
 

 
Abstract— Groundwater pollution monitoring is critical for 

preserving drinking water quality. If a landfill is to be 
established, the potential impact on groundwater quality must 
be assessed, which can be done with a mathematical model. 
This work proposes a long-term assessment of groundwater 
quality using a heterogeneous soil model. Two numerical models 
are presented by using one-dimensional advection-diffusion 
equation. The standard forward-time and Centered-space finite 
differences method is employed to estimate the concentration of 
Contaminants in the groundwater within the nearby region.   
The concentration is also estimated with the fourth-order 
Runge–Kutta method. A comparison is conducted between an 
FTCS and the approximate solutions. Both numerical methods 
produce an accurate approximate solution. However, 
the fourth-order Runge–Kutta approach achieves a higher 
accuracy than the conventional method. 
 

Index Terms—One-dimensional advection-diffusion equation, 
explicit finite difference method, fourth-order Runge–Kutta 
method. 

I. INTRODUCTION 
EACHATE generation from landfills poses substantial 
environmental risks, particularly to watercourses as well 

as groundwater. These dangers can be reduced by creating 
and constructing them on geologically impermeable 
materials [1]. The arrangement of solid waste at a specific 
landfill and the primary factors influencing the properties 
and makeup of the leachates are the local rainfall conditions. 
In both India and Indonesia, the handling of leachate 
collection from these locations impacts the groundwater 
and, therefore, is a crucial factor in reducing the negative 
impacts on groundwater quality. 
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The composition of the solid waste at a given landfill site 
and the local rainfall conditions are the main determinants of 
the characteristics and composition of the leachates. In both 
India and Indonesia, the handling of leachate collection from 
these locations impacts the groundwater and, therefore, is a 
crucial factor in reducing the negative impacts on 
groundwater quality. The handling of leachates from 
landfills differs among nations, some of which employ 
specific technologies and procedures for managing them    
in contrast, in others, they are not properly handled. 

In [2], a comparative analysis was provided about 
groundwater pollution caused by leachate from landfill areas 
in India and Indonesia. It was discovered that inadequate 
landfill design and the lack of a liner permit leachates to 
seep into the soil and pollute groundwater. The elements 
influencing groundwater pollution from the leachates were 
also analyzed, revealing that both countries' landfill sites 
were not well-managed. Additionally, it was revealed that 
proper methods for disposing of solid waste were not 
followed. 

Many developing countries are struggling with municipal 
solid waste management due to the rise in solid waste 
generation driven by urbanization and industrialization. A 
large amount of this waste includes harmful substances that 
gradually infiltrate the soil and groundwater, leading to 
long-lasting environmental dangers. There are hazards 
associated with landfill leachate production to human health 
and the environment by polluting soil, surface water, and 
groundwater. Key areas of research focus on designing 
effective landfill liner systems, assessing the extent of 
contaminants leaching into groundwater, and understanding 
the potential health and environmental dangers [4]. 

Monitoring groundwater quality is crucial for assessing 
the potential risk and impact of contamination events. 
Municipal solid waste contains various materials such as 
glass, metal, paper, rags, plastics, ash, and flammable 
substances [5]. Leachate from landfills presents serious 
health and environmental hazards because of its ability to 
pollute groundwater and water on the surface [6]. In certain 
places, groundwater near landfills is at a higher risk of 
contamination; numerous studies have examined the 
negative consequences of leachate from landfills on both 
Groundwater and surface water [7–9]. A point source, such 
as a landfill, able to release large amounts of pollutants into 
due to leachate, the groundwater flow from its bottom [10]. 
The disposal of water and pollution are inherently 
connected. The unregulated disposal of waste causes various 
environmental hazards, such as the contamination of water, 
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soil, and air, along with health threats. The pollution of 
groundwater due to leachate produced by waste disposal 
areas is a significant health issue to a multitude of 
researchers and experts globally. A Leachate can be any 
liquid. that passes via solid waste and eliminates suspended 
solids, solutes, or other harmful substances from the 
substance it contains traversed. The utilization of 
groundwater tainted by leachate is often cited as a risk to 
human health [11]. 

