
 

  

Abstract—To address the challenges of structural 

information loss in image feature extraction commonly 

encountered in current point cloud completion methods, as well 

as the limited capability of existing self-structured dual 

generators to effectively capture the spatial structures and fine 

details of point clouds, we propose an image-guided multi-level 

feature fusion point cloud completion model (IGMLNet). This 

model begins by designing an efficient residual feature 

extractor and integrating the ECA attention mechanism into 

the residual blocks of ResNet18. This integration enhances the 

model’s ability to perceive both spatial structures and 

fine-grained details, thereby improving the overall feature 

extraction from point clouds. Next, a multi-level feature fusion 

module is introduced, utilizing a hierarchical attention 

mechanism that allows for comprehensive integration of 

cross-modal features from both point clouds and images. This 

facilitates the deep fusion and optimization of information from 

different modalities, enhancing the model's ability to leverage 

complementary information for more accurate completion. 

Furthermore, a Structured point cloud recovery module is 

employed to address the issues of missing and incomplete data 

in rough point clouds. Through deep refinement and structural 

reconstruction, this module significantly improves the 

completeness and quality of the reconstructed point clouds. The 

model has been thoroughly evaluated through extensive 

comparison and ablation experiments on the PCN and 

ShapeNet55 datasets. The experimental results demonstrate 

that IGMLNet achieves superior performance, maintaining 

high integrity while producing point clouds with rich surface 

details and accurate geometric features. 

 
Index Terms—Point Cloud Completion, Efficient Channel 

Attention, Multi-level Feature Fusion, Point cloud optimization  

 

I. INTRODUCTION 

N recent years, point clouds have gained significant 

attention as a representation of 3D objects. They can be 

easily captured by 3D scanning devices and depth cameras. 

However, due to limited viewpoints or occlusions, as well as 

sensor resolution constraints, the raw point clouds captured 

by 3D scanners and depth cameras are often sparse and 
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incomplete. As a result, point cloud completion, which 

involves predicting a complete point cloud from a partial one, 

plays a crucial role in various downstream tasks in computer 

vision. Thanks to large-scale point cloud datasets, recent 

research on point cloud completion [1], [2], [3], [4], [5], has 

successfully leveraged deep learning methods, which have 

shown to outperform traditional geometry-based [6], [7], [8] 

and alignment-based methods [9], [10], [11], providing more 

reliable and flexible results. Deep learning-based point cloud 

completion methods have attracted increasing research 

interest. Although various learning-based techniques have 

demonstrated promising results [12], [13], [14], [15], the 

sparsity and structural incompleteness of the captured point 

clouds still limit the ability of these methods to produce 

satisfactory results. We identify two main challenges in this 

task. 

The first challenge is that key semantic parts may be 

missing, leading to a significant gap in how point-based 

networks recognize global shapes and locate missing regions. 

Most of the papers on point cloud completion [16], [17], [18], 

[19], have primarily focused on unimodal problems, where 

only prior knowledge about the 3D shape is utilized. It was 

only recently that image-guided completion started receiving 

attention, with the expectation that point cloud completion 

techniques could benefit from 2D images. Some methods 

attempt to address this by incorporating additional color 

images [20], [21], but paired images are often difficult to 

obtain and may not be well-calibrated in terms of intrinsic 

parameters. ViPC uses an additional single-view image to 

provide global shape priors during the coarse completion 

stage. However, in the refinement stage, due to the simple 

concatenation of features learned from different modalities, it 

fails to recover high-frequency details and local topology of 

complex shapes. As a result, the shapes completed by ViPC 

tend to be noisy and lack finer geometric details. CSDN 

reformulates the fusion of image and point cloud features as a 

shape style transfer problem. The affine parameters in 

instance normalization, generated from different image 

features, alter the point-wise feature statistics, normalizing 

the output point cloud into different shapes. However, relying 

solely on instance normalization for statistical features may 

not fully capture the complex correspondences between 

images and point clouds, leading to the loss of some 

fine-grained local features. 

The second challenge is how to infer detailed structures. 

Snowflakenet [3] and FBNet [15] use skip connections 

between multiple refinement steps, enabling them to better 

utilize previously learned shape patterns to iteratively restore 

finer details. However, for regions with subtle changes, 

complex textures, or irregular shapes, it can still be difficult 

to recover accurate details. VRCNet [22] enhances the 
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preservation of original details by structuring relationships, 

which performs well in retaining original details. However, 

in some complex or highly sparse point clouds, the 

completion results may still not be perfect. Seedformer 

retains more local and global information through 

non-pooling encoding methods [23], but if the seed points 

and the quality of the known point cloud are poor, the 

completion performance may degrade significantly. 

SVDFormer captures global shapes from point cloud data 

and depth maps from multiple viewpoints. To better utilize 

cross-modal information, it introduces a feature fusion 

module that enhances interaction between views, improving 

recognition efficiency. It also uses a self-structural dual 

generator to refine coarse completions. However, the image 

feature extraction in SVDFormer is too simplistic, leading to 

the loss of important structural information from the image. 

Despite the fusion mechanism achieving decent results, 

alignment issues between different modalities may still arise, 

leading to dimensional mismatches and information loss. The 

self-structural dual generator can generate finer and smoother 

point clouds to some extent, but its perception of point cloud 

feature spatial structures and detail information needs further 

enhancement to better restore point cloud contours and 

generate more refined point clouds. 

In summary, we present the Image-guided Multi-level 

Feature Fusion Point Cloud Completion model, or IGMLNet. 

