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Abstract—This paper devotes to study the strict-feedback
uncertain nonlinear systems with input delays and saturations,
a fuzzy adaptive tracking control strategy is offered in an
adaptive backstepping recursive framework. Firstly, the Pade
approximation method is introduced to overcome the difficulty
of input delays in the network systems. Then, the fuzzy-logic
systems (FLSs) are invoked to deal with the unknown nonlinear
function, and the output of the system does not violate the
qualification by using the barrier Lyapunov function (BLF). In
addition, the boundary estimation method is flexibly used for
the issue of unknown control coefficients, also the hyperbolic
tangent function is combined to realize fast compensation for
input saturations. Finally, the simulation results indicate that
all signals within the closed-loop are uniformly bounded, and
the tracking error converges to a small vicinity of the origin,
which demonstrates the rationality of the method.

Index Terms—Fuzzy-logic systems, Input delays, Barrier
Lyapunov function, Output constraint, Input saturations

I. INTRODUCTION

ALL the time, the research on nonlinear systems has
consistently been a central concern for a great many

scholars. The extensive application of nonlinear systems in
diverse fields such as industrial control [1], power systems
[2], and aerospace control [3] makes it extremely crucial
to ensure the safety and reliability of these systems. For
this reason, numerous advanced control strategies have been
developed to tackle the nonlinear problems present in engi-
neering practice. Among them, FLSs have become the pri-
mary means for modeling uncertain functions and achieved
accurate estimation of unmeasurable states by designing state
observers [4]. In view of reducing the complexity of online
computation, several adaptive-based optimal control schemes
were discussed in [5]-[6]. Furthermore, the method described
in [7] was applicable to the control of high-dimensional
systems. The proposed strategies in this works did not require
the system to possess a specific parametric form and can
effectively overcome the challenges of stability loss and poor
transient performance. It is essential to note that the unknown
control direction is also one of the significant factors con-
tributing to system performance degradation. By introduc-
ing micro-adjustable auxiliary functions [8] and Nussbaum
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functions [9], the obstacles posed by the unknown control
direction were effectively circumvented, thereby improving
the robustness of the system in complex environments.

Meanwhile, input delays cannot be avoided in real indus-
trial systems due to communication bandwidth and signal
transmission. It may significantly weaken the dynamic per-
formance of the system, thereby affecting the production
of real industrial systems, so exploring the control system
with input delays is of profound practical importance. Over
the past few decades, many scholars have been working on
solving the input delay issue. Specifically, with the aid of
auxiliary systems, the difficulties created by input delays can
be quickly tackled in [10]-[11]. In addition, the introduction
of the Pade approximation [12]-[13] gave an alternative idea
for solving the input delay issues in nonlinear networks.
Based on this, a condition for the finite-time stability of the
system was brought up in [14], and the state feedback control
rate was designed in combination with a power integrator.
However, since the convergence within a finite time is
influenced by the initial state of the system and is not feasible
to predict in advance, a class of fixed-time fault tolerant
control methods relying on fuzzy adaptation was proposed
for nonlinear systems with input delays [15]-[17], which
provides some new ideas for the study of this problem. It
should be considered that although some meaningful findings
have been achieved in dealing with the input delay problem,
there are still certain challenges in handling the effects of
input saturations in practical engineering applications.

As an inherent and prevalent characteristic of nonlinear
systems, input saturation not only poses certain obstacles to
the design of controllers but also potentially precipitate sys-
tem instability. To confront this formidable challenge, there
have been some results that approximate input saturation with
the help of smoothing functions [18]-[19], or compensate
it by constructing auxiliary systems [20]. Furthermore, by
invoking the predefined time performance functions and
smooth functions, the stability of the system under input
saturations [21] was guaranteed, and the precise tracking of
the state trajectory was realized within a predefined time.
However, when the saturation function exhibits asymmetric
features, the complexity of control escalates significantly.
Therefore, a Gaussian function was introduced to construct
the saturation model, and a robust adaptive control method
was devised for the pure feedback system [22] by combining
the implicit function and the BLF. It can be found that
limitations on the state of the system are frequently desirable
in practical systems. The BLF has emerged as an effective
technique for addressing output constraint issues, and there
have been some notable results in [23]-[25]. In subsequent
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work, the asymmetric BLF has turned into an effective instru-
ment to tackle systems with asymmetric output constraints.
Building on these advancements, Yang et al. [26] relaxed
the Lipschitz continuity condition by designing a high-gain
observer, thus reducing the complexity of the algorithm.
It should be emphasised that although numerous control
methods have been developed for input saturations and state
limitations, solving the general nonlinear problem of input
delays on this basis is still an unexplored area, especially
when considering systems with unknown control coefficients,
which creates considerable challenges for control design,
thus further motivating our investigation.

