
  

Abstract - Identifying the DNA sequence mutation that causes 

cancer is challenging in precision oncology. Subsequently, many 

advanced algorithms and techniques are available now to trace 

the cancer cell, but systematic approaches to optimize the huge 

dataset of DNA sequence structure are few. The mutant p53 

protein, which is present in chromosome 17, will turn against 

apoptosis (programmed cell death) or cell cycle arrest (p21) and 

has a high possibility of oncogenesis (malignant cancer). In this 

research work, we customized and employed the Rabin-Karp 

algorithm to search the DNA mutation sequence string and then 

feed the output obtained to train the model using deep learning 

techniques. This helps us to analyze and observe the change in 

DNA structure patterns that cause mutation, especially in the 

p53 protein, which is the major responsible for most of the 

cancer variants. 

 

Index Terms - DNA sequence mutation; Rabin-Karp; gene 

structure; deep learning computational model; tumor suppress 

gene; oncology 

I. INTRODUCTION 

NE of the life-threatening diseases is cancer. Abnormal 

or uncontrollable growth of the human body’s cells is 

the reason for cancer. Cancer can be of two types i) 

benign – slow in growth and doesn’t spread ii) malignant – 

fast in growth and spread to the other organs of the body. 

There are so many reasons for cancer cells to grow some of 

them are damaged DNA sequences attained from 

environmental factors, food habits, tobacco, alcohol, 

lifestyle, error during the life cycle process of cell division, 

or may be inherited from the parents or grandparents. Cells 

can communicate with each other through signals[1]. In 

general, cells are grown only when they receive their 

command or indication to grow but these cancer cells will 

grow in the absence of the signal. Some cancer cells replicate 

double the count of normal cells. By default, our human body 

is sanctified by the immune system. Sometimes these tumor 

cells will convince or put a mask on from the immune cells to 

keep the cancer cell alive instead of killing them. Initially, 

cancer can form  in any organ of  the body  and that is called 
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primary cancer[2]. The blood vessel will carry the affected or 

damaged cell to other parts of the body and spread cancer. 

This dangerous sort of tumor is called metastasis.  

The change in the DNA sequence structure will contribute 

to cancer. These tend to affect three main types of genes which 

will fight against cancer cells. 1) Tumor suppressor gene - has 

control over cell growth and division. Some alterations in the 

tumor suppressor gene lead to developing the damaged or 

cancer cells uncontrollably. 2) Proto-oncogene - allows 

growing the mutated cells that are not intended or supposed 

to grow. 3) DNA repair gene - the job of this gene is to rectify 

the bug in DNA damage. If certain alteration happens with this 

gene will add addition mutation in chromosomes like deletion 

and duplication in quick manner. The detailed explanations 

about the cell and mutations are carried out in the following 

sessions. 

II. THE STAGES OF THE CELL CYCLE 

A cell is the beginning of everything. Every human body 

is made up of not less than 60 trillion cells. It’s the smallest 

unit that makes up all living or breathing organisms that can 

live on its own. The nucleus, the cell membrane, and the 

cytoplasm are the three major parts of the cell structure as 

shown in Figure 1. 

Most of the cell’s DNA is resides inside the nucleus 

structure and this is the place where most of the RNA also 

made. The cytoplasm is made up of fluid that consists of tiny 

cell parts including the Endoplasmic reticulum, 

Mitochondria, and the Golgi complex. The cytoplasm 

consists of jelly-like fluid. The endoplasmic reticulum (ER) 

is the one who is responsible for transporting the molecules 

either inside or outside of the cell to their particular 

destinations. The molecules cultivated by the endoplasmic 

reticulum (ER) are transported out of the cell by the Golgi 

complex. The mitochondria help to convert the energy from 

food to the form the cell can use. The nucleus will give the 

command to the cell to grow, divide or die. It is encircled by 

a membrane called the nuclear envelope. This nucleus 

envelope helps to discrete the nucleus from the residue of the 

cell and safeguard the DNA. A cell cycle is the sequence of 

events that is responsible for cell growth and cell division [3]. 

Interphase is the time when cell growth takes place, replicates 

or duplication of its gene structure, and make the cell ready 

for duplicate or division. There are four phases in life cycle 

of cell.  
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Fig 1. Parts of a human cell. Nucleus with centrally positioned chromosomes (DNA) containing genetic material.

 

1) G1 Phase (gap phase): Initiate the cell division and 

moves to the next phase S.  

2) S Phase:(synthesis phase): DNA replication of cells will 

happen here. Each gene will have sister chromatids now.  

3) G2 Phase (gap phase): It assemble the cytoplasmic 

needed for mitosis and cytokinesis.  

4) M Phase (mitosis/meiosis phase): Cell division with two 

(Mitosis) or four (Meiosis) daughter’s cells will take 

place here. 

III. FUNDAMENTAL OF THE CHROMOSOME BIOLOGY 

Each cell nucleus consists of spindle fibers and thread-like 

structures called chromosomes. The two important portions 

of chromosomes are proteins and DNA. Histone protein is the 

one that helps to maintain the formation of the DNA 

(Deoxyribonucleic Acid). Each chromosome has three parts. 

The center joining part is called the centromere. The edge of 

each chromosome is called the telomere. The TTAGGG 

(thymine (T), adenine (A), guanine (G)) is the telomere 

sequence which is repeated over 14000 base pairs. This plays 

an important role in keeping the genomic sequence by 

safeguarding it from fusion, degradation and recombination. 

An individual piece or structure of a chromosome is called a 

chromatid. The upper part, which is small in shape is called 

the P arm. The lower part, which is long in shape is called the 

q arm. The distance from the centromere to the P and Q arm 

will determine the shape and the characteristics of the specific 

genetic [4]. 

