convergence, limiting
exploration of the search space. (2) Diversity-based selection:
This mechanism promotes population diversity by selecting
high-fitness individuals that are distant from current opti-
mal solutions, thereby preventing premature convergence.
By emphasizing diversity within the swarm, it helps avoid
local optima and enhances the global search capabilities of
the algorithm. However, it may overlook some high-quality
individuals, which can limit the fine-tuning of local optimal
solutions. (3) Dynamic selection: This approach adapts its
strategy based on real-time feedback during the iterative
process, transitioning from random selection to focusing
on high-fitness individuals. This adaptability enhances the
search process, allowing it to accommodate complex problem
dynamics. However, its implementation can be more complex
and may introduce additional parameters and computational
overhead. (4) Heuristic-based selection: This mechanism
uses domain knowledge to prioritize individuals likely to
yield better solutions. By incorporating heuristic insights
into the selection process, it aims to improve the accuracy
and efficiency of individual selection. This approach can
significantly enhance algorithm efficiency, particularly in
complex scenarios. However, its effectiveness may be limited
to specific domains or problems, which could impact its
overall applicability.

Additionally, substantial research is focused on improving
the movement equation [10-19].

Inspired by previous research, this paper proposes a novel
selection mechanism within the framework of ABC. The
proposed mechanism considers not only the fitness values of
individuals but also the frequency with which they have im-
proved potential solutions throughout the optimization pro-
cess. By evaluating both fitness and improvement frequency,
this mechanism aims to promote individuals that consistently
enhance their solution quality. Additionally, based on the
asymmetric opposite search strategy near the population’s
optimal solution, a new movement equation is designed
for onlooker bees to determine their new positions. The
advantages of this new algorithm are summarized as follows:

(1) Enhanced Exploration: By considering the improve-
ment frequency, the algorithm retains individuals who con-
tinuously contribute to the enhancement of solutions, helping
to maintain a diverse population and reducing the likelihood
of premature convergence.
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(2) Robust Performance: The dual evaluation criteriałfit-
ness and improvement potentialłallow for a more compre-
hensive assessment of individuals, potentially leading to the
discovery of higher-quality solutions.

(3) Adaptability: This enhanced selection mechanism adds
flexibility to the algorithm, enabling it to adapt more ef-
fectively to various optimization landscapes by balancing
exploration and exploitation.

(4) Improved Convergence: By rewarding individuals that
exhibit a pattern of improvement, the algorithm is likely to
converge towards optimal solutions more reliably, resulting
in a stable and efficient optimization process.

The rest of this paper is organized as follows: Section II
introduces the basic ABC process, while Section III provides
detailed insights into ABC NPME. Section IV discusses the
experiments and their results, and Section V presents the
conclusions and outlines directions for future work.

II. BASIC ABC ALGORITHM

In the basic ABC, there are three types of bees: employed
bees, onlooker bees, and scout bees. Employed and onlooker
bees each make up half of the colony size Sn, with each
employed bee corresponding to one food source. Each type
of bee has distinct roles and responsibilities. Employed bees
explore the search space and record food source locations,
sharing this information with onlooker bees, which then
select food sources based on the received data. When a
food source is exhausted, the employed bee transitions into
a scout bee and begins searching for new food sources. The
main steps of ABC are outlined below. Assume that the
dimensionality of the search space is D.

(1) Initialization
The initial step is to initialize the population by generating

a random population of food sources using Equation (1):

xji = lji + rand(0, 1)× (uji − l
j
i ), (1)

where the upper bound and lji (j = 1, · · · , D) denotes the
lower bound for the i-th food source(i = 1, · · · , Sn).

(2) Employed bee phase
During this phase, Equation (2) below is used to search

near the existing solution:

vji = xji + rand(0, 1)× (xji − x
j
k), (2)

where k ∈ {1, · · · , Sn}(k 6= i), and j ∈ {1, · · · , D} are
randomly selected indices.

Next, the fitness value of the new solution is determined
by Equation (3):

fit(vi) =

{ 1
1+f(vi)

, if f(vi) ≥ 0

1 + |f(vi)|, if f(vi) < 0.
(3)

The current solution is updated based on the fitness value
by a greedy rule: if fit(vi) > fit(xi), set xi = vi, fit(xi) =
fit(vi).