Inspired by the above findings, to rapidly address the
influence of the input delays and saturations on systems
with unknown control direction, while maintaining the output
tracking within the specified bounds, an effective fuzzy adap-
tive control scheme is presented in this article. In addition,
the specific contributions are listed below:

1) Compared with the work in [11], [12] and [13], a fuzzy
adaptive controller is developed by applying the hyperbolic
tangent function and the Pade approximation method, which
are capable of being applied in complex systems with input
delays and saturations, thus having higher practical engineer-
ing value.

2) Different from the traditional adaptive control strategies
in [11], [12] and [14], the BLF is introduced as an effective
constrained control strategy that guarantees the transient and
steady state responses of the system, and meanwhile realizes
the accurate tracking of outputs.

3) Unlike the existing error transformation methods pro-
posed in [11], [13], [16] and [23], the upper and lower bounds
of the unknown coefficients are constructed by combining the
boundary estimation methods, which can be directly used to
tackle nonlinear systems having unknown control directions.

The paper is structured as follows. Section 2 provides the
system description and preliminaries. Section 3 focuses on
building the adaptive controller and analyzing its stability.
In the end, two examples are drawn out to enhance the
persuasive power of the theoretical results.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Introduce the following SFNSs with unknown control
coefficients

ẋi = Ψi(x̄i)xi+1 + fi(x̄i) + βi(x, t),

i = 1, 2, . . . , n− 1

ẋn = Ψn(x̄n)u(t− τ) + fn(x̄n) + βn(x, t)

y = x1

(1)

where x̄i = [x1, x2, . . . , xi]
T ∈ Ri, x ∈ Rn and y ∈ R

denote the input and output variables. fi(·) and βi(x, t) rep-
resent the unknown nonlinear function and the disturbance,
respectively. τmax is the upper limit of the unknown delay
constant τ , and the output vector y satisfies |y| ≤ km1 with
km1 > 0.

In view of dealing with input delays, the pade approximate
method in [13] is introduced here as follows

ω {u(t− τ)} = e(−τℵ)ω {u(t)} =
e(

−τℵ
2 )

e(
τℵ
2 )

ω {u(t)}

≈
1− τℵ

2

1 + τℵ
2

ω {u(t)}
(2)

where ℵ denotes the variable, ω {u(t)} represents the Laplace
transform of u(t), and the additional variable xn+1 is specif-
ically described by

1− τℵ
2

1 + τℵ
2

ω {u(t)} = ω {xn+1(t)} − ω {u(t)} (3)

Next, a simple calculation gives

2ω
{
uF
i (t)

}
= ω {xi,n+1(t)}+

τℵ
2
ω {xi,n+1(t)} (4)

Combining the Laplace inverse transform, we get

ẋi,n+1 = −τ̄xi,n+1 + 2τ̄uF
i (5)

where τ̄ = 2
τ .

Next, the saturation model with respect to v can be
formulated by

u(v) = sat(v) =

F1, v ≥ F1

v, f1 < v < F1

f1, v ≤ f1

(6)

where u(v) means the saturated input, f1 and F1 stand for
the unknown lower and upper bounds of v.

With the aid of the hyperbolic tangent function, it holds
that

c(v) =

{
F1tanh(

v
F1

), v ≥ 0

f1tanh(
v
f1
), v < 0

(7)

where sat(v) satisfies sat(v) = c(v) + ζ(v), and |ζ(v)| ≤ Q
is the boundary of ζ(v).

