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Abstract - Pattern recognition is a very important topic in 

computer vision. Among existing methods, which one is the 

most robust to noise? This is a very interesting question to 

answer. In this paper, we compare fifteen different methods 

for pattern recognition under different noise levels and 

different rotation angles. Most of these methods are 

invariant to translation, rotation, and scaling of the pattern 

images. Our experiments demonstrate that the Ridgelet + 

FFT (fast Fourier transform) descriptor is the most robust 

to additive Gaussian white noise (AGWN) for both a printed 

Chinese character dataset and an aircraft dataset. In 

addition, the Zernike moments and the Radon transform + 

FFT2 descriptor are also relatively robust to noise, but they 

are not as good as the Ridgelet + FFT descriptor for pattern 

recognition. We also compare the CPU (central processing 

units) computational time for all these methods for both 

pattern datasets. 

 

Index Terms - Pattern recognition; ridgelet transform; fast 

Fourier transform (FFT); discrete wavelet transform 

(DWT). 

 

I. INTRODUCTION 

Pattern recognition is an extremely important research topic in 

today’s computer vision applications. We briefly review several 

existing methods for pattern recognition here. Chen and Bui [1] 

proposed invariant Fourier-wavelet descriptor for pattern 

recognition. It polarizes the pattern image first, and then 

performs 1D discrete wavelet transform (DWT [2]) along the 

radial direction and the fast Fourier transform (FFT [3]) along 

the angle direction. The finally extracted features are invariant 

to the rotation of the pattern images. Khotanzad. and Hong [4] 

investigated invariant image recognition by Zernike moments. 

This method is very robust to additive Gaussian white noise for 

pattern recognition. Chen and Krzyzak [5] studied invariant 

pattern recognition with log-polar transform and dual-tree 

complex wavelet-Fourier features. Chen et al. [6] investigated 

rotation invariant feature extraction using ridgelet and Fourier 

transforms. The ridgelet transform performs the Radon 

transform first, and then the DWT along the radial direction. 

We conduct the FFT along the angle direction so that it is 

rotation invariant. Tang et al. [7] invented ring-projection-

wavelet-fractal signatures: a novel approach to feature 

extraction. This method converts the patterns from 2D images 

to 1D signal, which is very fast in CPU computational time. Yin 

et al. [8] analyzed deep learning-aided OCR techniques for 

Chinese uppercase characters in the application of internet of 

things. Buoy et al. [9] studied toward a low-resource non-Latin-

complete baseline to explore Khmer optical character 

recognition. Wu et al. [10] proposed a two-level rectification 

attention network for scene text recognition. Huang et al. [11] 

proposed a new approach for character recognition of multi-

style vehicle license plates. Coquenet et al. [12] studied end-to-

end handwritten paragraph text recognition using a vertical 

attention network. Xue et al. [13] proposed an image-to-

character-to-word transformer for accurate scene text 

recognition. 

    In this paper, we study fifteen different methods for pattern 

recognition under different noise levels and different rotation 

angles. Most of these methods are invariant to translation, 

rotation, and scaling of the pattern images. Our experiments 

show that the Ridgelet + FFT method is the most robust to 

additive Gaussian white noise (AGWN)  for both a printed 

Chinese character dataset and an aircraft dataset. Furthermore, 

the Zernike moments and the Radon transform + FFT2 

descriptor are also relatively robust to noise, but they are not as 

good as the Ridgelet + FFT descriptor for pattern recognition. 

We also compare the CPU computational time for all fifteen 

methods for both a printed Chinese character dataset and an 

aircraft dataset. 

    The organization of this paper is given as follows. Section II 

briefly outlines fifteen existing pattern recognition algorithms. 

Section III performs some experiments to compare different 

algorithms for pattern recognition under noisy environment. 

Finally, Section IV concludes the paper and proposes future 

research directions. 

 

II. PROPOSED STUDY 

In this paper, we investigate which of the existing pattern 

recognition methods is the most robust to AGWN. We study 

fifteen methods in this paper, which are mostly rotation 

invariant to input pattern images. The translation and scaling 

invariance can be achieved by normalization techniques. The 

following fifteen methods are frequently used in today’s pattern 

recognition tasks. We briefly summarize them as follows: 

 

A. Center projection + dual-tree complex wavelet 

transforms (DTCWT [14]) + FFT. The center 

projection sums all pixels from the image centre to the 
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boundary along a line segment. We normalize the 

center project signal to have unit absolute sum. The 

DTCWT transform has the approximate shift invariant 

property, which is very important in pattern 

recognition. Furthermore, the FFT spectra are 

invariant to spatial shifts as well. 