(3) Onlooker bee phase
Onlooker bees begin their task after the employed bee

phase is complete. During this phase, each onlooker bee
selects a food source based on the quality information derived
from the food sources indicated by the employed bees.
Equation (4) calculates the probability of selecting these

sources, with a higher fitness value corresponding to a greater
likelihood of selection.

p1i =
fit(xi)

Sn∑
i=1

fit(xi)

. (4)

(4) Scout bee phase
If a food source remains unchanged for a specified number

of iterations, denoted as limit, it is considered exhausted.
Subsequently, the employed bee transitions to a scout bee
and randomly generates a new food source within the search
area using Equation (1).

The framework of the ABC is outlined in Algorithm 1
below.

Algorithom 1. Basic ABC
01. Given the population size Sn, the upper limit for

iterations MaxIt, and the given threshold limit.
02. Generate the initial population {xi|i = 1, · · · , Sn}.

Compute the function values of the population
{f(xi)|i = 1, · · · , Sn}, the fitness of the population
{fit(xi)|i = 1, · · · , Sn}, and determine the best
solution xbest.

03. When the stopping criterion is not met do
04. For i = 1 to Sn do
05. Employed bees use (2) to obtain the new

candidate vi.
06. If fit(vi) > fit(xi)

07. set xi = vi, fiti = fit(vi)

08. End if
09. End for
10. For i = 1 to Sn do
11. Select the food source by the probability p1i ,

and search the candidate near the food source
for each onlooker bee according to (2).

12. Identify new food sources by the greedy rule.
13. End for
14. For the ith food source, if it remains unchanged for

the set number of iterations limit, obtain a new
candidate according to (1).

15. Set it = it+ 1.
16. End when
17. Output the final result.

III. THE PROPOSED ABC (ABC NPME)

As previously noted, the basic ABC algorithm relies solely
on the fitness-based probability determined by Equation (4)
to select search individuals and uses Equation (2) to gen-
erate new solutions for the onlooker bees. This probability
selection mechanism may cause the algorithm to become
trapped in local optima. Additionally, the movement equation
in the basic ABC algorithm employs a unit search strategy,
resulting in slow convergence rates.

To address these limitations, this paper introduces two
improvement strategies: (1) newly designed probability selec-
tion mechanism and (2) a movement equation that adopts a
multidimensional search approach to determine food sources.
The detailed processes are outlined as follows.
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A. Improvement strategy 1: the new probability selection
mechanism

In the onlooker bee phase, let us assume that the i-th
food source, denoted as xi, is selected. We use Num(i)
to record the improvements observed by the onlooker bees
while searching at the i-th food source, and vi represents the
new food source generated near xi. Initially, Num(i) is set
to 0. After generating the new food source vi, Num(i) is
updated according to the following formula:

Num(i) =

{
Num(i) + 1 if f(vi) < f(xi),
Num(i) else.

In the scout phase, if the i-th food source is discarded, its
corresponding Num(i) is reset to 0. After completing one
iteration, a new probability, denoted as p2i , is defined based
on Num(i) as follows:

p2i =
Num(i)

Sn∑
i=1

Num(i) + 0.01

. (5)

According to Equation (5), it can be observed that the more
times a new solution is improved after selecting the food
source xi, the larger the corresponding p2i value becomes.
To identify food sources with favorable fitness values and
those that can be further improved after the search, this study
proposes a novel probability selection mechanism based on
p1 and p2:

pi = (1− it

MaxIt
)× p1i +

it

MaxIt
× p2i . (6)

where it represents the current iteration count.
From (6), it can be seen that in the early stage of the

algorithm, the probability proportion of p1i is relatively high.
As the algorithm iterates, the proportion of p2i increases. In
other words, during the initial stages, the algorithm tends
to choose individuals with better fitness values as search
targets, while in the later stages, it tends to select food
sources with more improvement instances as search targets.
Therefore, this probability selection mechanism demonstrates
good adaptability.

B. Improvement strategy 2: the new movement equation

After selecting food sources that require further search
based on the new probability, it is necessary to generate
a new location in some way. This paper proposes a new
search equation with multidimensional changes. The detailed
process is given below.