One-dimensional advection–diffusion equations were 
proposed in [12] as an appropriate mathematical model for 
an accurate evaluation of groundwater quality. A new 
fourth-order method based on the Saulyev technique 
was used in a groundwater quality assessment model. 
The environment suffers when landfills contaminate 
groundwater. In this research, a model was proposed for 
the long-term assessment of groundwater quality in varied 
soil, comprising a 1D-(ADE) transient. Two mathematical 
models were presented. The conventional centered-space 
forward-time finite difference approach was employed to 
estimate the concentration of groundwater contaminants in 
an area adjacent to a landfill. A novel fourth-order finite 
difference approach utilizing the Saulyev method was used 
to estimate the solution. The estimated solutions were 
contrasted with the perfect exact solution. Both numerical 
techniques produced comparable outcomes; however, the 
new fourth-order method using the Saulyev technique 
provided more accurate solutions than the traditional 
method. In [13], a long-term numerical model for assessing 
groundwater quality was introduced, utilizing a modified 
fourth-order finite difference method combined with a 
Saulyev scheme. The prediction of groundwater quality over 
the long term was utilized to present the environmental 
impact evaluation of landfill site initiatives. 1D- transient 
advection-diffusion equation was employed to represent 
groundwater contaminant levels. 

Models for simulations of groundwater quality using 
numerical methods assessment over extended time frames 
were suggested. The traditional explicit FTCS and the 
typical fourth-order finite difference techniques were 
applied. The conventional fourth-order finite difference 
method using a Saulyev scheme, along with a revised 
fourth-order finite difference method with a Saulyev 
scheme, were suggested. Estimated solution were compared 
with the exact solution in a specific case. The proposed 
modified new fourth-order finite difference technique gives 
accurate approximate solutions. The suggested numerical 
simulation can be utilized for various kinds of soil physics. 

Numerical methods were employed to solve 1D-
advection-dispersion-reaction equation for non-uniform 
flow in [14]. In [15], An appropriate model was developed 
to replicate the transportation of contaminants in a medium, 
demonstrating spatial fourth-order precision and temporal 
second-order precision. In [16], An implicit method was 
applied to address a hydrodynamic model, along with the 
backward-time centered-space scheme was used to solve a 
dispersion model in [17]. Mathematical frameworks 
depicting groundwater flow and solute transfer in 
homogeneous and heterogeneous porous media were 
developed in [18]. The groundwater model employed both 
implicit and explicit traditional finite difference techniques 

along with alternating path approaches. The finite difference 
techniques produced precise outcomes, with the fastest finite 
difference method discovered being (FTCS) followed by 
(ADEM), (ADIM), and finally (BTCS).  

The aquifer simulation showed the head influenced by 
water, which then revealed the water table.  For groundwater 
movement, the recognized technique of minimal variation 
was utilized. The varied framework measurements of the 
aquifer's size, depressions, and sources created the intricate 
geometry in the model. In [19], it was demonstrated that 
alternating path techniques for groundwater simulation can 
effectively represent real-world scenarios. 

Employing the category explicit technique, Evans and 
Abdullah [20] created the (AGE) approach, that could be 
distinctly tackled and utilized for further concerns. Inspired 
by these ideas, the authors of [21] utilized the integral 
conversion on a (CDE) and suggested a plan that was a 
truncation error of order and maintains unconditional 
stability. Zheng [22] suggested a category of explicit 
iterative methods for alternating groups, that are convergent, 
unconditionally stable, and precise to the second degree in 
both space and time. The authors of [23] performed a 
comparative analysis on the stability boundaries of fourth-
order compact and first-order upwind methods for 
discretization a 1D unsteady (CDE. These methods were 
applied alongside Runge–Kutta temporal discretizations of 
up to sixth order [24]. Conducted a thorough evaluation of 
two-tier three-point finite difference technique of sequence 
two in duration and four in area. The reliability and the 
oscillatory nature of these approaches were examined and 
the evaluation was enhanced by numerical trials 

In order to recalled, papers are worried using linearly 
implicit Runge–Kutta technique to the numerical calculation 
of systems of (FDM) that emerge from the spatial 
discretization of (ARD) partial differential equations. The 
main difficulty in managing these systems resides and the 
reality that explicit time integrators usually exhibit 
inefficiency, as the system grows more rigid when the 
spatial grid is refined. However, selecting a strictly accurate 
integrator requires the unspoken solution of nonlinear 
equations, that may be challenging, particularly when used 
in conjunction with spectral methods [25] and the usual 
method to resolving the nonlinear equations that 
emerge in the approach of implicit methods involves 
employing a modified Newton iteration alongside banded 
approximations of the Jacobian obtained via finite 
differences. However, when tackling spectral spatial 
discretization of equations for (ARD), countless setbacks in 
the Newton method may occur [26]. 