B. Center projection + FFT. We extract center projection 

first and then one dimensional FFT is applied to the 

center projection signal to extract rotation invariant 

features. The translation and scaling variance can be 

eliminated by standard normalization techniques. 

C. Fourier- DWT descriptor [1]. It polarizes the pattern 

image, and then performs 1D DWT along the radial 

direction and the FFT along the angle direction. The 

finally extracted features are invariant to the rotation 

of the pattern images. The translation and scaling 

variance can be eliminated by standard normalization 

techniques. 

D. Zernike Moments [4] are extracted from 2D images. 

These features are rotation invariant and relative noise 

robust. Zernike polynomials are an orthogonal basis 

set, which is a certain weighted average of the image 

pixels’ intensities, usually chosen to have some 

attractive property or interpretation. 

E. Line moments + DTCWT + FFT. The line moments 

are defined as the sum of the product of the radial 

distance from the pattern center with the pixel 

intensity. We normalize the line moment signal to 

have unit absolute sum. One dimensional DTCWT and 

FFT are applied to the line moments to extract 

multiresolution and rotation invariant features. 

F. Line moments + FFT. We extract line moments first 

and then one dimensional FFT is applied to the line 

moment signal to extract rotation invariant features. 

The translation and scaling variance can be eliminated 

by standard normalization techniques. 

G. Log-Polar transform. It converts the rotation and 

scaling factor from the original pattern image into 

spatial shifts in the log-polar domain, which is 

convenient for latter pattern recognition tasks.  

H. Log-Polar + DTCWT + FFT2 [5]. We compute the 2D 

log-polar features first. Two dimensional DTCWT and 

FFT2 are then applied to the log-polar image to extract 

multiresolution and shift invariant features. This 

method extracts rotation and scaling invariant features 

from the pattern images. 

I. Log-Polar + FFT2. We compute the 2D log-polar 

features first. Two dimensional FFT2 is then applied 

to the log-polar image to extract shift invariant 

features. This method extracts rotation and scaling 

invariant features from the pattern images. 

J. Radon transform + FFT2. The Radon transform 

project the pattern image onto a line passing through 

the center of the pattern image. Two dimensional 

FFT2 is applied to the Radon image to extract shift 

invariant features. This method is relatively robust to 

AGWN for pattern recognition as demonstrated in the 

next section. 

K. Ridgelet transform + FFT [6]. The ridgelet transform 

performs the Radon transform first, and then the DWT 

along the radial direction. We conduct the FFT along 

the angle direction so that it is rotation invariant. This 

method is very robust to AGWN for pattern 

recognition as shown in the next section. In addition, 

it is invariant to rotation of the pattern images due to 

the FFT transform. 

L. Ring projection [7]. It sums all pixels on different 

circles centered at the image centroid with different 

radius. As a result, it is relatively robust to random 

noise. We normalize the ring project signal to have 

unit absolute sum. Nevertheless, the ring projection 

loses some recognition accuracy due to its conversion 

from 2D patterns into 1D signals. We are sacrificing 

some recognition accuracy in exchange for less 

processing time. 

M. Ring projection + DTCWT + FFT. We compute the 

1D ring projection signal first. One dimensional 

DTCWT and FFT are then applied to the ring 

projection signal to extract multiresolution and shift 

invariant features. This method extracts rotation 

invariant features from the pattern images. The 

translation and scaling variance can be eliminated by 

standard normalization techniques. 

N. Ring projection + DWT + FFT. We compute the 1D 

ring projection signal first. One dimensional 

nonsubsampled DWT and FFT are then applied to the 

ring projection signal to extract multiresolution and 

shift invariant features. This method extracts rotation 

invariant features from the pattern images. The 

translation and scaling variance can be eliminated by 

standard normalization techniques. 

O. Ring projection + FFT. We compute the 1D ring 

projection signal first. One dimensional FFT is then 

applied to the ring projection signal to extract shift 

invariant features. This method extracts rotation 

invariant features from the pattern images. 

 

    We can normalize the input pattern image so that it is 

translation and scaling invariant. Let the pattern image be f(x,y) 

with M×N pixels. Define the moments with (p,q) order as 

 𝑚𝑝𝑞 = ∑𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦).                      (1) 

The centroid of the aircraft is then calculated as 

 (𝑥̅, 𝑦̅) = (
𝑚10

𝑚00
,
𝑚01

𝑚00
).                         (2) 

We can move this centroid to the center of the aircraft image. 