For this, invoking the mean value theorem yields

c(v) = c(v0) + cµ(v − v0) (8)

where µ satisfies 0 < µ < 1, and it gives

cµ =
∂cv
∂v

|v=vµ =
4

(ev/Mµ+e−v/Mµ )2
|v=vµ (9)

Then, by setting v0 = 0, we arrive at

u(v) = cµ(v) + ς(v) (10)

By transformation analysis, the system (1) becomes

ẋi = Ψi(x̄i)xi+1 + fi(x̄i) + βi(x, t),

i = 1, 2, . . . , n− 1

ẋn = Ψn(x̄n)xn+1−Ψn(x̄n)u(v)+ fn(x̄n)+ βn(x, t)

ẋn+1 = −τ̄xn+1 + 2τ̄u

y = x1

(11)
Remark 1. To cope with the input delays in networked

systems, we define a variable xn+1 that does not represent
the actual state variable. In particular, due to the existence of
error variable xn+1, how to construct an effective coordinate
transformation to make the selection of the controller meet
the actual requirements is also a difficulty to be overcome in
this article.

Firstly, in view of achieving the desired control objectives,
we provide a few assumptions:

Assumption 1. [17] There exists a bound for the distur-
bance βi(x, t), such that |βi(x, t)| ≤ β̄i.

Assumption 2. [13] If the reference signal yd(t) and its
time derivatives y(k)d (t) for 1 ≤ k ≤ n are bounded and con-
tinuous, then there exist positive constants χ0, χ1, χ2, . . . , χn

such that |yd(t)| ≤ χ0 and
∣∣∣y(k)d (t)

∣∣∣ ≤ χk, ∀t ≥ 0.
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Assumption 3. [15] The uncertain nonlinear vectors
Ψi(x̄i) in system (1) are well-defined, and its lower and up-
per bounds are chosen as 0 < hi = Ψi ≤ Ψi(t) ≤ Ψi = Hi.

Assumption 4. For a given small positive number cm, one
can find a positive number cµ that satisfies 0 < cm < cµ < 1.

Remark 2. Assumptions 1 and 2 are typical and evidently
quite reasonable preconditions. In particular, it is noted that
Ψi is unknown in Assumption 3, so it only applies to the
stability analysis and does not participate in the controller
design. Assumption 4 establishes the range of the gain cµ and
its lower limit, which quickly compensates for the negative
influences of input saturation, and prevents the degradation
of system performance resulting from excessive gains.

Next, we give the specific form of FLSs

y(x) =

∑N
i=1 ỹl

∏n
i=1µF l

i
(xi)∑N

l=1

∏n
i=1 µF l

i
(xi)

(12)

where x = [x1, x2, . . . , xn]
T denotes the input of the system,

y is a result of the system output, ỹl = maxy∈RµP l(y),
µFi

l(xi) and µP l(y) represent the functions defined in the
fuzzy sets F l

i and P l.
Accordingly, the fuzzy basis function complies with

φl =

∏n
i=1µF

l
i (xi)∑N

l=1

∏n
i=1 µF

l
i (xi)

(13)

Then, the final output of (12) is organized as

y(x) = ηTϕ(x) (14)

To simplify the design of the system (1), a few lemmas
are given here:

Lemma 1. [15] Take f(x) as a continuous function on the
compact set Ξ, and it follows that

sup
x∈Ξ

∣∣f(x)− ηTϕ(x)
∣∣ < ξ (15)

where ξ > 0 is the approximation error.
Lemma 2. [22] Postulate that there is an upper bound

kb1 > 0, and for any z1 ∈ R, the inequality |z1| < kb1 is
fulfilled. Then, we have

log
k2b1

k2b1 − z21
<

z21
k2b1 − z21

(16)

III. DESIGN OF ADAPTIVE FUZZY CONTROLLER

This section presents a fuzzy adaptive control strategy that
relies on the Lyapunov stability theory, and the stability proof
of model (1) is completed by introducing BLF. Subsequently,
the variable changes are set as follows

z1 = x1 − yd

zi = xi − αi−1, i = 2, 3, · · · , n− 1

zn = xn − αn−1 +
1

τ̄
Hnxn+1

(17)

Remark 3. The virtual control αi−1 appears at each step
and the actual control input v is given at step n. In particular,
1
τ̄Hnxn+1 is regarded as a way to get rid of the previously
introduced xn+1 and prepare for the subsequent processing
of the unknown control direction.

Step 1: Exploiting the coordinate transformation (17), one
has

ż1 = Ψ1x2 + f1(x̄1) + β1(x, t)− ẏd (18)

To guarantee that z1 does not violate the expected con-
straint bounds, the BLF is invoked as

V1 =
1

2h1
log

k2b1
k2b1 − z21

+
1

2r1
θ̃21 (19)

where r1 > 0, h1 > 0, θ̂1 is the estimated value of θ1, and
the estimation error θ̃1 = θ1 − θ̂1.