The goal of this research is to generate numerical answers 
of 1D-ADE employing a sixth-order compact difference 
method in spatial dimensions and a fourth-order Runge–
Kutta method in temporal dimensions. It is regarded as a 
more dependable option compared to current methods 
for such applications [27]. A model for the dispersion of 
groundwater pollutants is presented. A conventional finite 
difference approach, along with a blend of the fourth-order 
Runge–Kutta and an explicit finite difference method, is 
employed to resolve the advection–diffusion equation 
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II. GOVERNING EQUATION  

A. A. Distribution of Groundwater Contamination in 
Uneven Soil 
In a model of groundwater quality, the primary is a partial 

differential equation in one dimension that describes 
advection–diffusion [28], 

 

( )( , ) ( , ), ( , ) ( , ) ,C x t C x tD x t u x t C x t
t x x

∂ ∂ ∂ = − ∂ ∂ ∂ 
               (1) 

for all ( ) [ ] [ ], 0, 0, ,x t L T∈ ×   
 
where ( , )C x t  indicates the quantity of pollutants in 
groundwater on the premises. x  presently in the 
longitudinal orientation ,t D  is the pollutant's dispersion 
coefficient, u  represents a consistent flow speed, L  is the 
distance of the examined region from the source of the 
pollutant to the endpoint, and T  represents the duration of 
the simulation. The unevenness of the soil leads to 
differences in the velocity of groundwater flow Kumar et al. 
[28] suggested a modification of a growing nature. They 
also presumed that the velocity and dispersion parameters 
are defined functions. 1( , )f x t  and 2 ( , ).f x t . Eq. (1) can be 
rewritten as [28]     

 

( )0 1 0 2
( , ) ( , ), ( , ) ( , ) .C x t C x tD f x t u f x t C x t
t x x

∂ ∂ ∂ = − ∂ ∂ ∂ 
      (2) 

Eq. (2) can be written in the following form: 
 

1
0 0 2

( , )( , ) ( , )( , )f x tC x t C x tD u f x t
t x x x

∂∂ ∂ ∂ = − ∂ ∂ ∂ ∂ 
2

2
0 1 02

( , )( , )( , ) ( , ).f x tC x tD f x t u C x t
xx

∂∂
+ −

∂∂                           (3) 

 
 

In the formula presented above, 0D  and 0u  are constants 
with dimensions are determined by the expressions 1( , )f x t  
and 2 ( , ).f x t  The unevenness of the soil results in changes 
in the flow velocity. Kumar et al. [28] have explored a 
variation involving the greater spread of groundwater 
pollutants in uneven soil. It is likewise presumed that the 
velocity and the dispersion parameter are proportional 
squared. Thus, Eq. (2) becomes 
 

( )2
1( , ) 1 ,f x t ax= +    and   2 ( , ) 1 ,f x t ax= +                       (4)  

 
where the parameter a  with dimension of 1( )length −     
accounts for the soil inhomogeneity. in Eq. (3) becomes 

( )( )0 0
( , ) ( , )1 2C x t C x tax aD u
t x

∂ ∂
= + −  ∂ ∂

2
2

0 02

( , )(1 ) ( , ),C x tD ax u aC x t
x

∂
+ + −

∂  (5) 
 
 

B. Initial and boundary conditions 
There was no pollution or degree of groundwater 
contamination in the soil's initial state or boundary. 
shows the initial condition listed below: 

 
( ,0) ( ),C x r x= 0 ,x L≤ ≤ 0.t =                                (6) 

 
where ( )r x  is initially assessed groundwater contaminant 
function. Because of a constant influx, a groundwater 
contaminant is released at the source, while the gradient in 
concentration at the endpoint is determined by the mean rate 
of change of contaminants in groundwater concentration in 
their vicinity, leading to the boundary conditions listed 
below: 

0(0, ) ,C t C=     0,t >                                                          (7) 
 

( , ) ,s
C x t C

x
∂

=
∂

  ,x L=    0.t ≥                                            (8) 

where 0C  is a considering the average concentration of 
groundwater pollutants at the landfill under consideration 
and sC  is rate of change of the pollutant concentration 
around the far field monitoring station. 