All living organisms have various counts and shapes in 

chromosomes. A cat is comprised of 19 couples of 

chromosomes with the individual count as 38. A dog is 

comprised of 39 couples of chromosomes with the individual 

count as 78. Our human body is built up of 23 couples of 

chromosomes which is equal to 46 individuals. The first 22 

couples are named autosome. This couple is the formation of  

one copy chromosome from the mother (female parent) and 

one copy chromosome from the father (male parent) as an 

inheritance. The last pair is the twenty third chromosome 

named as the sex chromosome and is used to determine the 

gender of the child. If the combination of X is from the 

mother and X is from the father then the child is a female 

(XX). If the pairs are created as X from the mother and Y 

from the father then the child is male (XY). The possibility of 

chromosome disorder is the changes in the count of a 

chromosome or the structure. Half (23) of our gene structures 

are from the mother, and the other half (23) are from the 

father. It raises the risk of inherited or heredity genetic 

disorders [5]. The disorder can be by birth itself, or it might 

get developed over time. 

1) Numeric abnormalities  

The mislaying or inclusion of the entire chromosome, 

which can attack hundreds to thousands of gene structures, is 

deadly. Some are the fatal diseases caused by numeric 

abnormalities of chromosomes are Patau’s, Edward’s, Down, 

and Klinefelter’s syndrome as shown in the following Figure 

2 [7]. Our human bodies have the in-built mechanism to 

rectify automatically the small or few alterations in gene 

structure because of the immune systems. 

2) Structural abnormalities 

Where a large count of DNA structures is deleted or 

multiple copies take place. The foremost causes of cancer are 

structural anomalies, consisting of oncogene translocations 

(e.g., BCR-ABL in continual myeloid leukemia). Important 

genes can be deleted or duplicated, main to developmental or 

inherited problems (e.g., trisomy 21 reasons Down 

syndrome). Abnormal DNA structure can motive gene 

expression and protein feature to be disrupted, that could 
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bring about mobile dysfunction or demise. Comprehending 

structural anomalies gives valuable statistics for targeted 

treatments, like medicines that concentrate on translocation-

brought on fusion proteins. These can take several forms as 

shown in Figure 3. 

1) Deletion - some of the chromosomes will be lost. 

2) Duplication - Multiple copies occurred in duplication. 

3) Inversion - DNA pattern copies in a reverse way. 

4) Ring chromosome - Chromosomes change the shape 

vertically to ring. 

5) Reciprocal - Patterns from the two various chromosomes 

are exchanged. 

6) Robertsonian - a complete chromosome will get couple 

with other. 

 

 
 

(a) Patau’s syndrome. 

 

 
 

(b) Edward’s syndrome. 

 

 
 

(c) Down syndrome. 

 

 
 

(d) Klinefelter’s syndrome. 

 
Fig 2. Possibilities of numeric abnormalities.  

 

 
 

Fig 3. Possibilities of structural abnormalities. 

IV. THE SEQUENCE OF THE DNA STRUCTURE 

The inherited material of the human body is the DNA or 

Deoxyribonucleic Acid. The DNA is the blueprint for all 

breathing organisms. The majority of the DNA is present in 

the nucleus of the cell and, a few of the DNA is also present 

in the mitochondrial which can be called mitochondrial DNA 

or mtDNA. This mtDNA helps to convert food into energy 

which is required for the cell. It is made up of four nucleotides 

called Adenine (A), Cytosine (C), Guanine (G), and Thymine 

(T)[8]. These four chemical bases are called building bricks 

of DNA. 

Our human body comprises more than three billion base 

pairs of DNAs. These cells can hold the information or 

signals to grow or stop the growing process of the organs at 

some point. For example, the normal kidney is 10 to 12 cm in 

size. The kidney starts the growth development from birth 

itself. But, once it reaches its specific maturation it should 

stop growing further, or else that also leads to the health 

issues. All these development processes are maintained, 

monitored, and controlled by the cells of our body. 

In the base pair of the DNA, Adenine is consistently paired 

with Thymine and Cytosine with Guanine (A with T, G with 

C). The sequence or the order of the base pair may vary. The 

number of times adenine will have the same amount of 

thymine. Similarly, the count of cytosine matches the count 

of guanine. The boundary of the DNA structure is comprised 

of sugar and phosphate.  

The two folded helix will have the appearance of a twisted 

ladder [9]. One with the end of 5'(five prime ends) and the 

other with 3' (three prime ends). This formation looks anti-

parallel. That is, one DNA strand with a 5' end is collateral to 

the 3' end with the other strand. 

A. Transcription and translation in molecular biology 

An immense sequence of the human genome that is non- 

coded and transcribed is called introns. Our human body 

consists of 98% of this non-coded DNA. These non-coded are 

detached from the nucleus before the messenger RNA 

(mRNA) moves to the cytoplasm. The DNA sequence is 

called exons when they are coded. Our human body consists 

of 2% of this coded DNA and, it is responsible for encoding 

proteins. 

 
Fig 4. Conversion process of DNA to RNA and to protein. 
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1) Transcription - It is a procedure by which the DNA is 

transcribed or copied to messenger RNA (mRNA) that 

holds the details for the synthesis of the protein. 

2) Translation - After the transcription, the RNA is used to 

construct proteins is called translation. This cannot be 

done directly by mRNA but with the help of transfer RNA 

(tRNA) as shown in Figure 4. 

B. Example of the Genetic Code 

(A, T, C, G) – 4 bases of DNA (Adenine, Thymine, 

Cytosine, Guanine). 

(A, C, G, U) – 4 bases of RNA (Adenine, Cytosine, Guanine, 

Instead of Thymine in RNA we have Uracil). 

One strand of DNA sequence. Let’s say “A” 

5’TCGTCGACGATGATCATCGGCTACTCGA3’.  

This strand will form the antiparallel DNA strand “B” as 

follows, 

3’AGCAGCTGCTACTAGTAGCCGATGAGCT5’. 

The messenger RNA (mRNA) transcription of strand “A” is 

as follows, (refer amino acid table). 

5’UCGAGUAGCCGAUGAUCAUCGUCGACGA3’. 

Because the four bases of RNA are A, G, C, and, U. The 

sequence of amino acid for the above mRNA is as follows, 

Ser-Ser-Ser-Arg-STOP (Translation). 