From (18) and (19), we have

V̇1 =
z1ż1

h1(k2b1 − z21)
− θ̃1θ̇1

r1

=
z1

h1(k2b1 − z21)
(Ψ1x2 + f1(x̄1) + β1(x, t)

− ẏd)−
θ̃1θ̇1
r1

(20)

Invoking Young’s inequality, the following holds

z1
h1(k2b1 − z21)

β1(x, t) ≤
z21

2h2
1(k

2
b1 − z21)

2
+

β̄2
1

2
(21)

Obviously, a straightforward calculation shows that

V̇1 ≤ z1
h1(k2b1 − z21)

(
Ψ1z2 +Ψ1α1 +

z1
2h1(k2b1 − z21)

− ẏd + f1(x̄1)

)
+

β̄2
1

2
− θ̃1

˙̂
θ1
r1

(22)

Similarly, we can get

z1z2
h1(k2b1 − z21)

Ψ1 ≤ z21H
2
1

2h2
1(k

2
b1

− z21)
2
+

z22
2

≤ z21
2(k2b1 − z21)

2
+

z22
2

(23)

Then, (22) is recalculated as

V̇1 ≤ z1
h1(k2b1 − z21)

(
Ψ1α1 + f1(x̄1) +

h1z1
2(k2b1 − z21)

+
z1

2h1(k2b1 − z21)
− ẏd

)
+

β̄2
1

2
− θ̃1

˙̂
θ1
r1

+
z22
2

(24)

Let f̄1(x1) = f1(x̄1)+
h1z1

2(k2
b1−z2

1)
+ z1

2h1(k2
b1−z2

1)
− ẏd. Next,

the Lemma 1 is invoked to fuzzy approximate

f̄1(x1) = ηT1 ϕ1(x1) + ξ1(x1) (25)

where ξ̄1 > 0 represents the upper bound of the error, with
|ξ1(x1)| ≤ ξ̄1 holding.

From Young’s inequality, one has

z1
h1(k2b1− z21)

ηT1 ϕ1(x1)≤
z21 ∥η1∥

2
ϕT
1 (x1)ϕ1(x1)

2a21(k
2
b1− z21)

2
+

a21
2h2

1

z1
h1(k2b1 − z21)

ξ1(x1)≤
z21

2ρ21(k
2
b1 − z21)

2
+

ρ21ξ̄
2
1

2h2
1

(26)
Then, there exists

V̇1 ≤ z1
h1(k2b1 − z21)

Ψ1α1 +
z21θ1ϕ

T
1 (x1)ϕ1(x1)

2a21(k
2
b1 − z21)

2

+
z21

2ρ21(k
2
b1 − z21)

2
+

a21
2h2

1

+
z22
2

+
β̄2
1

2

+
ρ21ξ̄

2
1

2h2
1

− θ̃1
˙̂
θ1
r1

(27)
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where a1 and ρ1 are positive design constants. The parameter
θ1 satisfies θ1 = ∥η1∥2.

Naturally, the control signal α1 and adaptive law ˙̂
θ1 are

designed as

α1 =
−z1θ̂1ϕ

T
1 (x1)ϕ1(x1)

2a21(k
2
b1 − z21)

− z1
2ρ21(k

2
b1 − z21)

− c1z1

˙̂
θ1 =

r1z
2
1ϕ

T
1 (x1)ϕ1(x1)

2a21(k
2
b1 − z21)

2
− σ1θ̂1

(28)

Substituting (28) into (27) yields

V̇1 ≤ −c1z
2
1

k2b1 − z21
+

σ1θ̃1θ̂1
r1

+
a21
2h2

1

+
z22
2

+
β̄2
1

2
+

ρ21ξ̄
2
1

2h2
1

(29)

It is well known that

θ̃1θ̂1 = θ̃1(θ1 − θ̃1) ≤
1

2
θ21 −

1

2
θ̃21 (30)