III. NUMERICAL TECHNIQUES 

A. The traditional forward time central space method 
(FTCS) 
Putting both a forward and a central difference 

scheme into practice to Eq. (2) [28], Each term's 
discretization is produced as follows: 

 
( , ) ,n

iC x t C≅                                                                       (9)                         
1( , ) ,

n n
i iC CC x t

t t

+ −∂
≅

∂ ∆
                                                       (10)                            

1 1 1( , ) ,
2

n n
iC CC x t

x x
+ −−∂

≅
∂ ∆

                                                    (11) 

2
1 1

2 2

2( , ) .
( )

n n n
i i iC C CC x t

x x
+ −− +∂

≅
∂ ∆

                                         (12)                          

 
Substituting Eqs. (9)–(12) into Eq. (3), we find that 
 

[ ]
1

1 1
0 0

2 1 1
0 02

(1 )(2 )
2

2
(1 ) ,

( )

n n n n
i i i i

n n n
ni i i
i

C C C C
ai x aD u

t x
C C C

D ai x u aC
x

+
+ −

+ −

− −
= + ∆ −

∆ ∆
− +

+ + ∆ −
∆

               (13) 

( )2
0 0 0

12

1 (1 )(2 )
2( )

n
i

D ai x t ai x aD u t
C

xx −

 + ∆ ∆ + ∆ − ∆
= − 

∆∆  
 

( )2
0

02

2 1
1

( )
n
i

D ai x t
u a t C

x

 + ∆ ∆
+ − − ∆ 

∆  
 

( )2
00 0

12

1(1 )(2 )
.

2 ( )
n
i

D ai x tai x aD u t
C

x x +

 + ∆ ∆+ ∆ − ∆
+ + 

∆ ∆  
      (14)                                
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Thus  1
1( ) (1 2 )n n n

i i i i i iC E K C E Cϑ+
−= − + − −  

          1( ) ,n
i i iE K C ++ +                                                        (15) 

where 

( )2
0

2

1
,

( )i

D ai x t
E

x
+ ∆ ∆

=
∆                                                     (16) 

0 0(1 )(2 )
,

2i
ai x aD u t

K
x

+ ∆ − ∆
=

∆
                                         (17)                                                       

0 .u a tϑ = ∆                                                                    (18) 
 
The difference equation's truncation error Eq. (16) is 

2( , )O t x∆ ∆ . Making use of sufficiently small values of x∆   
and ,t∆  Until the accuracy attained falls within the error 
tolerance, the truncation error can be decreased [29,30]. The 
first circumstance Eq. (3) for Eq. (15) can be written as 
follows in finite difference form: 
 

0 0,iC = 0,x ≥ 0.t =                                                      (19)  
                                                    
The boundary condition Eq. (7) can be written in finite 
difference form as 

0 0 ,nC C= 0,x = 0.t =                                                   (20)  
                                                                                                    
If the forward space method is used in Eq. (8) to the 
appropriate boundary condition,  

1 ,n n
N N sC C xC−= + ∆ ,x L= 0.t ≥                               (21)       

                                                                                                                                                          

B. Runge-Kutta MethodThe Compact Finite Difference 
Method  

Methods for compact finite differences are widely used. 
within the community of fluid dynamics due to their high 
accuracy and the benefits of using stencils [30]. These 
techniques can effectively increase accuracy without 
requiring any additional in the size of the stencil, whereas 
traditional high-order finite difference methods use larger 
stencil sizes that complicate the treatment of boundaries. CD 
schemes have also been demonstrated to be more precise 
and computationally efficient. The use of smaller stencil 
sizes in CD methods is helpful when dealing with 
nonperiodic boundary conditions. A one-dimensional mesh 
is considered, consisting of 𝑁𝑁 points: 𝑥𝑥1, 𝑥𝑥2, ..., 𝑥𝑥i−1, 𝑥𝑥i, 
𝑥𝑥i+1,…,𝑥𝑥N with mesh size   x∆  = 𝑥𝑥i+1 − 𝑥𝑥i. The unknown 
function's first-order derivatives can be expressed as follows 
at interior nodes [29]: 

' ' ' 2 2 1 1
1 1 .