V. DNA MUTATION AND THE SOURCES OF THE CANCER 

Our human gene holds all information that is required to build 

our body. For example, blue eyes, brown skin, and thick hair. 

It decides the cells of what kind, and when they should grow, 

divide, and die. During cell division, the gene grabs all the 

mistakes that happen in DNA sequence copying. That 

mistake is called a mutation. One can have a mutation of a 

gene all through life. But by default, our gene will act like a 

guardian and pick up all the errors caused by the mutation and 

correctly arrange the DNA sequence. But sometimes the 

mutated cells hide behind the normal cells and started to 

replicate further in a faster way. These leads to huge issues 

like transporting the cancer cell from one part of the organ to 

other parts of the body through blood vessels. 

The followings are the reasons the gene gets mutated at the 

time of cell division.  

1. Oncogene - It is one of the genes that instruct the cell to 

multiply and divide. If the faulty cells are divided and 

make a huge number of copies in an uncontrolled way, 

then it leads to cancer.  

2. Tumor suppressor gene - It is called the guardian of the 

genome [10]. It has the control to repair and rescue the 

mutant cell. If it cannot able to repair the cells it will 

destroy or kill them and prevent them from further 

spreading or dividing. The p53 protein present in 

chromosome 17 is one of the tumor suppressor genes. 

Apart from this, there is p21, PTEN, p16, and, 

retinoblastoma protein (pRb). Most cancer causes 

because by the mutant p53. Once the tumor suppressor 

gene gets mutated its losses its control over cells to 

instruct or be idle without protecting the cells from 

damages.  

3. DNA repair gene - According to the gene, our cells have 

the protein whose task is to repair the DNA-damaged 

cells. The cell can repair itself but that is not sufficient 

for increased damage. If the gene stops producing the 

proteins that repair the cell, then it forms the cancer cells. 

 

4. Self-destroyed gene - When a cell is too damaged or, 

became old, our gene has the programmed cell death 

function which is called apoptosis. If a gene detects 

something wrong during the process of cell division it 

instructs the cell to kill itself. 

A. The guardian of the genome 

The proto-oncogene is the beneficial cell cycle regulator 

which helps to prevent oncogene. An oncogene is the cell 

growth and cell division of the cancerous cell. If the proto- 

oncogene is mutated in a certain way, it leads to the 

development or growth of the cancer cell in an uncontrolled 

manner. Proto-oncogene helps to code the proteins and enable 

the mitogenic signals. To control the mistakes that happen in 

cell growth our gene has endowed with the tumor suppressor 

gene called p53, p16, p21, PTEN, and pRb. These tumor 

suppressor genes [11] help to control the abnormal and 

uncontrollable growth of the cells. That is the reason these 

proteins are called guardians of the genome [12].  

1. Gene p16 - p16 is the multiple tumor suppressor and is 

known as cyclin dependent kinase inhibitor 2A 

(CDKN2A). Located in chromosome 9. The protein 

helps slow down the cell division process during the cell 

cycle stage from the G1 phase to the S phase and prevents 

cancer cells. If the protein is mutated it loses its function 

and becomes the cause of many variants of cancers.  

2. Gene p21 - it is also known as cyclin-dependent kinase 

inhibitor 1 (CDKN1A) present in chromosome 6. This 

protein is involved in the activity of p53 associated with 

cell cycle arrest in the process of protecting against DNA 

damage. 

3. Gene PTEN - It instructs for creating an enzyme that is 

present in the tissues of the human body. The protein is 

known as Phosphatase and tensin homolog (PTEN). This 

protein works the same way as p16 and slows down or 

stops the process of cell division rapidly in a faulty 

manner. Located in chromosome 10.  

4. Gene pRb - It is located in chromosome 13. Mutation in 

this protein leads to the majority of cancers. The protein 

is known as retinoblastoma protein (pRb) and it is the 

proto- oncogene. Helps to prevent extravagant cell 

growth. 

5. Gene p53 - More than 60% of the cancer are caused by 

the mutant p53 protein. This tumor suppressor protein 

prevents the formation of cancerous cells [13]. That is 

the reason it is named "the guardian of the genome". The 

location of the protein is in chromosome 17. It helps to 

encode the proteins that are in the DNA domain binding 

and manage the expression of the gene to prevent 

genome mutation. The p53 gene encodes up to 15 protein 

variations or isoforms in full length proteins. Protein 

variation or isoform is from the same gene family but 

will yield differences in genetics by alternative splicing. 

Figure 5(a) shows p53 tumor suppressor protein, and (b) 

shows in what way the single piece of p53 protein is 

communicating with the fragment of DNA strands.   

 

B. Structure of the P53 gene 

The p53 protein is situated in chromosome 17 of the human 

body. It has 11 exons and, 10 introns within the structure [14]. 

It is comprised of 393 amino acids and, consists of five 

domains. 1. From (1-60) - N terminal transactivation domain,  

 

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1203-1219

 
______________________________________________________________________________________ 



  

(a) TP53 protein. (b) Interaction of a DNA fragment with a single p53 unit.  

Fig 5. Interaction of tumor suppressor protein (TP53). 

 

  

Fig 6. Structure of the p53 gene on chromosome 17.

2. From (60-100) - proline-rich domain, 3. From (100-300) - 

DNA binding domain, 4. From (323-355) – tetramerization 

domain, and the 5. From (363-393) - C terminal basic domain 

as shown in the Figure 6.  

Nuclear Localization Signal (NLS) and the Nuclear Export 

Signals (NES) are the signals that helped to carry out the 

nucleocytoplasmic transport by the p53 protein [15]. The 

protein p53 plays a vital role in cell growth and cell 

programmed death [16]. If the p53 got defeated by some facts 

then there is a possibility of abnormal and uncontrollable 

growth of cells that, consequence outcome in cancer. More 

than 60% of the cancer formations are because of the mutant 

p53. In the typical cell, the level of the p53 protein is low. It 

can be triggered only by the sensation of 8 signals from DNA 

stress and repair.   