Therefore, we can easily get that

V̇1 ≤ −c1z
2
1

k2b1 − z21
+

σ1θ
2
1

2r1
− σ1θ̃

2
1

2r1
+

a21
2h2

1

+
z22
2

+
β̄2
1

2
+

ρ21ξ̄
2
1

2h2
1

=
−c1z

2
1

k2b1 − z21
− σ1θ̃

2
1

2r1
+

z22
2

+ d1

(31)

where d1 =
a2
1

2h2
1
+

σ1θ
2
1

2r1
+

β̄2
1

2 +
ρ2
1ξ̄

2
1

2h2
1

.
Step i(2 ≤ i ≤ n− 1): Design the ensuing dynamics for

Vi

Vi = Vi−1 +
1

2hi
z2i +

θ̃2i
2ri

(32)

Its derivative is described as

V̇i = V̇i−1 +
ziżi
hi

− θ̃i
˙̂
θi
ri

(33)

Noting the transformation (17), we have

żi = Ψixi+1 + fi(x̄i) + βi(x, t)− α̇i−1 (34)

where

α̇i−1 =
i−1∑
k=1

∂αi−1

∂xk
(fk(x̄k) + Ψkxk+1 + βk(x, t))

+
i−1∑
k=0

∂αi−1

∂y
(k)
d

y
(k+1)
d +

i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk

(35)

Obviously, there exists

zi
hi

(
∂αi−1

∂xk

)
βk(x, t) ≤

z2i
2h2

i

(
∂αi−1

∂x2
k

)2

+
β̄2
k

2

zi
hi

βi(x, t) ≤
z2i
2h2

i

+
β̄2
i

2

(36)

Consequently, one can obtain

V̇i−1 ≤zi−1zi
hi

+
−c1z

2
1

k2b1 − z21
−

n−1∑
k=1

σkθ̃
2
k

2rk

−
n−1∑
k=2

ckz
2
k +

i−1∑
k=1

dk

(37)

where dk =
a2
k

2h2
k
+

σkθ
2
k

2rk
+
∑k

l=1
β̄2
k

2 +
ρ2
k ξ̄

2
k

2h2
k

.

By leveraging (33)-(37), we arrive at

V̇i ≤
−c1z

2
1

k2b1 − z21
−

i−1∑
k=2

ckz
2
k +

i−1∑
k=1

dk −
i−1∑
k=1

σkθ̃
2
k

2rk

+
i∑

l=1

β̄2
i

2
− θ̃i

˙̂
θi
ri

+
zi
hi

(
zi−1 + fi(x̄i) +

zi
2

+
zi
2

i−1∑
k=1

(
∂αi−1

∂xk

)2

−
i−1∑
k=0

∂αi−1

∂y
(k)
d

y
(k+1)
d

)

− zi
hi

( i−1∑
k=1

∂αi−1

∂xk
(fk(x̄k) + Ψkxk+1)

−
i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk +Ψi(zi+1 + αi)

)

=
−c1z

2
1

k2b1 − z21
−

i−1∑
i=2

ckz
2
k +

i−1∑
k=1

dk −
i−1∑
k=1

σkθ̃
2
k

2rk

− θ̃i
˙̂
θi
ri

+
i∑

l=1

β̄2
i

2
+

zi
hi

(Ψizi+1+Ψiαi+ f̄i(xi))

(38)

where

f̄i(xi) =zi−1 + fi(x̄i) +
zi
2
+

zi
2

i−1∑
k=1

(
∂αi−1

∂xk

)2

−
i−1∑
k=0

∂αi−1

∂y
(k)
d

y
(k+1)
d −

i−1∑
k=1

∂αi−1

∂θ̂k

˙̂
θk

−
i−1∑
k=1

∂αi−1

∂xk
(fk(x̄k) +Hkxk+1)

By referring to Young’s inequality, it leads to

zi
hi

f̄i(xi) ≤
z2i ∥ηi∥

2
ϕT
i (xi)ϕi(xi)

2a2i
+

a2i
2h2

i

+
z2i
2ρ2i

+
ρ2i ξ̄

2
i

2h2
i

(39)

Further more

V̇i ≤
−c1z

2
1

k2b1 − z21
−

i−1∑
k=2

ckz
2
k +

i−1∑
k=1

dk −
i−1∑
k=1

σkθ̃
2
k

2rk

− θ̃i
˙̂
θi
ri

+
i∑

l=1

β̄2
i

2
+

z2i θiϕ
T
1 (x1)ϕ1(x1)

2a2i
+

a2i
2h2

i

+
z2i
2ρ2i

+
ρ2i ξ̄

2
i

2h2
i

+
zi
hi

(Ψizi+1 +Ψiαi)