4 2
i i i i

i i i
C C C C

C C C b a
x x

α α + − + −
− +

+ +
+ + = +

∆ ∆
             (22) 

leading to an 𝛼𝛼-family of fourth-order tridiagonal schemes 
with 

       ( )2 2 ,
3

a α= + ( )1 4 1 .
3

b α= −                                       (23) 

A sixth-order tridiagonal scheme is obtained by  1 ,
3

b =  

  ( )' ' '
1 1 2 1 1 2

13 28 28 .
12i i i i i i iC C C C C C C

x− + + + − −+ + = + − +
∆

 (24) 

The RK4 scheme is used to obtain the temporal integration 
in the present study. Applying the CD6 technique to Eq. (1) 
gives rise to the following differential equation in time: 

,i
i

dC
LC

dt
=                                                                       (25) 

( ) ( , ),i
i i i

dC
L C f t c

dt
= =                                                      (26) 

with initial conditions and next to step terms given by 
( )n nC t C=  and 1 1( )n nC t C+ += , respectively. The RK4 

formula is [29]   

1 ,n ny y hk+ = +                                                                 (27) 

where 1,h h t= = ∆ and k LC= , we are employing RK4 
applied to a new equation in this work. 

1 .n nC C hLC+ = +                                                              (28) 

We have RK4 scheme to the flowing: 

( )1 2 3
1 2 2 .
6 nC C C C C= + + +                                            (29) 

The spatial terms express to the following operation: 

( , ),n i iC hf t c=                                                                     (30) 
.n iC hLC=                                                                         (31) 

where 𝐿𝐿 shows a linear differential operator in space. The 
CD6 approximates the spatial and temporal terms. and the 
RK4 schemes, respectively. Eq. (25) is solved using the 
RK4 scheme through the following operations [30]: 

solved equation  1C  

1 ( , ),
2 2

n
i i

ChC hf t C= + +                                           (32) 

1 ( ),
2

n
i

C
C hL C= +                                               (33) 

1 ,
2

n
i

hLC
C hLC= +                                  (34) 

1 ,
2

n
n

hLC
C C= +                                       (35) 

1
1 .
2n nC C tLC= + ∆                                        (36) 

solved equation   2C   

1
2 ( , ),

2 2i i
ChC hf t C= + +                                   (37) 

1
2 ( ),

2i
CC hL C= +                                         (38) 

1
2 ,

2i
hLCC hLC= +                                             (39) 
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1
2 ,

2n
hLCC C= +                                          (40) 

2 1
1 .
2nC C tLC= + ∆                                (41) 

solved equation    3C   

3 2( , ),i iC hf t h C C= + +                               (42) 

3 2( ),iC hL C C= +                                       (43) 

3 2 ,iC hLC hLC= +                                       (44) 

3 2 .nC C tLC= + ∆                                              (45) 

Substitution Eq. (29) in to Eq. (28) we obtain that  

1 ,n nC C hLC+ = +                                       (46) 

1 1 2 3
1 ( 2 2 ),
6n n nC C tL C C C C+ = + ∆ + + +

                (47) 

1 1 2 3
1 ( 2 2 ),
6n n nC C t LC LC LC LC+ = + ∆ + + +           (48) 

when annotation (*)
*C C=  thus we get a new equation 

follow that 

1 ( ) (1) (2) (3)1 ( ( ) 2 ( ) 2 ( ) ( )).
6

n n nC C t L C L C L C L C+ = + ∆ + + +   

                                                                                    (49) 
The fourth-order Runge-Kutta equation 

where ( , )C x t  is the amount of pollutants that are dispersing 
in groundwater. at the location x  throughout the 
longitudinal path at that moment , Dt  is a pollutant method 
dispersion coefficient and u  is a consistent flow rate, L  is 
the distance measured from the source of the pollutant to the 
final location and T  is the simulation time rate of chance. 
Variability results from the soil's inhomogeneity in the 
velocity of groundwater flow. In Kumar et al [28], They 
suggest an increasing nature variation. Additionally, they 
presume that the parameter of dispersion and the The 
velocity parameters are provided, 1( , )f x t  and 2 ( , ).f x t   
Eq.(1) can be rewritten as:[28], substitution Eq.(1) in to 
Eq.(26) we obtain that  