It involves three majority roles. The first one is the cell 

growth arrest when it is needed. Some of the examples are 

p21, 14-3-3s, and Gadd45. The next one is repairing the 

DNA. An example of this is p53R2. The third one is 

programmed cell death [17]. Some examples of this are 

PUMA, Noxa, and BAX. The MDM2 (mouse double minute 

2) is the negative regulatory factor and phosphoprotein that 

joins the p53. If the level of MDM2 increases, it suppresses 

the functions of the protein p53 and increases the risk of 

cancer. 

VI. COMPUTATIONAL MODEL 

Methods 

A. Rabin-Karp Algorithm for DNA sequence representation 

The Rabin-Karp algorithm uses a hash function to search 

for and match patterns in text [18]. In the first stage, it doesn't 

go over every character; instead, it filters the ones that don't 

match before doing the comparison. A string of characters is 

selected and its potential to contain the necessary text is 

examined. Character matching is done if the possibility is 

discovered. To examine the method using the subsequent 

steps: 

Step 1: Assign the value for nucleotide bases A=1, C=2, G=3, 

T=4. 

Step 2: The non-mutant DNA string be  

 

 
 

The Pattern supposed to be at location 5 is GAC. 

Step 3: To find the hash value for pattern(p) is 

                           ∑( 𝑣 ∗ 𝑑𝑚 − 1)                           (1) 

Where, d =30 is the total length of the string, m =3 is the 

pattern size to search. 

= ((3 * 302) + (1 * 301) + (2 * 300))  

H(GAC) at location 5 = 2732  

Step 4: In case the given DNA string with pattern at location 

5 be like this as follows  

 

 
 

Now the hash value = ((3*302) + (2*301) + (2*300)) 

H(GCC) at location 5= 2762 

Step 5: Compare both the hash value at same location 5. The 

value and pattern string differs from the original DNA 

sequence string.  
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By using this Rabin-Karp algorithm[19], we can efficiently 

detect the mutant, insertion, deletion, frameshift pattern in 

P53 DNA sequence and train the model. 

B. One-Dimensional Conventional Neural Network (1D-

CNN) 

1D convolution layers are very good at identifying specific 

patterns within a series. They use the same transformation on 

each patch, so a pattern that is learned at one point in a series 

may be recognized at a different place later on. 1D 

convolutional networks [20] with DNA motif identification 

are made possible by this feature.  

For example, the network should be able to learn motifs or 

DNA fragments up to three characters in length while 

processing DNA sequences using 1D convolutions with a 

window size of three. Furthermore, it is able to identify these 

words in any input sequence context.  

The one-dimensional CNN was made up of the subsequent 

layers: 

Step 1: Input layer: Our model uses a 1D vector as its input, 

which is a vector with a size of 1 × 100 that was produced 

using the Rabin-Karp Pattern Matching algorithm. 

Step 2: Convolutional layer: Features encoded in the 1D input 

vector are derived by building a convolution kernel using a 

1D convolutional layer [21]. Using a sliding window 

(window size 3), the convolutional layer carefully scans the 

input, turning the values into representative values. By 

extracting useful features from small portions of the input 

data, this procedure aids in the conservation of the 

dimensional relationship between the numerical values in the 

vectors. We used a kernel size of 3 to extract more 

information because our input size was small. As shown in 

Figure 7 we employ 1D convolutions to extract local 1D 

patches or subsequence from sequences. 

 

 

Fig 7. 1D Convolutions for DNA sequence extraction. 

Step 3: Rectified Linear Unit (ReLU): Following each 

convolution operation, a new non-linear operation is 

presented. Its goal is to carry out non-linear functions in our 

CNN and improve our model's comprehension of the data. 

The following is the output function of ReLU: 

                     𝑓 (𝑥) = max(0, 𝑥)                            (2) 

where x is a neural network's input count. 

Step 4: The pooling layer is typically incorporated into the 

convolutional layers to minimize computation for subsequent 

layers [22]. 

 

Step 5: Dropout layer: A method designed to help improve 

the model's performance while also preventing overfitting. 

Step 6: Flatten layer: A layer aids in the vectorization of the 

input matrix. 

Step 7: Fully connected layer: typically added by the deep 

network's final stage. If every node in the network is 

connected to every other node in the network, then the layer 

is fully connected. It was a binary classification because our 

challenge is to distinguish between mutant and non-mutant 

sequences in the p53 DNA sequence. Consequently, our 

output has two nodes in total at the end. 

                                 𝜎(𝑧)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑘𝐾
𝑘=1

                                            (3) 

where ith class is the forecast probability from sample 

vector x, σ(z)i is real values in the range (0, 1), and z is the 

input vector with K-dimensional vector. Softmax had to be 

inserted in order to calculate the probability of each 

potential outcome [23]. 

 

Pseudocode: 

>> Input Handling 

>> Input_string ← get input from the user 

 

Compare Input String with Stored DNA String: 

>> for i from 0 to length of dna_string - 3: 

>> substring ← dna_string [i to i+2] 

>> if substring = input_string [i to i+2]: 

>> mutation_location ← i + 1 

>> mutation_value ← convert (input_string [i to i+2]) 

>> print "Mutation found at position " +     

      mutation_location + ". Mutation value: " +   

      mutation_value 

 

Rabin-Karp Algorithm: 

>> function rabin_karp (dna_string, pattern,  

      mutation_value): 

>> dna_mapping ← {'A': 1, 'C': 2, 'G': 3, 'T': 4} 

>> numerical_dna ← convert dna_string using  

      dna_mapping 

>> numerical_pattern ← convert pattern using   

     dna_mapping 

>> dna_hash ← sum of first length(pattern) elements of  

      numerical_dna 

>> pattern_hash ← sum of numerical_pattern 

     matches ← [] 

>> for i from 0 to length of dna_string - length of pattern    

      + 1: 

>> if dna_hash = pattern_hash and numerical_dna [i to    

      i+length(pattern)-1] = numerical_pattern: append i to  

      matches 

>> if i < length of dna_string - length of pattern:   

      dna_hash ← dna_hash - numerical_dna[i] +  

      numerical_dna [i + length(pattern)] 

>> return matches 

 

Identify Mutations: 

>> mutations ← rabin_karp (dna_string, pattern,  

      mutation_value) 
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Fig 8. Architecture diagram of the proposed model (Rabin-Karp with Convolutional Neural Network-CNN). 