Assume that xbest is the optimal position of the current
population and xi is the selected food source to be further
searched. a new position vi is obtained as follows: for j ∈
{1, 2, · · · , D}, if rand < MR, set

η = lj + (uj − xbest,j),
vji = xjbest + rand× (rand× η − xjbest),

(7)

where MR is defined as:

MR = exp(− it

MaxIt
)×MRmax.

Here, MRmax denotes the initial value, which is set to 0.5 in
this paper. According to the definition of MR, it is evident
that the initial MR of the algorithm is relatively large, and as

the iteration progresses, MR gradually decreases. Therefore,
this strategy enhances the algorithms global search capability
in the earlier stages while gradually strengthening its local
search in the later stages.

After obtaining the new location vi, update the food source
location using the following greedy rule: if f(vi) < f(xi),
set

xi = vi, Num(i) = Num(i) + 1.

The following presents the pseudo-code for the proposed
algorithm ABC NPME:

Algorithom 2. ABC NPME
01. Given the population size Sn, the upper limit for

iterations MaxIt, and the given threshold limit.
02. Generate the initial population {xi|i = 1, · · · , Sn}.

Compute the function value of the population {f(xi)|
i = 1, · · · , Sn}, the fitness of the population
{fit(xi)|i = 1, · · · , Sn}, and determine the best
solution xbest.

03. When the stopping criterion is not met do
04. For i = 1 to Sn do
05. Employed bees use (2) to obtain the new

candidate vi.
06. If fit(vi) > fit(xi)
07. set xi = vi, fiti = fit(vi)
08. End if
09. End for
10. Calculate pi according to (6).
11. For i = 1 to Sn do
12. Select the food source by the probability pi,

and search the candidate near the food source
for each onlooker bee according to (7).

13. Identify new food sources in a greedy way.
14. End for
15. For the ith food source, if it remains unchanged for

the set number of iterations limit, obtain a new
candidate according to (1).

16. Set it = it+ 1.
17. End when
18. Output the final result.
The flowchart of ABC NPME is shown in Figure 1. 

 

Start  Initialized the population and parameters  

While   𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 Employed bees use (2) to obtain the new candidate 𝑣𝑣𝑖𝑖,  
and update the position according to greedy rule 

Calculate 𝑝𝑝𝑖𝑖  according to (6), and select the food 
source by the probability 𝑝𝑝𝑖𝑖 

Onlooker bees search the candidate near the food 
sourceaccording to (7), and identify new food 
sources in a greedy way 

         

For the 𝑖𝑖 -th food source, if it 
remains unchanged for the set 
number of iterations 𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖, obtain 
a new candidate according to (1) 

Yes 

𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖 + 1 

End 
No 

Figure 1: The flowchart of ABC NPME
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IV. NUMERICAL EXPERIMENTS

To evaluate the performance of the ABC NPME algorith-
m, we tested it alongside six variants of the ABC algorithm:
GABC [20], GBABC [21], KFABC[22], LFABC[23], AABC
[24], and NABC [25] on 16 benchmark functions and two
practical problems. The experiments were carried out on a
computer equipped with an Intel (R) Core (TM) i7-6500U
CPU running at 2.50 GHz, 8 GB of RAM, and Windows 10
operating system, utilizing Matlab 2017a for implementation.

A. Test on Benchmark functions

1) Benchmark functions: Table I presents the 16 bench-
mark functions used in this study. In this table, D denotes the
dimensions, Range indicates the bounds of the search space,
and f(x∗) represents the global minimum values for each
function. Among these benchmark functions, f1 to f10 are
unimodal functions, with f9 identified as a discontinuous step
function, and f10 as a noisy quadratic function. In contrast,
f11 to f16 are multimodal functions.