.i
i

dC
LC

dt
=                                                 (25) 

By utilizing a forward difference plan and a scheme for 
central differences to Eq. (2) [28], Each term's discretization 
is produced as follows: 
 

( , )n n
iC x t C≅                                      (50) 

1( , ) ,
n n
i iC CC x t

t t

+ −∂
≅

∂ ∆
                                                        (10)                            

1 1 1( , ) ,
2

n n
iC CC x t

x x
+ −−∂

≅
∂ ∆

                                                     (11)              

2
1 1

2 2

2( , ) .
( )

n n n
i i iC C CC x t

x x
+ −− +∂

≅
∂ ∆

                                  (12)  

 
Substituting Eqs. (10)–(12) and Eq. (47) into Eq. (46), we 
obtain      

( )1 1 ( , ), ( , ) ( , ) ,
6

n n
i i

C x tC C t D x t u x t C x t
x x

+  ∂ ∂  = + ∆ −  ∂ ∂  
 

 (51) 

 1 1 1 1 1
0 0 2

21
6 2 ( )

n n n n n
n i i i i

i
C C C C C

C t u D
x x

+ − + −
    − − +

= + ∆ − +     ∆ ∆    
 

0 1 0 1 0 1 0 0 1
2

2
12 6( )

n n n n n
n i i i i i

i
tu C tu C tD C tD C tD C

C
x x

+ − + − −∆ + ∆ ∆ −∆ + ∆
= + + ∆ ∆ 

 

0 1 0 1 0 1 0 0 1
2

2 4 2
12 12( )

n n n n n
n i i i i i

i
tu C tu C tD C tD C tD C

C
x x

+ − + − −∆ + ∆ ∆ − ∆ + ∆
= + + ∆ ∆ 

 

0 1 0 1 0 1 0 0 1
2 2

2 4 2
12( ) 12( )

n n n n n
n i i i i i

i
tu xC tu xC tD C tD C tD C

C
x x

+ − + − −∆ ∆ + ∆ ∆ ∆ − ∆ + ∆
= + + ∆ ∆ 

 

0 1 0 1 0 1 0 0 1
2 2 2 2 2

2 4 2
12( ) 12( ) 12( ) 12( ) 12( )

n n n n n
n i i i i i

i
tu xC tu xC tD C tD C tD C

C
x x x x x

+ − + −∆ ∆ ∆ ∆ ∆ ∆ ∆
= − + + − +

∆ ∆ ∆ ∆ ∆
 

2
0 1 0 1 0 1 0 0 1

2 2 2 2 2 2

2 4 212( )
12( ) 12( ) 12( ) 12( ) 12( ) 12( )

n n n n n
n i i i i i

i
tu xC tu xC tD C tD C tD Cx C

x x x x x x
+ − + −∆ ∆ ∆ ∆ ∆ ∆ ∆∆

= − + + − +
∆ ∆ ∆ ∆ ∆ ∆
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and we arrive at the fourth-order Runge–Kutta equation, 
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                                          (53) 

To derive a rough solution of Eq. (1) utilizing CD6-RK4 for 
the boundary and initial conditions, the area [0, 𝐿𝐿] is initially 
divided into discrete parts so that 1 2 .0 .. Nx x x L<= < =< , 
where 𝑁𝑁 represents the total count of grid points 
 