An entire flowchart of our methodology is shown in 

Figure 8 under the control of a specifically designed 

pipeline. The following subsections will cover each of this 

indicated pipeline's experimental phases in detail.  

The below figure shows that the location and weight of 

the normal and mutant codons were identified using a hash 

table after the model had been developed by applying the 

Rabin-Karp algorithm[18] on the benchmark dataset (the 

p53 DNA sequence from the NCBI). Next, in order to learn 

these feature extraction techniques and categorize the DNA 

sequence as either mutant or non-mutant, a deep network 

was constructed[24]. 

For implementation, the dataset should be pre-processed 

first. The input DNA sequence file should be a FASTA file. 

It requires the following four steps to perform the analysis. 

1. The reference genome (DNA sequence of the p53 

protein) can be downloaded in FASTA file format 

(https://www.ncbi.nlm.nih.gov) [23] from the National 

Centre for Biotechnology Information (NCBI). 

2. Data Preprocessing - Remove any characters (A, T, C, 

G) that are not included in the DNA alphabet. To prevent 

inconsistencies during analysis, convert sequences to a 

standard format (upper/lower case). To improve the 

confidence of downstream analysis, remove sequences 

that fail to meet quality thresholds or have low-quality 

scores. Identify and extract pertinent sequence features, 

such as domains, motifs, or other patterns with 

biological importance [25]. To encode the DNA 

sequence, convert sequences to representations of 

numbers (K-Mer). 3) 

3. Analyzed and identify the list of possible mutations in 

the p53 protein that leads to cancer by applying the 

Rabin-Karp algorithm in the DNA sequence and create 

the hash values to train the model. 

4. For execution python and all its essential libraries 

(bio.seq, biopython, SeqIO, scikit-bio, pandas-bio, 

DNAdigest, pydna) software packages should be 

installed. By loading the input DNA sequence file, the 

model can able to accurately predict the sequence is 

mutant or non-mutant [26]. 

Following Table I presents the key hyperparameters 

chosen for optimizing the model’s performance. These 

parameters were fine-tuned to enhance generalization and 

improve TP53 binding site prediction accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

P53 DNA Seq. 

DB 

Feature Extraction 

Input DNA string (P53.fasta) 

1… 161 162 163 164 165 166 167 168 ...393 

… GCG ATT TAT AAA CAG AGC CAG CAT … 

… 3+2+3 1+4+4 4+1+4 1+1+1 2+1+3 1+3+2 2+1+3 2+1+4 … 

 

Position  
Actual Mutant 

Codon Value Codon Value 

 161 GCG 8 ACC 5 

167 CAG 6 CGG 8 

168 CAC 5 CGC 7 

175 CGC 7 CAC 5 

177 CCC 6  - (Del) 0 

179 CAT 7 TAT 9 

194 CTT 10 CCT 8 

…. …. …. …. …. 

 

Deep Neural Network 
       
      Input Layer             Convolutional Layer               Pooling Layer                 Fully Connected Layer        Output Layer 

String pattern 

matching 

algorithm 

Mutant 

Non-Mutant 

A 

C 

G 

T 
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= 2 
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= 4 
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TABLE I. SELECTED HYPERPARAMETERS FOR THE MODEL’S TUNING 
 

Parameters Range Stepsize Optimal 

Learning Rate (lr) 0.05–0.25 0.05 0.1 

Dimension (Dim) 50–500 25 100 

Window Size (ws) 1–10 1 5 

Epoch (Nos. of Iteration) 25–500 25 100 

Loss (Function) [ns, hs, softmax] - softmax 

Early Stopping Patience 3 to 10 epochs ±1 epoch 5 epochs 

Number of Conv Layers 1-10 layers ±1 layer 3-5 layers 

Activation Function ReLU, tanh, sigmoid N/A ReLU 

Optimizer Adam, SGD, RMSprop, Adagrad N/A Adam 

Regularization (L2/L1) 0.0 to 0.1 ±0.001 L2 = 0.001 

Fully Connected Layers 64, 128, 256 neurons Doubling 128 neurons 

Batch Size 16, 32, 64, 128 Doubling 32-64 

Dropout Rate 0.0 to 0.5 ±0.1 0.3 

 

The following criteria are included for measuring the 

performance of the models: Sensitivity (Sens), Specificity 

(Spec), Accuracy (Acc), and Matthews Correlation 

Coefficient (MCC). False Positive (FP) and False Negative 

(FN) indicate the associated amounts of incorrectly classified 

mutant and non-mutant, whilst True Positive (TP) and True 

Negative (TN) represent the numbers of correctly predicted 

mutant and non-mutant, respectively [28]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −  
𝐹𝑁+𝐹𝑃

(𝑇𝑃+𝐹𝑁)+(𝑇𝑁+𝐹𝑃)
, 0 ≤ 𝐴𝑐𝑐 ≤ 1                  (4) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −  
𝐹𝑃

𝑇𝑁+𝐹𝑃
 , 0 ≤ 𝑆𝑝𝑒𝑐 ≤ 1                             (5) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦 = 1 − 
𝐹𝑁

(𝑇𝑃+𝐹𝑁)
 , 0 ≤ 𝑆𝑒𝑛𝑠 ≤ 1                     (6) 

𝑀𝐶𝐶 =  
1−( 

𝐹𝑁

𝑇𝑃+𝐹𝑁)
+ 

𝐹𝑃
(𝑇𝑁+𝐹𝑃)

 )

√((1+
𝐹𝑃−𝐹𝑁

𝑇𝑃+𝐹𝑁
)(1+

𝐹𝑁−𝐹𝑃

𝑇𝑁+𝐹𝑃
)  

                                             (7) 

VII. COMPARISON THE PERFORMANCE RESULTS BETWEEN 

PROPOSED METHOD AND THE EXISTING METHODS 

As previously mentioned, our model combines deep 

convolutional neural networks with the Rabin Karp 

algorithm to create string-matching patterns. It performs 

admirably. In order to be fair, we must contrast our 

suggested approach with other earlier studies on the 

classification of mutants. Table II displays the results, and 

to emphasize the importance of each metric, we have 

highlighted the highest values. Then, we noticed that in 

both layer classifications, our method performs better than 

other predictors in every metric (sensitivity, specificity, 

accuracy, and MCC). An additional enhancement is that 

our methodology can be utilized for whole genome 

sequences instead of just brief segments. To create a vector 

with a fixed length, all sequences of varying lengths will be 

trained [29]. Any type of input is helpful.  