TABLE I: Benchmark test functions

Functions Range Optimal value

f1 =
D∑

i=1

x2
i [-100,100] 0

f2 =
D∑

i=1
| xi | +

D∏
i=1
| xi | [-10,10] 0

f3 =
D∑

i=1

(
i∑

j=1

xj)
2 [-100,100] 0

f4 = max{| xi |, 1 ≤ i ≤ D} [-100,100] 0

f5 =
D∑

i=1

ix2
i [-10,10] 0

f6 =
D∑

i=1

ix4
i [-1.28,1.28] 0

f7 =
D∑

i=1
| xi |(i+1) [-1,1] 0

f8 =
D∑

i=1

(106)
i−1
D−1 x2

i [-100,100] 0

f9 =
D∑

i=1

(bxi + 0.5c)2 [-1.28,1.28] 0

f10 =
D∑

i=1

ix4
i + random[0, 1) [-1.28,1.28] 0

f11 =
D∑

i=1
(x2

i − 10 cos(2πxi) + 10) [-5.12,5.12] 0

f12 = −20 exp(−0.2 ∗

√
D∑

i=1
x2
i /D)

− exp( 1
D

D∑
i=1

cos(2πxi)) + 20 + e [-32,32] 0

f13 = 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos(
xi√
i
) + 1 [-600,600] 0

f14 = 0.5 +

sin(

√√√√ D∑
i=1

x2
i
)2−0.5

(1+0.001
D∑

i=1
x2
i
)2

[-100,100] 0

f15 = 1
D

D∑
i=1

(x4
i − 16x2

i + 5xi) [-5,5] -78.3323

f16 =
∑D

i=1 | xisin(xi) + 0.1xi | [-10,10] 0

To ensure a fair comparison, each algorithm is executed
independently 30 times for each problem, utilizing a popula-
tion size of 30. The maximum number of iterations is set to
3000, serving as the termination criterion. Other parameters
are consistent with those recommended for the comparison
algorithms. The results of these comparisons are presented
in Tables II and III.

2) Comparison results: When comparing the seven al-
gorithms across multiple performance metrics-Min, Mean,

and Std-it is evident that each algorithm has its strengths
and weaknesses depending on the function evaluated. From
Table II, it is evident that ABC NPME achieves optimal
values for nearly all test functions, accounting for 93% of
the total. For f9, all tested algorithms demonstrate identical
performance. For functions f1 and f2, ABC NPME, GABC,
GBABC, AABC and NABC all achieve the optimal value
and exhibit good performance. In comparison, KFABC and
LFABC exhibit poorer performance. For functions f3 to f8,
f10, f12 to f14, and f16, ABC NPME demonstrates the best
performance. However, for function f15, the performance of
ABC NPME is not satisfactory, and its results are slightly
worse than those of the other algorithms.

TABLE II: Optimal results obtained by ABC NPME,
GABC, GBABC, KFABC, LFABC, AABC and NABC

Function Algorithm Min Mean Std
f1 ABC NPME 0 0 0

GABC 0 0 0
GBABC 0 0 0
KFABC 9.71E-154 6.98E-13 2.21E-12
LFABC 5.12E-124 8.74E-108 2.29E-107
AABC 0 0 0
NABC 0 0 0

f2 ABC NPME 0 0 0
GABC 0 0 0
GBABC 0 0 0
KFABC 1.34E-48 1.37E-08 3.44E-08
LFABC 1.47E-83 2.30E-75 6.19E-75
AABC 0 0 0
NABC 0 0 0

f3 ABC NPME 0 0 0
GABC 3.13E+3 5.07E+3 1.19E+3
GBABC 2.57E+2 2.39E+3 1.72E+3
KFABC 3.62E+2 1.01E+4 2.74E+3
LFABC 1.76E+3 5.0E+3 2.77E+3
AABC 5.05E+3 7.40E+3 1.47E+3
NABC 2.18E+3 4.40E+3 1.20E+3

f4 ABC NPME 0 0 0
GABC 3.39E-1 6.39E-1 1.69E-1
GBABC 5.21E-3 1.20E-2 6.87E-3
KFABC 6.29E-2 1.27E-1 4.61E-2
LFABC 1.95E-1 2.42E-1 3.11E-2
AABC 2.37E-1 3.59E-1 5.49E-2
NABC 2.30E-1 2.91E-1 4.34E-2

f5 ABC NPME 0 0 0
GABC 1.27E-57 2.31E-56 2.15E-56
GBABC 4.64E-63 2.10E-59 4.86E-59
KFABC 8.01E-75 1.56E-09 3.79E-09
LFABC 3.54E-71 1.89E-70 2.03E-70
AABC 8.34E-86 8.08E-83 1.17E-82
NABC 3.94E-81 1.56E-79 2.88E-79