IV. NUMERICAL EXPERIMENTS 
Imagine that the concentration of groundwater pollutants C  
underneath a landfill and its surrounding area is being 
evaluated.  The studied area is aligned over a longitudinal 
span, measuring a total of 1.0 km. The studied area is 
aligned over a longitudinal span, measuring a total of 1.0 km 
in length 0 1.0C = kg/l, 0 0.71D = km2/year, 0 0.60u =  
km/year, and 1a = km-1. Within the numerical test, both 
time and space are divided into discrete units by 
  0.1x∆ = km, and 0.0001t∆ = year. The concentration of 
groundwater is estimated by applying (FTCS) and the 
fourth-order Runge-Kutta technique, respectively. An 
analytical solution for an ideal (ADE) is presented in 
[27], 
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where 
 

( )2
0 0 0 ,au a Dω = −                                                           (55) 
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0 02
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4 2

u aD
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a D D
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0

0

.
u

aD
δ =                                                                           (57) 

 
If we utilize a conventional FCTS approach, as outlined by 
the equations. (15)–(18), we derive the estimated 
concentration of groundwater pollutants in the area studied 
for up to 1.3 years, as illustrated in Figs. 1 and 2 and Table I. 
If we utilize the fourth-order Runge–Kutta technique, as 
outlined by Eqs. (25) samt (49)–(54), We derive the 
estimated concentration of groundwater pollutants across the 
longitudinal region depicted in the figures. 3, 4, and Table 
II. The precision of the classical FCTS and fourth-order 
Runge–Kutta techniques is illustrated in Figs. 2 and 4, 
accordingly. The precision of each estimate is evaluated 
using the analytical solution; the absolute error is presented 
in Tables III and IV 

 

 

 

 

 
 
Fig 2. Groundwater contaminants collected via the FTCS method at 0.1, 
0.4, 0.7, 1.0, and 1.3 years. Asterisks denote FTCS solutions, while 
curved lines indicate analytical solutions 
 

 
 
 

Fig 1. Estimated groundwater contaminants derived through the FTCS 
technique 

 
 
Fig 3. Estimate groundwater contaminants using the fourth-order Runge–
Kutta method. 

 

 
 
Fig 4. Concentrations of groundwater pollutants at 0.1, 0.4, 0.7, 1.0, and 1.3 
years. Asterisks denote the fourth-order Runge-Kutta solutions, while 
curved lines indicate analytical solutions. 
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V. DISCUSSION 
An explicit finite difference method and the fourth-order 

Runge–Kutta method produce approximate groundwater 
pollutant concentrations that agree closely in an ideal case, 
as shown in Figs. 2 and 4, respectively. In both cases, the 
measurement of groundwater pollutants was simulated for 
approximately 1.3 years, a considerable amount of time, as 
shown in Table I–II and Figs. 1 and 3. The fourth-order 
Runge–Kutta method provides better approximate 
solutions than the explicit finite difference method, as 
shown by the absolute error values in Tables III and IV. 
The proposed numerical techniques provide an accurate 
approximate solution. 

VI. CONCLUSION 
The prolonged behavior of groundwater pollution was 

modeled in uneven soil. A revised model of groundwater 
quality was utilized for an extended duration. The 
concentration of pollutants was estimated using a 
numerical method, and the concentration of groundwater 
contaminants at their monitoring sites was taken as the 
model’s initial and boundary conditions to approximate the 
model solution, a finite difference method, namely, 
an explicit finite difference method and the fourth-
order Runge–Kutta method, were used. The fourth-order 
Runge–Kutta technique offers a more accurate estimation 
compared to the conventional explicit finite difference 
method. The suggested model can be utilized to give alerts 
regarding the upcoming trends of groundwater pollution  

The suggested numerical methods deliver a precise 
approximate answer and avoid causing excessive 
numerical dispersion. Additionally, this study may be 
advantageous in the field of mathematics education. It may 
serve to instruct Grade 12 calculus concepts through a 
project-based learning method, aiding students in enhancing 
their abilities to enable them to utilize mathematics in 
practical situations 

 

TABLE I ESTIMATE GROUNDWATER POLLUTANT LEVELS 
UTILIZING FTCS WITHIN A SPECIFIED REGION RANGING 
FROM 0.1 AND 1.3 YEARS 

   ( , )C x t     
x  
t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.00 0.7831 0.6034 0.5789 0.3476 0.2601 