Even though there were a few computational tools 

available at this point [30], the performance outcomes still 

need to be improved. This research work introduces a novel 

hybrid system to identify mutant p53 DNA sequences using 

a combination of string-matching algorithms and deep 

learning. Unlike other approaches, this one allows us to 

generate the hidden information of DNA sequences. With an 

accuracy of 85.41%, it was discovered that the suggested 

method could distinguish between mutant and non-mutant 

DNA sequences and their strengths. The remaining 

measurement metrics, including MCC, sensitivity, and 

specificity, all achieved improved outcomes. In comparison 

to other cutting-edge predictors [31] for the same problem as 

well as the data set, our suggested approach has shown 

enhancement in all metrics by roughly 1-4 percent. 

Additionally, it can serve as a foundation for future research 

aimed at deciphering the linguistic context of DNA sequences 

[32].  The following Table II presents the comparative 

results of models. 
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TABLE II. COMPARISON WITH PREVIOUS PREDICTORS ON THE SAME DATASET 
 

Predictor Acc Spec Sens MCC 

Rabin-Karp – CNN (Our Model) 85.41 88.67 83.76 0.701 

K-mer - CNN[24] 81.37 84.89 83.13 0.663 

CNN -Bi LSTM[25] 82.02 89.02 79.1 0.632 

One Hot encoding - Random Forest[26] 77.76 83.15 80.45 0.610 

K-Mer - Support Vector Machine[27] 79.48 78.04 76.61 0.561 

The significant values for every metric are indicated by highlighted values. 

 

Fig 9. Performance comparison of models.  

 
 

 

Fig 10. Output window for Transcription (DNA to RNA), Translation (RNA to Protein), and mutation detection in p53 DNA sequence.
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VIII. IMPLEMENTATION AND RESULTS 

TABLE III. RESULT: DETECTION OF POSSIBLE MUTATIONS IN THE P53 PROTEIN. 

S. No Exon Codon 

Expression 

of Wild 

Allele 

Mutation 
Nucleotide 

Change 
Amino Acid Change 

1 2--3--4 1 -> 43 + 
Another polypeptide 

sequence in N terminus 
1 -> 43 1 -> 129 

2 4 33 -> 48 + 

Another polypeptide 

sequence between AA 

33 and 48 

33 -> 48 97 -> 144 

3 5 143 + V143A GTG -> GCG 
Valine (V) -> Alanine 

(A) 

4 5 143 - V143E GTG -> GAG 
Valine (V) -> Glutamic 

Acid (E) 

5 5 161 - A161T GCC -> ACC 
Alanine (A) -> 

Threonine (T) 

6 5 167 + E167R CAG -> CGG 
Glutamic Acid (E) -> 

Arginine (R) 

7 5 168 + H168R CAC -> CGC 
Histidine (H) -> 

Arginine (R) 

8 5 175 - R175H CGC -> CAC 
Arginine (R) -> 

Histidine (H) 

9 5 175 - R175G CGC -> GGC 
Arginine (R) -> Glycine 

(G) 

10 5 177-179 + Deletion   
Deletion of 

CCC CAC CAT 
Deletion of PHH 

11 5 179 + H179Y CAT ->TAT 
Histidine (H) -> 

Tyrosine (Y) 

12 6 194 + L194P CTT - > CCT 
Leucine (L) -> Proline 

(P) 

13 6 196 + R -> STOP CGA -> TGA R -> STOP 

14 6 205 + Y205D TAT -> GAT 
Tyrosine (Y) -> Aspartic 

Acid (D) 

15 6 220 - Y220C TAT -> TGT 
Tyrosine (Y) -> Cysteine 

(C) 

16 7 245 + G245D GGC -> GAC 
Glycine (G) -> Aspartic 

Acid (D) 

17 7 245 + G245C GGC -> TGC 
Glycine (G) -> Cysteine 

(C) 

18 7 248 - R248Q CGG -> CAG 
Arginine (R) -> 

Glutamine (Q) 

19 7 248 - R248W CGG - > TGG 
Arginine (R) -> 

Tryptophan (W) 

20 7 248 + R248Q CGG -> CAG 
Arginine (R) -> 

Glutamine (Q) 

21 7 255 + I255F ATC -> TTC 
Isoleucine (I) -> 

Phenylalanine (F) 

22 7 257 + Frameshift mutation 
Deletion 

CTG -> TG 

Frameshift changing AA 

sequence [stop codon 

344] 

23 7 259 + Frameshift mutation 
Insertion                  

GAC -> GTAC 

Frameshift changing AA 

sequence [stop codon 

263] 

24 8 263 + Frameshift mutation 
Insertion of 5b: 

AA [GGTAA] T 

Frameshift changing AA 

sequence [stop codon 

344] 

25 8 266 - G266V GGA -> GTA Glycine -> Valine (V) 

26 8 272 - V272M GTG -> ATG 
Valine (V) -> 

Methionine (M) 

27 8 272 - V272L GTG -> TTG 
Valine (V) -> Leucine 

(L) 
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28 8 273 - R273C CGT -> TGT 
Arginine (R) -> Cysteine 

(C) 