(40)

where θi = ∥ηi∥2.
Take the control signal αi and the adaptive law ˙̂

θi as

αi =
−ziθ̂iϕ

T
i (xi)ϕi(xi)

2a2i
− zi

2ρ2i
− cizi

˙̂
θi =

riz
2
i ϕ

T
i (xi)ϕi(xi)

2a2i
− σiθ̂i

(41)

Next, combining (40) and (41), a simple calculation gives

V̇i ≤
−c1z

2
1

k2b1 − z21
−

i−1∑
k=2

ckz
2
k +

i−1∑
k=1

dk −
i−1∑
k=1

σkθ̃
2
k

2rk
+

a2i
2h2

i

+
ρ2i ξ̄

2
i

2h2
i

+
i∑

l=1

β̄2
i

2
+

σiθ̃iθ̂i
ri

− ciz
2
i + zizi+1

(42)
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and

θ̃iθ̂i = θ̃i(θi − θ̃i) ≤
θ2i
2

− θ̃2i
2

(43)

Then, we deduce that

V̇i ≤
−c1z

2
1

k2b1 − z21
−

i∑
k=2

ckz
2
k +

i∑
k=1

dk

−
i∑

k=1

σkθ̃
2
k

2rk
+ zizi+1

(44)

where di =
a2
i

2h2
i
+

σiθ
2
i

2ri
+
∑i

l=1
β̄2
i

2 +
ρ2
i ξ̄

2
i

2h2
i

.
Step n: It is worth noting that the actual controller v only

occurs in the last step, and the following Lyapunov function
holds

Vn = Vn−1 +
1

2hn
z2n +

θ̃2n
2rn

(45)

Based on (11) and (17), one arrives at

V̇n =V̇n−1 +
zn
hn

(ẋn − α̇n−1 +
1

τ̄
Hnẋn+1)−

θ̃n
˙̂
θn
rn

=V̇n−1+
zn
hn

(Ψnxn+1−Ψnu(v)+ fn(x̄n)+ βn(x, t)

− α̇n−1 −Hnxn+1+ 2Hnu(v))−
θ̃n

˙̂
θn
rn

≤V̇n−1 +
zn
hn

((2Hn − hn)c(v) + fn(x̄n)

+ βn(x, t)− α̇n−1)−
θ̃n

˙̂
θn
rn

(46)
where

α̇n−1 =
n−1∑
k=0

∂αn−1

∂xk
(fk(x̄k) + Ψkxk+1 + βk(x, t))

+

n−1∑
k=1

∂αn−1

∂θ̂k

˙̂
θk +

n−1∑
k=0

∂αn−1

∂y
(k)
d

y
(k+1)
d

(47)

Furthermore, there exists

zn
hn

(
∂αn−1

∂xk

)
βk(x, t) ≤

z2n
2h2

n

(
∂αn−1

∂xk

)2

+
β2
k

2

zn
hn

βn(x, t) ≤
z2n
2h2

n

+
β̄2
n

2

(48)

Substituting (47) and (48) into (46) yields

V̇n ≤ −c1z
2
1

k2b1 − z21
−

i∑
k=2

ckz
2
k +

i∑
k=1

dk −
i∑

k=1

σkθ̃
2
k

2rk

− θ̃n
˙̂
θn
rn

+
n∑

l=1

β̄2
l

2
+

zn
hn

(
zn−1 +

zn
2

+ fn(x̄n)−
n−1∑
k=1

∂αn−1

∂xk
(fk(x̄k)+ Ψkxk+1)

−
i−1∑
k=0

∂αn−1

∂y
(k)
d

y
(k+1)
d

)
+

zn
hn

(
zn
2

(
∂αn−1

∂xk

)2

−
n−1∑
k=1

∂αn−1

∂θ̂k

˙̂
θk + (2Hn − hn)(cµv + ς)

)

=
−c1z

2
1

k2b1 − z21
−

n−1∑
k=2

ckz
2
k +

n−1∑
k=1

dk −
n−1∑
k=1

σkθ̃
2
k

2rk

(49)

+
n∑

l=1

β̄2
l

2
− θ̃n

˙̂
θn
rn

+
zn
hn

((2Hn − hn)cµv + f̄n(xn))