0.4 1.00 0.8719 0.7635 0.6712 0.5920 0.5238 

0.7 1.00 0.8900 0.7973 0.7183 0.6503 0.5912 

1.0 1.00 0.8976 0.8117 0.7386 0.6757 0.6209 

1.3 1.00 0.9017 0.8193 0.7494 0.6892 0.6369 
x  

t  
0.6 0.7 0.8 0.9 1.0  

0.1 0.1914 0.1414 0.1042 0.0766 0.0562  

0.4 0.4649 0.4136 0.3690 0.3299 0.2957  

0.7 0.5395 0.4940 0.4537 0.4178 0.3858  

1.0 0.5729 0.5306 0.4929 0.4592 0.4290  

1.3 0.5910 0.5505 0.5145 0.4822 0.4532  

 
 
 
 
 

TABLE II APPROXIMATE GROUNDWATER POLLUTANT CONCENTRATION 
FROM THE FOURTH-ORDER RUNGE–KUTTA EQUATION ALONG A 
CONSIDERED AREA BETWEEN 0.1 AND 1.3 YEARS 

   ( , )C x t     
x  
t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.00 0.7898 0.6161 0.5609 0.3676 0.2719 

0.4 1.00 0.8923 0.7662 0.7002 0.5988 0.5553 

0.7 1.00 0.8962 0.7982 0.7199 0.6586 0.6012 

1.0 1.00 0.9278 0.8381 0.7562 0.7152 0.7010 

1.3 1.00 0.9168 0.8570 0.7698 0.7302 0.7374 
x  

t  
0.6 0.7 0.8 0.9 1.0  

0.1 0.2093 0.1406 0.1158 0.0880 0.0664  

0.4 0.4764 0.4653 0.3897 0.3547 0.2888  

0.7 0.5320 0.4986 0.4590 0.4381 0.3978  

1.0 0.5833 0.5315 0.4967 0.4678 0.4607  

1.3 0.5907 0.5612 0.5392 0.4839 0.4546  

 
 
 

 
TABLE III ABSOLUTE ERROR OF THE TRADITIONAL FORWARD TIME 
CENTRAL SPACE METHOD (FTCS) APPROXIMATION 
   ( , )e x t     
x  

t  
0.0 0.1 0.2 0.3 0.4 0.5 

0.1 0.00 0.0027 0.0048 0.0061 0.0066 0.0066 

0.4 0.00 0.0011 0.0022 0.0030 0.0037 0.0043 

0.7 0.00 0.0007 0.0014 0.0019 0.0024 0.0028 

1.0 0.00 0.0005 0.0009 0.0014 0.0017 0.0020 

1.3 0.00 0.0003 0.0007 0.0010 0.0013 0.0015 
x  

t  
0.6 0.7 0.8 0.9 1.0  

0.1 0.0062 0.0056 0.0049 0.0042 0.0036  

0.4 0.0047 0.0050 0.0052 0.0053 0.0054  

0.7 0.0032 0.0035 0.0037 0.0039 0.0041  

1.0 0.0023 0.0025 0.0027 0.0029 0.0030  

1.3 0.0017 0.0019 0.0020 0.0022 0.0023  
 
 
 

 

TABLE IV ABSOLUTE ERROR OF THE FOURTH-ORDER RUNGE–KUTTA 
EQUATION APPROXIMATION 
   ( , )e x t     
x  

t  
0.0 0.1 0.2 0.3 0.4 0.5 

0.1 0.00 0.0022 0.0100 0.0025 0.0039 0.0031 

0.4 0.00 0.0007 0.0010 0.0024 0.0019 0.0018 

0.7 0.00 0.0005 0.0008 0.0009 0.0013 0.0013 

1.0 0.00 0.0003 0.0010 0.0007 0.0008 0.0008 

1.3 0.00 0.0002 0.0012 0.0005 0.0007 0.0007 
x  

t  
0.6 0.7 0.8 0.9 1.0  

0.1 0.0028 0.0026 0.0023 0.0019 0.0016  

0.4 0.0023 0.0023 0.0024 0.0024 0.0025  

0.7 0.0015 0.0016 0.0017 0.0018 0.0019  

1.0 0.0011 0.0012 0.0012 0.0013 0.0014  

1.3 0.0008 0.0008 0.0009 0.0011 0.0017  
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