29 8 273 + R273H  CGT -> CAT 
Arginine (R) -> 

Histidine (H) 

30 8 273 - R273H CGT -> CAT 
Arginine (R) -> 

Histidine (H) 

31 8 274 - V274L GTT -> CTT 
Valine (V) -> Leucine 

(L) 

32 8 280 + Frameshift mutation 
Deletion                    

AGA -> GA 

Frameshift changing AA 

sequence [stop codon 

344] 

33 8 301 + Frameshift mutation 
Deletion CCA -

>CA 

Frameshift changing AA 

sequence [stop codon 

344] 

34 9 306 + R -> STOP CGA -> TGA R -> STOP 

 

Sequence Logo 
Genetic Alteration and 

Translational Impact 

 

Exon 5, Codon 143 Mutation 

This mutation alters an essential 

amino acid in the DNA-binding 

domain, potentially disrupting 

TP53’s ability to regulate target 

genes. 

 

Exon 5, Codon 161 and 167 

Mutations 

These mutations occur within 

the structured region of the TP53 

protein, which may impact its 

stability or interaction with 

cofactors. 

 

Exon 5, Codon Deletion 177-

179 

The deletion of codons in this 

region results in the loss of 

amino acids critical for proper 

protein folding and function, 

possibly leading to a 

dysfunctional TP53 protein. 

 

Exon 9, Codon 306 Stop 

Mutation 

This is a premature stop codon 

mutation, leading to a truncated 

TP53 protein that lacks crucial 

functional domains significantly 

impairing its tumor-suppressor 

activity. 

 

Exon 7, Codon 257 Frameshift 

Mutation 

A frameshift mutation alters the 

reading frame, producing an 

aberrant and likely non-

functional protein, which may 

contribute to oncogenesis. 

 

Fig 11. Representation of genetic disruption and premature termination. 
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Fig 12. Confusion matrix representation for each model. Superior performance of Rabin-Karp with CNN compared to other models. 

 

Fig 13. ROC Curve comparison of the models. 
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(a) Various types of cancer in mutant TP53. (b) Causes and effects percentage of mutant TP53 

Fig 14. Analysis of mutant TP53 in cancer types and its effects  

 

The result in Figure 12 is a series of observable confusion 

matrices related to the prediction performance of the models 

used in the classification task. Each statistic is associated with 

a specific prediction, including "Rabin-Karp – CNN (Our 

Model)," "K-mer – CNN”, "CNN - Bi LSTM”, "One Hot 

encoding - Random Forest”, and "K-mer - SVM". These 

confusion matrices help to evaluate true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN) 

for each model, and offering a detailed perspective on their 

performance. Each image is a 2x2 grid. The cells in the top 

left (TN) represent correctly detected negative cases. The 

cells (TP) in the lower right corner indicate positively 

identified individuals. The cells in the upper right corner (FP) 

show the best classification of negative cases. The cells in the 

bottom left (FN) contain positive cases that are incorrectly 

classified as negative. 

The predictor "Rabin-Karp – CNN (our model)" has the 

highest accuracy and the best balance of sensitivity and 

specificity, which shows strong performance in correctly 

detecting positive and negative information. The "K-mer - 

CNN" and "CNN - Bi LSTM" models also exhibit 

competitive results, with slightly higher TP and TN. "One 

Hot encoding - Random Forest" and "K-Mer - SVM" show 

weaker performance, with increasing values of FP and FN, 

which can negatively affect both their accuracy and 

reliability. The system compares the performance of 

prediction models for mutation data analysis based on four 

metrics: accuracy, sensitivity, specificity, and Matthew’s 

correlation coefficient (MCC).   

Among the evaluated models "Rabin-Karp - CNN (our 

model)” performs better than the "K Mer - CNN", "CNN -". 

BLSTM", "one-hot encoding - Random Forests", and "K-

Mer - SVM" as shown in Figure 9. Bar height for each model 

represents the percentage of each metric. "Accuracy," 

"sensitivity," and "specificity" generally show high values 

(greater than 80%) in all models, indicating strong predictive 

power. Among the models, the "Rabin-Karp - CNN" exhibits 

a competitive performance in all metrics, indicating its 

effectiveness for mutation analysis. For other metrics 

(sensitivity, specificity), the differences between models 

appear to be small, suggesting similar performance in these 

aspects. 

The table III presents various TP53 mutations, detailing 

their exon and codon locations, expression status, mutation 

types, nucleotide changes, and corresponding amino acid 

alterations. Several mutations occur within exon 5, including 

V143A (Valine to Alanine) and R175H (Arginine to 

Histidine), among others. Some mutations result in complete 

amino acid deletions, such as codon 177-179 deletion, while 

others introduce frameshift mutations, altering the protein's 

reading frame and potentially leading to premature stop 

codons. Exon 7 harbors multiple mutations, including 

R248Q and R248W, both affecting arginine at codon 248. 

Additionally, exon 8 exhibits R273H and R273C mutations, 

which substitute arginine with histidine or cysteine, 

respectively. Frameshift mutations are also observed in 

exons 7, 8, and 9, often leading to disrupted protein function. 

The presence of stop codon mutations in exons 6 and 9 

further highlights the impact of these alterations on TP53 

protein integrity and its role in tumor suppression. 

Figure 13 shows the ROC curve comparison for our model 

with others. This comparison highlights the reliability and 

effectiveness of deep learning-based models, especially 

discrete CNNs, in detecting and predicting mutations. 