By virtue of Assumption 3, it gives

f̄n(xn) =zn−1 +
zn
2

+ fn(x̄n) +
zn
2

(
∂αn−1

∂xk

)2

+Hnς −
n−1∑
k=1

∂αn−1

∂θ̂k

˙̂
θk −

n−1∑
k=0

∂αn−1

∂y
(k)
d

y
(k+1)
d

−
n−1∑
k=1

∂αn−1

∂xk
(fk(x̄k) +Hkxk+1)

Similarly, one can get

zn
hn

ηTϕn(xn) ≤
z2n ∥ηn∥

2
ϕT
n (xn)ϕn(xn)

2a2n
+

a2n
2h2

n

zn
hn

ξn ≤ z2n
2ρ2n

+
ρ2nξ̄

2
n

2h2
n

(50)

Additionally, let θn = ∥ηn∥2

cm
, under Assumption 4, the

virtual controller v and the adaptive law ˙̂
θn are produced

here

v =
−cnzn
cm

− znθ̂nϕ
T
n (xn)ϕn(xn)

2a2n
− zn

2cmρ2n

˙̂
θn =

rnz
2
ncmϕT

n (xn)ϕn(xn)

2a2n
− σnθ̂n

(51)

and

θ̃nθ̂n = θ̃n(θn − θ̃n) ≤
θ2n
2

− θ̃2n
2

(52)

Based on (50)-(52), (49) becomes

V̇n ≤ −c1z
2
1

k2b1 − z21
−

n∑
k=2

ckz
2
k +

n∑
k=1

dk −
n∑

k=1

σkθ̃
2
k

2rk
(53)

where dn =
a2
n

2h2
n
+

σnθ
2
n

2rn
+
∑n

l=1
β̄2
n

2 +
ρ2
nξ̄

2
n

2h2
n

.
Noting Lemma 2, one can obtain

−c1z
2
1

k2b1 − z21
≤ −c1 log

k2b1
k2b1 − z21

(54)

Finally, the above discussion gives us

V̇n ≤ −cVn +ϖ (55)

where c = min {2ck, σk, k = 1, 2, . . . , n}, and ϖ =∑n
k=1 dk.
Relying on the aforementioned calculations, owing to the

boundedness of xi(t), zi(t) and θi(t) for i = 1, 2, . . . , n,
the actual control signal u(t) is bounded. By applying the
conditions stated in Assumption 2 and Lemma 2, considering
that |z1| ≤ kb1, and y(t) = yd(t) + z1(t) with |yd(t)| ≤ χ0.
Therefore, we can deduce that |y(t)| ≤ |yd(t)| + |z1(t)| <
χ0+kb1 = km1 for all t ≥ 0. In this way, the state constraints
are not transgressed.

Remark 4. Although the control of nonlinear systems
with input delays has been researched in [10], the obstacles
posed by unknown control directions were not sufficiently
considered. In addition, input delays are separated from the
input signal by the Pade approximation, which eases the
analytical process and can be applied to complex system
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(1) with input saturations and state constraints at the same
time, thus effectively meeting the requirements of control
engineering.

IV. SIMULATION STUDIES

This section verifies the credibility and practicality of the
theoretical results through two simulation examples.

Example1 : Consider a third-order nonlinear system

ẋ1 = x2 + f1(x̄1) + β1(x, t)

ẋ2 = x3 + f2(x̄2) + β2(x, t)

ẋ3 = u+ f3(x̄3) + β3(x, t)

ẋ4 = −τx4 + 2τu

(56)

where

f1(x̄1) =− 0.1sin(x1)

f2(x̄2) =0.01sin(x1x2)

f3(x̄3) =− e−x2
3sinx1cosx2

βi(x, t) =0.1sin(x1x2x3)cos(t), i = 1, 2, 3

On this basis, a subordinate function is chosen as

uF i
j
(xi) = e−

(xi−2+0.5j)2

8 , j = 1, 2, . . . , 7, i = 1, 2, 3 (57)

Now, we present the remaining parameters of the system.
Specifically, c1=5, c2=4, c3=3, ai = 0.5, ri = 1 and σi = 0.5
for i = 1, 2, 3, τ = 0.8, cm = 0.5, kb1 = 1, vmin = −2,
vmax = 0.5. The initial conditions are selected as x1 = x4 =
0, x2 = 0.2, x3 = 0.3, θ̂1 = θ̂2 = 0.1, θ̂3 = 0.2. Design the
reference signal yd = 0.2sin(t), and the state variable x1 is
constrained such that |x1| ≤ 0.3.