The scaling factor is computed as 
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 𝛼 = √𝛽 𝑚00
⁄ ,                               (3) 

where β is a predefined constant. It is easy to prove that this 

normalization technique is approximately invariant to AGWN 

for translation, and it is exactly invariant to AGWN for scaling. 

We can also set the scaling factor as 

 𝛼 = 𝑑𝑖𝑚/(2 ∗ 𝑑𝑖𝑠𝑡),                         (4) 

where dim=min(M,N) and dist is the maximal distance from the 

centroid to the pattern boundary. 

    The main reason why we do not compare deep learning in 

this paper is because the number of classes in our pattern 

recognition problems can change frequently and the numbers of 

training samples are very limited. When new classes are 

available, we need to train the deep learning networks again, 

which is very time consuming. In addition, the number of 

patterns for each class should be large for deep learning, so 

collecting many training samples is a very difficult task. 

Existing pattern classification problems such as traffic sign 

recognition and handwritten digits recognition are good for 

deep learning since the numbers of classes in both problems do 

not change over time and the numbers of training samples are 

large. As a result, the pattern recognition algorithms compared 

in this paper are better suited for our classification problems 

since very limited numbers of training samples are available. 

    The major contributions of our new method can be given as 

follows. We compare fifteen different methods for pattern 

recognition under different noise levels and different rotation 

angles. Most of these methods are invariant to translation, 

rotation, and scaling of the pattern images. Our experiments 

demonstrate that the Ridgelet + FFT method is the most robust 

to AGWN for both a printed Chinese character dataset and an 

aircraft dataset. Furthermore, the Zernike moments and the 

Radon transform + FFT2 descriptor are also relatively robust to 

noise, but they are not as good as the Ridgelet + FFT descriptor 

for robust pattern recognition. Nevertheless, the Ridgelet + FFT 

method takes longer time to recognize a pattern compared than 

other existing methods. We are sacrificing more computing 

time in exchange for higher classification accuracy with this 

method. We can port it to a faster programming language such 

as C/C++ or Python. In addition, we can parallelize our code so 

that it can be executed much faster than before. 

 

III. EXPERIMENTS 

We conduct experiments on one printed Chinese character 

dataset with 85 characters of size 64×64 (see Fig. 1) and one 

aircraft dataset with 20 aircrafts of size 128×128 (see Fig. 2). 

All these pattern images are binary images. To add noise to 

pattern images, we scale all these binary images to the range of 

[0, 255]. We add AGWN to clean pattern image as follows:  

g = f + σn N(0,1),                           (5) 

where g is the noisy image, f is the noise-free image, σn is the 

noise standard deviation, N(0,1) is the normal distribution with 

zero mean and unit variance. We fix the seed of the random 

number generator to zero such that we can generate the same 

experimental results for different runs. The noise standard 

deviation is set to (σn=30, 60, 90, 120, 150, 180, 210, 240, 270 

and 300) in our experiments in this paper. Fig. 3 shows an 

illustration of noise patterns with σn=30, 60, 90, 120, 150, 180, 

210, 240, 270 and 300 for a printed Chinese character. Fig. 4 

shows an illustration of noise patterns with σn=30, 60, 90, 120, 

150, 180, 210, 240, 270 and 300 for an aircraft.  When noise 

levels are high, the pattern images can hardly be seen clearly 

due to noise. Nevertheless, some pattern recognition algorithms 

can still do an excellent job in recognizing them. 

    Our experiments conducted in this section have the following 

observations. Tables 1-3 show the correct recognition rates (%) 

with different algorithms and different noise levels (σn=30, 60, 

90, 120, 150, 180, 210, 240, 270 and 300) for 30, 60 and 90 

degrees of rotation for the printed Chinese character dataset, 

respectively. The best results are highlighted in bold font. The 

correct recognition rate is defined as the ratio between the 

number of correctly recognized patterns and the total number of 

patterns. The Ridgelet + FFT descriptor is the most robust to 

noise as can be seen from these three tables. In addition, Zernike 

moments is the second-best method. The Radon + FFT2 

descriptor is the third best method, and the Fourier-DWT 

descriptor is the fourth best method for noise robust pattern 

recognition. All other methods are very sensitive to noise. 