f6 ABC NPME 0 0 0
GABC 2.34E-122 1.00E-119 2.71E-119
GBABC 4.91E-98 2.39E-95 5.28E-95
KFABC 4.77E-216 3.42E-20 1.08E-19
LFABC 1.76E-147 1.67E-144 1.65E-144
AABC 7.83E-169 5.89E-162 1.86E-161
NABC 4.17E-164 9.82E-162 9.94E-162

f7 ABC NPME 0 0 0
GABC 8.87E-85 2.52E-78 7.97E-78
GBABC 1.39E-190 5.88E-180 0
KFABC 2.46E-71 8.53E-09 1.79E-08
LFABC 4.18E-107 2.16E-101 6.15E-101
AABC 1.64E-102 4.86E-90 1.54E-89
NABC 1.39E-145 3.35E-135 1.06E-134

f8 ABC NPME 0 0 0
GABC 1.73E-43 9.44E-42 1.25E-41
GBABC 1.52E-67 4.43E-61 7.74E-61
KFABC 2.48E-36 5.27E-07 1.14E-06
LFABC 3.08E-64 4.93E-63 7.05E-63
AABC 8.87E-81 7.85E-79 1.38E-78
NABC 2.24E-73 4.12E-71 8.04E-71

To visually demonstrate the performance of different al-
gorithms on functions f1 to f16, we have plotted boxplots
for each algorithm (See Figures 2 to 5). In Figures 2-5, the
numbers 1,2,3,4,5,6 and 7 represent ABC NPME, GABC,
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TABLE III: Optimal results obtained by ABC NPME,
GABC, GBABC, KFABC, LFABC, AABC and NABC

Function Algorithm Min Mean Std
f9 ABC NPME 0 0 0

GABC 0 0 0
GBABC 0 0 0
KFABC 0 0 0
LFABC 0 0 0
AABC 0 0 0
NABC 0 0 0

f10 ABC NPME 7.81E-07 2.18E-05 1.82E-05
GABC 2.78E-2 3.56E-2 4.63E-3
GBABC 5.34E-3 1.19E-2 4.07E-3
KFABC 1.26E-3 3.88E-3 1.79E-3
LFABC 2.07E-2 4.18E-2 1.79E-2
AABC 2.65E-2 5.15E-2 1.58E-2
NABC 2.94E-4 4.96E-4 1.72E-4

f11 ABC NPME 0 0 0
GABC 0 0 0
GBABC 0 0 0
KFABC 0 5.49E-4 1.37E-3
LFABC 0 2.07E-14 6.51E-14
AABC 0 0 0
NABC 0 0 0

f12 ABC NPME -8.88E-16 -8.88E-16 0
GABC 2.75E-14 3.18E-14 3.67E-15
GBABC 6.22E-15 7.63E-15 2.48E-15
KFABC 2.04E-14 9.61E-2 2.17E-1
LFABC 3.11E-14 3.49E-14 4.25E-15
AABC 2.04E-14 2.36E-14 3.11E-15
NABC 2.66E-15 2.66E-15 0

f13 ABC NPME 0 0 0
GABC 1.85E-3 2.57E-3 7.32E-4
GBABC 4.33E-3 9.84E-3 4.62E-3
KFABC 1.05E-4 4.72E-2 1.48E-1
LFABC 1.67E-3 2.65E-3 7.24E-4
AABC 8.44E-06 2.56E-05 1.43E-05
NABC 1.14E-3 2.15E-3 8.11E-4

f14 ABC NPME 0 0 0
GABC 2.27E-1 2.98E-1 3.67E-2
GBABC 3.72E-2 6.58E-2 1.97E-2
KFABC 9.72E-3 1.26E-1 6.56E-2
LFABC 2.28E-1 3.24E-1 6.23E-2
AABC 7.82E-2 3.10E-1 8.70E-2
NABC 2.81E-2 4.04E-2 1.36E-2

f15 ABC NPME -78.32 -78.32 2.70E-3
GABC -78.33 -78.33 1.25E-14
GBABC -78.33 -78.33 3.07E-14
KFABC -78.33 -78.33 3.14E-09
LFABC -78.33 -78.33 1.34E-14
AABC -78.33 -78.33 1.64E-14
NABC -78.33 -78.33 2.27E-14

f16 ABC NPME 0 0 0
GABC 1.73E-12 3.03E-9 6.23E-9
GBABC 1.34E-36 5.12E-12 1.59E-11
KFABC 1.39E-33 7.40E-05 1.22E-04
LFABC 2.42E-19 3.86E-07 8.15E-07
AABC 1.17E-44 6.11E-17 1.93E-16
NABC 3.87e-17 9.05E-13 2.21E-12

GBABC, KFABC, LFABC, AABC, and NABC, respectively.
From Figures 2-5, it is clear that the optimal values and
stability of ABC NPME rank first, except for function f15,
which aligns with the results presented in Table I.