The first figure 14 (a) pie chart titled "TP53 Mutation 

Types in Cancer," which breaks down into the different 

mutation types. The larger block containing 40% represents 

missense mutations. This is followed by 25% of nonsense 

mutations, 15% of frameshift mutations, both deletion and 

splice site mutations, each contributing 10% to the total. The 

second figure 14 (b) bar graph titled "Oncogenic effects of 

mutant TP53", showing the effect percentages of the 

different oncogenic effects. The most prominent effect is the 

inhibition of apoptosis, and the percentage of results is the 

highest. This is followed by diffusion enhancement, which 

has a moderating effect. Inhibition of DNA repair exhibits a 

minor effect, with the other labeled side producing the lowest 

percent effect.
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TABLE IV. INTENSITY OF THE MUTATION IS CALCULATED FOR THIS MUTANT SEQUENCE 
 

Sequence 

Number 

Mutant TP53 Sequences 

DNA Position 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Sequence 1 T A G T T G T A C A T T A T T C A T G T 

Sequence 2 G G A G C A C T C T G A A G G A C A A C 

Sequence 3 C T G T G T C T T G C A G C A G C A G T 

Sequence 4 C G G C A T T C G C A T A A G C T C A G 

Sequence 5 A T A T G G C T G C A T C C A G T G C G 

 

Fig 15. Heatmap of mutation with its intensity. 

Table IV is the connectivity for Figure 15. It represents a 

heat map of the mutated TP53 DNA sequence, showing the 

variation in DNA positions among the five mutated 

sequences. Sequences correspond to individual sequence 

mutations (numbered sequence 1 to sequence 5), while 

columns represent specific DNA regions, numbered 1 to 20. 

The color intensity of each cell indicates the degree of 

mutation is the sensitivity or frequency of occurrence at that 

locus, where the color bar on right indicates mutation values 

(from 0 to 3).  

For example, dark purple cells (value 0) indicate no 

mutations in that area, while bright red cells (value 3) 

represent the most severe mutations. This heat map visually 

reveals patterns and differences in mutations across 

sequences, identifying conserved and highly variable regions 

of DNA for example 9 and 16 positions significant sequence 

change is evident, as indicated by fluorescent cells, indicating 

potential hotspots for mutations. Positions of the same color, 

such as position 8, indicative of overlapping elements so the 

stability is contradicted. Overall, this heat map is a tool to 

identify and analyze mutation distribution and intensity in 

TP53 mutated sequences. 

The specificity scores of TP53 frameshift mutations at 

various genomic regions are exposed in Figure 16.  

The y-axis displays the specificity scores ranging from 0.8 

to 0.9, while the x-axis displays the chromosomal sites where 

the mutations occur. The graphic representation of each 

mutation as a labeled point, where the labels denote the 

particular nucleotide changes (e.g., "AAT->G," "CCG->T"). 

It is simple to match the genomic site with the particular 

mutation and its associated specificity score is marked as a 

red text annotation, which offer comprehensive information 

about the type of mutation at each place. The specificity 

ratings exhibit slight fluctuations across the various mutation 

locations, although they often stay high (over 0.8). 

 Several TP53 mutations and the accompanying 

specificity scores are displayed in a horizontal bar chart in 

Figure 17. A particular mutation is represented by each bar, 

and the y-axis labels the specifics of the mutation (e.g., "G-

>A @ 175," "C->T @ 213). From the range of 0.70 to 0.90, 

the specificity scores are represented on the x-axis. It shows 

the precise specificity score in bold type next to each bar. For 

the mutation "A->In @ 420," the specificity score is 0.90, 

which is the highest; for "G->Stop @ 245," it is 0.70, which 

is the lowest. The variation in specificity scores between the 

different TP53 mutation types and their genomic sites are 

displayed in this chart. 
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Fig 16. Detection of frameshift mutation in the p53 DNA sequence with locations.  

 

 Fig 17. Possible mutations in the p53 DNA sequence. 
 

 

Fig 18. Distinct mutation patterns across DNA sequence positions.  
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Fig 19. Structural intensity changes in the DNA sequence. 

 

 

Figure 18 represents the distinct patterns or trends in how 

the lines behave over positions, it could suggest specific 

regions where mutations significantly affect function or 

expression levels. The values for the mutant sequence (red 

line) tend to be higher than those for the wild-type sequence 

(blue line). In figure 19 it displays the comparative analysis 

of wild-type TP53 protein and mutant TP53 protein structural 

energies (relative) at the protein sequence level. In wild 

type DNA it is GAT at 19th position but in mutant DNA it is 

TAT. In wild type protein it is D at 7th position but in mutant 

protein it is Y. Here the type of mutation is substitution. The 

blue dashed line represents the wild-type TP53 protein 

structure, carrying a moving energy value on a constant of 

1.00 at all positions, indicating stability and homogeneous 

structure with no differences. On the contrary, the red line is 

stable exists for the mutant TP53 protein, showing a 

significant increase of 7 positions with a magnitude of 1.10. 

This strong divergence suggests that a mutation has 

occurred at this particular site, possibly altering the structural 

or functional integrity of the protein. This peak of the chart 

best highlights the effect of mutations by contrasting the 

stable wild type protein with the fluctuating protein. 

IX. CONCLUSION 

The mutation in the p53 protein located in chromosome 

17 is the core reason for causing cancer in more than 60% of 

cases [33]. Since every human comprises of billions of DNA 

sequences it is hard to mark the exact location and trace 

where the mutation happens. The p53 protein consists of 393 

codon lengths. That is 393 multiples by 3 which is 1179 

individual DNA sequences (like ACTGTGTAA...). The list 

of possible mutations can be detected by marking the change 

in amino acid with the codon number [34]. This will help us 

to treat individual cancer patients with specific care and to 

give suitable tailored medicine. 

By detecting the exact mutation in the p53 DNA 

sequencing targeted therapy can be achieved. According to 

the mutation that happens in DNA sequence insertion, 

deletion, or frameshift changes in the codon are identified by 

the Rabin-Karp algorithm and CNN [35] the specified amino 

acid changes can be analyzed. Common drugs, 

chemotherapy, and radiation therapy are not suited for all 

patients. Some patients may be more sensitive to drugs. 

Some patients may not respond to the common drugs. 

Identifying and validating the key mutant gene that causes 

cancer will help to develop personalized medicine [36]. 

Personalized medicine will suit the individual patient and 

rehabilitate cancer with minimal side effects. Advanced 

research in this DNA sequence mutant-driven area will 

provide more effective and efficient medicines to positively 

cure cancer patients. 
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