    Tables 4-6 depict the correct recognition rates (%) with 

different algorithms and different noise levels (σn=30, 60, 90, 

120, 150, 180, 210, 240, 270 and 300) for 30, 60 and 90 degrees 

of rotation for the aircraft dataset, respectively. The best results 

are highlighted in bold font. The Zernike Moments, the Radon 

+ FFT2, the Ridgelet + FFT, and the Ring projection all achieve 

perfect classification accuracy (100%) for this dataset. By 

examining all six tables, we conclude that the Ridgelet + FFT 

descriptor is the most robust to noise as demonstrated in this 

paper. In addition, the Zernike moments and the Radon 

transform + FFT2 descriptor are also relatively robust to noise, 

but they are not as good as the Ridgelet + FFT descriptor for 

robust pattern recognition. 

    We measure the CPU time for all methods compared in this 

paper for both the printed Chinese dataset and the aircraft 

dataset. Our unoptimized Matlab code is run under the Linux 

operating system with Intel(R) Xeon(R) CPU E5-2697 v2 at 

2.70GHz and 131 GB of random-access memory (RAM). Table 

7 shows the execution time in seconds for all fifteen methods. 

The best results are highlighted in bold font. The fastest methods for 

both datasets are ring projection (L and O). Nevertheless, both methods 

achieve lower correct recognition rates for pattern recognition. Our 

method K achieves the highest correct recognition rates for pattern 

recognition for both the printed Chinese character dataset and the 

aircraft dataset, but it is the slowest in CPU time as shown in 

Table 7. We are sacrificing more computational time in 

exchange for high classification rates with this method. Even 

though our method K is a bit slow, it is not very slow in CPU 

time as can be seen from Table 7. Its speed is relatively fast as 

well for noise robust pattern recognition. 
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IV. CONCLUSIONS 

Invariant pattern recognition is very important in many real-life 

applications. In this paper, we have studied which method is the 

most robust to AGWN for pattern recognition. We have 

compared fifteen existing pattern recognition methods with 

different noise levels and different rotation angles. Most of 

these methods are invariant to translation, rotation, and scaling 

of the pattern images. Our experiments demonstrate that the 

Ridgelet + FFT descriptor is the most robust to noise for pattern 

recognition with both a printed Chinese character dataset and 

an aircraft dataset. Furthermore, the Zernike moments and the 

Radon transform + FFT2 descriptor are also relatively robust to 

noise, but they are not as good as the Ridgelet + FFT descriptor 

for pattern recognition. Nevertheless, the Ridgelet + FFT 

method takes longer time to recognize a pattern compared than 

other existing methods. We are sacrificing more computing 

time in exchange for higher classification accuracy with this 

method. 

    Future research will be performed by studying deep 

convolutional neural networks (DCNN) for invariant pattern 

recognition. We can also perform a systematic study for other 

kinds of deformation such as skewing, illumination variation, 

occlusions, etc. for our invariant pattern recognition tasks.   
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Fig. 1. The printed Chinese character dataset. 
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Fig. 2. The aircraft dataset. 

 

 
Fig. 3. An illustration of noise patterns with σn=30, 60, 90, 120, 150, 180, 210, 240, 270 and 300 for a printed Chinese character. 

 

 
Fig. 4. An illustration of noise patterns with σn=30, 60, 90, 120, 150, 180, 210, 240, 270 and 300 for an aircraft. 
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TABLE 1 

THE CORRECT RECOGNITION RATES (%) WITH DIFFERENT ALGORITHMS AND DIFFERENT NOISE LEVELS (ΣN=30, 60, 90, 120, 150, 180, 210, 

240, 270 AND 300) FOR 30 DEGREES OF ROTATION FOR THE PRINTED CHINESE CHARACTER DATASET. THE BEST RESULTS ARE 

HIGHLIGHTED IN BOLD FONT. 

 