In addition, we conducted a Friedman test on the com-
parative algorithms, and the resulting Friedman scores are
shown in Table IV. The results indicate that, except for
f15, ABC NPME achieves the best Friedman scores. For
function f15, the Friedman score of ABC NPME is 7, which
is the worst among all algorithms. This suggests that the
performance of ABC NPME needs to be further improved
for function f15. To demonstrate the average Friedman score
of different algorithms across all functions, we have drawn a
bar chart (See Figure 6). As shown in Figure 6, the average
score of ABC NPME is 2.0, significantly better than that of
the other algorithms.

B. Test on two practical problems
In the engineering domain, numerous practical challenges

can be simplified to optimization problems that are modeled
mathematically. Practical evidence indicates that incorporat-
ing intelligent algorithms into engineering optimization can
effectively address various complex issues, yielding signifi-
cant economic and social benefits. In this section, to further
demonstrate the effectiveness of ABC NPME, we apply it to
two engineering challenges: tension-pressure spring design
and welded beam design. We then compare the optimal
solutions achieved by ABC NPME with those obtained using
other intelligent algorithms.

1) Tension-pressure spring design problem: The structural
design of tension-pressure springs (See Figure 6) primarily
focuses on minimizing the spring’s weight while adhering to
a set of constraint conditions. These constraints include min-
imum deflection, shear stress, surge frequency, and restric-
tions on the outer diameter, as well as the design variables.
Specifically, there are three design variables involved: coil
diameter of spring (d(x1)), average diameter of spring coil
(D(x2)), and the effective number of circles (P (x3)).
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Figure 2: Boxplot for different algorithms on f1 − f4
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Figure 3: Boxplot for different algorithms on f5 − f8
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Figure 4: Boxplot for different algorithms on f9 − f12
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Figure 5: Boxplot for different algorithms on f13 − f16

TABLE IV: Friedman scores of IMABC, GABC, GBABC,
KFABC, LFABC, AABC and NABC for each function

Function ABC NPME GABC GBABC KFABC LFABC AABC NABC

f1 3.0 3.0 3.0 6.7 6.3 3.0 3.0

f2 3.0 3.0 3.0 7.0 6.0 3.0 3.0

f3 1.0 4.5 2.4 6.7 3.9 5.7 3.8

f4 1.0 6.9 2.0 3.0 4.2 5.9 5.0

f5 1.0 6.2 5.2 6.4 4.2 2.0 3.0

f6 1.0 5.1 6.2 6.4 4.1 2.2 3.0

f7 1.0 6.0 2.0 7.0 4.0 5.0 3.0

f8 1.0 6.0 4.5 7.0 4.5 2.0 3.0

f9 4.0 4.0 4.0 4.0 4.0 4.0 4.0

f10 1.0 5.7 4.0 3.0 5.8 6.5 2.0

f11 3.5 3.5 3.5 6.4 4.1 3.5 3.5

f12 1.0 5.45 3.0 6.45 5.95 4.15 2.0

f13 1.0 5.0 6.9 3.4 5.1 2.0 4.6

f14 1.0 5.6 2.9 3.9 6.1 6.2 2.3

f15 7.0 3.0 5.05 2.8 3.7 2.95 3.5

f16 1.0 6.0 3.3 6.4 3.9 2.1 4.3
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Figure 6: The average Friedman scores of different algo-
rithms

The optimization problem can be formulated as follows:

min f(x) = (x3 + 2)x2x
2
1

subject to

g1(x) = 1− x32x3
71785x41

≤ 0,

g2(x) =
4x22 − x1x2

12566(x2x31 − x41)
+

1

5108x21
− 1 ≤ 0,

g3(x) = 1− 140.45x1
x22x3

≤ 0,

g4(x) =
x1 + x2
1.5

− 1 ≤ 0,

where
0.05 ≤ x1 ≤ 2,
0.25 ≤ x2 ≤ 1.3,
2 ≤ x3 ≤ 15,

Figure 6 Tension-pressure spring design problem

For this optimization problem, each algorithm is run
independently 30 times. The best solutions obtained by the
different algorithms are presented in Table V.