In accordance with the designed tracking control strategy,
Figs. 1-6 indicate the corresponding simulation findings. Fig.
1 depicts the output signal y and the predetermined trajectory
yd. The system states x2 and x3 are illustrated in Fig. 2. Fig.
3 shows the trajectory of variable x4. The response curves
of the adaptive laws θ̂1, θ̂2 and θ̂3 are presented in Fig. 4.
Moreover, the actual control signal v and the saturation input
sat(v) in Figs. 5 and 6 are bounded respectively.
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Fig. 1: State trajectories y and yd in Example 1.

Example2 : To further demonstrate the utility of the strat-
egy, we studied a one-link manipulator having the following
dynamics in an industrial system

Ap̈+ Cṗ+N sin(p) = v

F v̇ +Dv = u− Lq̇
(58)
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Fig. 2: System states x2 and x3 in Example 1.
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Fig. 3: New variable x4 in Example 1.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0 5

0

0.1

0.2

Fig. 4: Adaptive laws θ̂1, θ̂2 and θ̂3 in Example 1.
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Fig. 5: Control input v in Example 1.
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Fig. 6: Saturation input sat(v) in Example 1.

where p̈, ṗ, p, u are joint acceleration, velocity, position
and system input, A = 1kg · m2 is the rotor moment of
inertia, C = 1N · s/m2 is coefficient of viscous friction,
L represents the coefficient of reverse electromotive force,
D = 1Ω and F = 0.1D are the armature resistance and
armature inductance respectively.

Then, let x1 = p, x2 = ṗ, x3 = v, we then have

ẋ1 = x2 + β1(x, t)

ẋ2 = x3 + f2(x̄2) + β2(x, t)

ẋ3 = 10u+ f3(x̄3) + β3(x, t)

ẋ4 = −τx4 + 2τu

(59)

where

f2(x̄2) =− x2 − 0.8sin(x1)

f3(x̄3) =− 2x2 − 10x3

βi(x, t) =0.01sin(x1x2x3)cos(t), i = 1, 2, 3

Accordingly, the values of other parameters are taken as
c1 = 8, c2 = c3 = 5, ai = 0.4, ri = 1 and σi = 0.5 for
i = 1, 2, 3, cm = 0.5, kb1 = 1, and τ = 2 + 0.1sin(t).
The initial values are specified as x1 = 0, x2 = x4 = 0.1,
x3 = 0.2, θ̂1 = 0.1, θ̂2 = θ̂3 = 0.2. Given the reference
signal yd = 0.2sin(t) and the constraint that the system state
x1 is constrained to be |x1| ≤ 0.3. Furthermore, we define
vmin = −2 and vmax = 0.7.

Similarly, the analysis findings are illustrated in Figs. 7-
12. Of these, Fig. 7 displays the tracking curves for y and
yd. The system states x2, x3 and the variable x4 are shown
in Figs. 8 and 9. Additionally, the response curves of the
adaptive laws θ̂1, θ̂2, θ̂3, the actual control input v and the
saturation input sat(v) depicted in Figs. 10-12 are bounded,
respectively.

V. CONCLUSION

This paper is concerned with the fuzzy adaptive tracking
control issue of strict-feedback nonlinear systems with input
delays and saturations. By introducing a hyperbolic tangent
function into the Pade approximation method, it is guaranteed
that the control signal does not to violate the saturation
bound, even if input delays occur. Then, a fuzzy adaptive
controller is constructed in accordance with the boundary
estimation method and the BLF. Furthermore, the stability
analysis shows that all closed-loop signals are uniformly
bounded, and the output error converges to a small area near
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Fig. 7: State trajectories y and yd in Example 2.
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Fig. 8: System states x2 and x3 in Example 2.
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Fig. 9: New variable x4 in Example 2.
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Fig. 10: Adaptive laws θ̂1, θ̂2 and θ̂3 in Example 2.
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Fig. 11: Control input v in Example 2.
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Fig. 12: Saturation input sat(v) in Example 2.

the origin. However, continuous updates of the control signal
result in significant resource wastage, and ensuring the con-
vergence of system states to stability within a predefined time
remains a challenge. These issues will be further investigated
in future work.
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