Method Noise σn 

30 60 90 120 150 180 210 240 270 300 

A 98.8 98.8 97.6 78.8 67.1 45.9 32.9 29.4 24.7 17.6 

B 100 100 100 94.1 78.8 58.8 48.2 36.5 25.9 18.8 
C 100 100 100 100 100 98.8 96.5 85.9 69.4 61.2 

D 100 100 100 100 100 100 100 98.8 96.5 89.4 

E 98.8 100 90.6 52.9 31.8 10.6 7.1 4.7 2.4 2.4 
F 100 100 97.6 62.4 27.1 15.3 7.1 3.5 3.5 3.5 

G 28.2 24.7 10.6 9.4 8.2 7.1 8.2 8.2 5.9 5.9 

H 100 98.8 84.7 38.8 12.9 8.2 4.7 3.5 2.4 2.4 
I 100 98.8 22.4 15.3 0 0 0 0 0 0 

J 100 100 100 100 100 100 98.8 96.5 95.3 87.1 
K 100 100 100 100 100 100 100 100 100 98.8 

L 100 100 100 92.9 78.8 67.1 56.5 47.1 36.5 35.3 

M 82.4 37.6 22.4 24.7 21.2 11.8 3.5 4.7 5.9 4.7 
N 84.7 54.1 32.9 22.4 16.5 12.9 8.2 5.9 2.4 1.1 

O 78.8 43.5 29.4 24.7 16.5 11.8 5.9 3.5 2.4 1.2 

 
TABLE 2 

THE CORRECT RECOGNITION RATES (%) WITH DIFFERENT ALGORITHMS AND DIFFERENT NOISE LEVELS (ΣN=30, 60, 90, 120, 150, 180, 210, 

240, 270 AND 300) FOR 60 DEGREES OF ROTATION FOR THE PRINTED CHINESE CHARACTER DATASET. THE BEST RESULTS ARE 

HIGHLIGHTED IN BOLD FONT. 

 

Method Noise σn 

30 60 90 120 150 180 210 240 270 300 

A 100 97.6 94.1 82.4 64.7 48.2 36.5 29.4 22.4 18.8 

B 100 100 97.6 90.6 76.5 56.5 41.2 32.9 22.4 17.6 
C 100 100 100 100 100 98.8 94.1 78.8 71.8 62.4 

D 100 100 100 100 100 98.8 96.5 96.5 90.6 83.5 

E 100 100 85.9 48.2 22.4 5.9 3.5 2.4 1.2 2.4 
F 100 100 97.6 65.9 24.7 8.2 2.4 1.2 0 0 

G 7.1 4.7 1.2 1.2 1.2 0 0 0 0 0 

H 100 98.8 83.5 34.1 15.3 5.9 4.7 2.4 2.4 2.4 
I 100 95.3 23.5 12.9 0 0 0 0 1.2 1.2 

J 100 100 100 100 100 98.8 98.8 96.5 89.4 77.6 

K 100 100 100 100 100 100 100 100 98.8 98.8 

L 100 100 96.5 90.6 82.4 74.1 63.5 44.7 41.2 37.6 

M 80 36.5 28.2 24.7 20 11.8 5.9 4.7 5.9 4.7 

N 83.5 52.9 36.5 24.7 16.5 14.1 9.4 5.9 4.7 2.4 
O 76.5 44.7 30.6 24.7 17.6 7.1 5.9 3.5 2.4 2.4 

 
TABLE 3 

THE CORRECT RECOGNITION RATES (%) WITH DIFFERENT ALGORITHMS AND DIFFERENT NOISE LEVELS (ΣN=30, 60, 90, 120, 150, 180, 210, 

240, 270 AND 300) FOR 90 DEGREES OF ROTATION FOR THE PRINTED CHINESE CHARACTER DATASET. THE BEST RESULTS ARE 

HIGHLIGHTED IN BOLD FONT. 

 

Method Noise σn 

30 60 90 120 150 180 210 240 270 300 

A 100 100 98.8 91.8 68.2 45.1 37.6 25.9 17.6 12.9 

B 100 100 100 95.3 82.4 56.5 43.5 34.1 23.5 14.1 

C 100 100 100 100 100 100 97.6 89.4 81.2 72.9 
D 100 100 100 100 100 100 97.6 96.5 95.3 89.4 

E 100 100 100 81.2 40 29.4 14.1 11.8 3.5 3.5 

F 100 100 98.8 82.4 44.7 21.2 11.8 7.1 5.9 3.5 
G 7.1 5.9 1.2 1.2 1.2 1.2 1.2 1.2 0 0 

H 100 100 98.8 80 40 20 10.6 4.7 3.5 2.4 

I 100 98.8 29.4 16.5 0 0 0 0 0 0 
J 100 100 100 100 100 100 98.8 96.5 87.1 77.6 

K 100 100 100 100 100 100 100 100 100 97.6 

L 100 100 100 98.8 92.9 83.5 71.8 65.9 50.6 40 
M 97.6 56.5 42.4 40 29.4 12.9 7.1 5.9 5.9 3.5 

N 96.5 68.2 44.7 30.6 18.8 11.8 10.6 3.5 1.2 1.2 

O 97.6 52.9 43.5 34.1 16.5 11.8 4.7 2.4 2.4 2.4 
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TABLE 4 

THE CORRECT RECOGNITION RATES (%) WITH DIFFERENT ALGORITHMS AND DIFFERENT NOISE LEVELS (ΣN=30, 60, 90, 120, 150, 180, 210, 

240, 270 AND 300) FOR 30 DEGREES OF ROTATION FOR THE AIRCRAFT DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT. 