TABLE V: Optimal results obtained by ABC NPME,
GABC, GBABC, KFABC, LFABC, AABC and NABC

Optimum ABC NPME GABC GBABC KFABC LFABC AABC NABC
x1 0.0519 0.1362 0.0748 0.0603 0.0510 0.0575 0.0505
x2 0.3628 1.2754 1.1608 0.6030 0.3397 0.5101 0.3286
x3 10.9388 11.8539 4.7075 4.3427 12.4166 6.2172 13.1530
f(x) 0.0127 0.0127 0.1313 0.0127 0.0129 0.0139 0.0127

As illustrated in Table V, for the tension-pressure spring
design problem, ABC NPME outperforms the other algo-
rithms by identifying the optimal solution and achieving the
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highest objective function value. Consequently, ABC NPME
demonstrates superiority in addressing this problem.

2) Welded beam design problem: The object of this prac-
tical problem is to minimize the manufacturing cost of the
welded beam while adhering to constraints related to shear
stress(τ ), end deflection of the beam(δ), buckling load on the
bar (Pc), and bending stress(σ). Additionally, there are four
design parameters: h(x1), l(x2), t(x3), and b(x4), as shown
in Figure 7.

The optimization problem can be stated as follows:

min f(x) = 1.10471x21x2 + 0.04811x3x4(14.0 + x2)

subject to

g1(x) = τ(x)− τmax ≤ 0,
g2(x) = σ(x)− σmax ≤ 0,
g3(x) = x1 − x4 ≤ 0,
g4(x) = 0.10471x21 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0,
g5(x) = 0.125− x1 ≤ 0,
g6(x) = δ(x)− δmax ≤ 0,
g7(x) = P − Pc ≤ 0,

where

τ(x) =
√
(τ ′)2 + 2τ ′τ ′′ x2

2R + (τ ′′)2,
τ ′ = P√

2x1x2
,

τ ′′ = MR
J ,

M = P (L+ x2

2 ),

R =

√
x2
2

4 + (x1+x3

2 )2,

J = 2[
√
2x1x2(

x2
2

12 + (x1+x3

2 )2)],
σ(x) = 6PL

x4x2
3
,

δ(x) = 4PL3

Ex3
3x4

,

Pc =
4.013E

√
x2
3x6

4
36

L2 (1− x3

2L

√
E
4G ),

P = 6000lb, L = 14in, E = 30e6psi,
G = 12e6psi, τmax = 13600psi,
σmax = 3000psi, δmax = 0.25in,
0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0,
0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4 ≤ 2.0.

Figure 7. Welded beam design problem.

The optimal solutions and values achieved by each algo-
rithm are presented in Table VI. The minimum cost data
indicate that ABC NPME outperforms all other competing
algorithms.

V. CONCLUSION

In this paper, we presented an enhanced ABC algorithm,
ABC NPME, which combines the information from selected

TABLE VI: Optimal results obtained by ABC NPME,
GABC, GBABC, KFABC, LFABC, AABC and NABC

Optimum ABC NPME GABC GBABC KFABC LFABC AABC NABC
x1 0.2054 0.2279 1.1129 0.1993 0.2975 0.2250 0.2035
x2 3.2415 2.9119 4.7328 3.4006 2.7278 3.1078 3.2933
x3 9.0358 8.8740 -4.9098 9.0315 7.4561 8.5517 9.0172
x4 0.2058 0.2776 1.1565 0.2060 0.3125 0.2068 0.2068
f(x) 1.6930 1.8823 2.5104 1.6994 1.9180 2.9905 1.6995

individuals to design a new probability selection mecha-
nism, and proposed an adaptive movement equation based
on multidimensional variation for onlooker bees. Numerical
experiments demonstrated effectiveness of ABC NPME. In
the future, we will apply ABC NPME to solve more complex
practical problems
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