 

Method Noise σn 

30 60 90 120 150 180 210 240 270 300 

A 100 100 100 100 95 95 90 80 80 70 

B 100 100 100 100 95 95 85 85 85 80 
C 100 100 100 100 100 100 100 100 100 100 

D 100 100 100 100 100 100 100 100 100 100 

E 100 95 60 25 10 5 5 5 5 5 
F 100 95 60 20 15 5 5 5 5 5 

G 10 10 10 10 10 5 5 5 5 5 

H 100 100 95 50 20 15 5 5 5 5 
I 100 100 60 20 15 15 5 5 5 5 

J 100 100 100 100 100 100 100 100 100 100 

K 100 100 100 100 100 100 100 100 100 100 

L 100 100 100 100 100 100 100 100 100 100 

M 90 50 30 30 25 30 35 30 15 10 

N 100 100 100 100 100 100 95 95 85 75 
O 100 100 100 100 100 100 95 95 90 80 

 
TABLE 5 

THE CORRECT RECOGNITION RATES (%) WITH DIFFERENT ALGORITHMS AND DIFFERENT NOISE LEVELS (ΣN=30, 60, 90, 120, 150, 180, 210, 

240, 270 AND 300) FOR 60 DEGREES OF ROTATION FOR THE AIRCRAFT DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT. 

 

Method Noise σn 

30 60 90 120 150 180 210 240 270 300 

A 100 100 100 100 100 100 100 90 90 90 
B 100 100 100 100 100 100 100 100 95 90 

C 100 100 100 100 100 100 100 100 100 100 

D 100 100 100 100 100 100 100 100 100 100 

E 100 95 45 20 15 5 5 5 5 5 

F 100 100 50 20 20 10 10 5 5 5 

G 10 10 10 10 10 10 10 10 5 5 
H 100 100 100 60 20 20 10 10 5 5 

I 100 100 90 20 15 15 15 10 5 5 

J 100 100 100 100 100 100 100 100 100 100 

K 100 100 100 100 100 100 100 100 100 100 

L 100 100 100 100 100 100 100 100 100 100 

M 85 40 25 30 30 30 40 20 15 10 
N 100 100 100 100 100 100 95 90 85 75 

O 100 100 100 100 100 100 95 90 90 80 

 
TABLE 6 

THE CORRECT RECOGNITION RATES (%) WITH DIFFERENT ALGORITHMS AND DIFFERENT NOISE LEVELS (ΣN=30, 60, 90, 120, 150, 180, 210, 

240, 270 AND 300) FOR 90 DEGREES OF ROTATION FOR THE AIRCRAFT DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT. 

 

Method Noise σn 

30 60 90 120 150 180 210 240 270 300 

A 100 100 100 100 100 100 100 90 80 80 

B 100 100 100 100 100 100 100 90 85 85 

C 100 100 100 100 100 100 100 100 100 95 
D 100 100 100 100 100 100 100 100 100 100 

E 95 95 45 15 10 5 5 5 5 5 

F 100 95 40 20 5 5 5 5 5 5 
G 25 25 20 20 20 20 20 20 20 15 

H 100 100 100 65 25 20 15 10 5 5 

I 100 100 85 25 15 15 15 10 10 5 
J 100 100 100 100 100 100 100 100 100 100 

K 100 100 100 100 100 100 100 100 100 100 

L 100 100 100 100 100 100 100 100 100 100 

M 100 40 30 25 30 30 50 30 15 15 

N 100 100 100 100 100 95 95 95 80 75 

O 100 100 100 100 100 100 100 100 95 85 
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TABLE 7 

THE CPU TIME IN SECONDS FOR DIFFERENT METHODS AND FOR BOTH THE PRINTED CHINESE CHARACTER DATASET AND THE 

AIRCRAFT DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT. 

 
Methods Chinese Character Dataset Aircraft Dataset 

A 1.31 0.93 
B 1.02 0.89 

C 1.81 1.05 

D 6.38 1.58 
E 0.68 1.05 

F 0.64 0.78 

G 3.33 0.97 
H 2.67 1.25 

I 1.63 1.03 

J 2.70 5.39 
K 4.40 6.73 

L 0.18 0.79 

M 0.33 0.83 
N 0.25 0.83 

O 0.19 0.79 
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