This model features an efficient residual feature extractor, 

which incorporates the ECA attention mechanism within the 

residual blocks of ResNet18. This integration sharpens the 

model's sensitivity to spatial structures and detailed areas, 

thereby guiding point cloud feature extraction with enhanced 

efficacy. Furthermore, we introduce a multi-level feature 

fusion module that leverages a hierarchical attention 

mechanism to thoroughly amalgamate cross-modal features 

from point clouds and images, realizing a profound 

integration and optimization of information across different 

modalities. 

To achieve point clouds that are more refined and complete, 

we have developed an innovative Structural Point Cloud 

Refinement Module. This module adeptly tackles the issues 

of missing and incomplete data in coarse point clouds 

through sophisticated refinement and structural 

reconstruction techniques. Employing a cascaded 

dual-module refinement strategy ensures the continuity and 

stability of the reconstruction process. The resultant point 

cloud model not only retains a high degree of completeness 

but also exhibits an abundance of surface details and precise 

geometric characteristics. 

II. RELATED JOBS 

Early learning-based methods [24], [25], [26], typically 

rely on voxelized 3D Convolutional Neural Networks (3D 

CNNs) to represent data. However, these methods face 

challenges such as high computational costs and limited 

resolution. Additionally, GRNet [4] and VE-PCN [27] use 

3D grids as intermediate representations during the point 

cloud completion process. 

In recent years, several end-to-end networks capable of 

directly processing point clouds have emerged. PCN [12], a 

pioneering point-based method, extracts features through a 

shared Multi-Layer Perceptron (MLP) and generates 

additional points in a coarse-to-fine manner using folding 

operations [28], enabling point cloud completion. Inspired by 

PCN, many subsequent point-based methods [18], [29], [23], 

have been proposed, further advancing the field. 

To overcome the limitations of relying solely on point data 

for local shape information, some studies [30], [31], have 

explored the use of auxiliary modalities to enhance 

completion performance, known as cross-modal methods. 

These approaches typically combine rendered color images 

with partial point cloud data, using corresponding camera 

parameters for completion. While these methods have shown 

good results in experiments, they often rely on additional data 

inputs that are difficult to obtain in real-world applications. 

In contrast to these 3D data-based methods, MVCN [32] 

performs completion in the 2D domain using a Conditional 

Generative Adversarial Network (GAN). However, this 

approach lacks the ability to leverage ground truth data, 

which contains rich spatial information, to supervise the 

completion results. Furthermore, some methods [30], [33] 

attempt to supervise point cloud completion in the 2D domain 

by projecting the completed points onto a 2D plane and 

comparing them with ground truth depth maps to calculate 

the loss. Unlike these methods, our approach provides a more 

comprehensive understanding of the overall shape by 

analyzing the structure of the 2D input itself, allowing for 

shape perception during training without the need for 

additional information or differentiable rendering. 

To generate high-quality details, many studies have 

introduced various strategies that optimize detail generation 

by learning the contextual and local spatial relationships of 

shapes. To achieve this, state-of-the-art methods have 

designed various improved modules to learn more accurate 

shape priors from the training data. For instance, 

SnowflakeNet [3] introduces Snowflake Point 

Deconvolution (SPD) and uses a skip-transformer to model 

the relationship between parent and child points. FBNet [15] 

employs a feedback mechanism during the refinement 

process to iteratively generate points. LAKe-Net [8] 

integrates surface skeleton representations into the 

refinement stage, facilitating the learning of missing 

topological structures. 

Another class of methods focuses on retaining and 

utilizing local information from partial inputs. One direct 

approach is to combine the generated results with partial 

input data to predict the missing points. Since point sets can 

be treated as sequences of tokens, PoinTr [8] uses a 

transformer architecture to predict missing point proxies. 

SeedFormer [23] introduces a shape representation method 

called "patch seeds" to prevent the loss of local information 

during pooling operations. In addition, some methods [16], 

[22], [34] enhance the generated shape in the refinement 

stage by leveraging structural relationships. However, these 

strategies typically apply a uniform refinement method to all 

points, which limits their ability to generate detailed 

geometric features for individual points. SVDFormer [35] 

extracts features from multi-view information and learns 

local shape priors and alignment similarity modules to 

generate point clouds in a coarse-to-fine manner. These 

methods have improved the accuracy of point cloud 

completion to some extent, introducing novel ideas for 

feature extraction and point cloud generation. However, they 
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still fail to fully address issues such as the uneven distribution 

of points in the completed point cloud, and the restored 

details may still be missing or incorrect. 

III. MODEL DESIGN 

The overall architecture of the proposed attention-based 

multi-level feature fusion point cloud completion model is 

shown in Figure 1. This architecture consists of two main 

parts.  

The first part is the generation of the rough point cloud. In 

this part, PointNet++ is used to extract point cloud features, 

and an efficient residual feature extractor is applied to extract 

features from the image projections of the incomplete point 

cloud. Unlike the standard ResNet18, the ECA attention 

mechanism is integrated into the residual blocks to enhance 

the perception of key features. This mechanism enables 

adaptive optimization of channel weights and effectively 

improves the learning of critical information. Then, the 

multi-level feature fusion module, which uses two layers of 

cross-attention mechanisms, performs preliminary feature 

alignment and deep complementary information extraction. 

This achieves a coarse-to-fine feature fusion process, 

effectively handling the modal differences between point 

clouds and images while avoiding information loss. A layer 

of self-attention is used to establish long-range dependencies 

within the feature space, capturing global semantic 

information to enhance feature representation and 

eliminating local noise to improve feature robustness. Next, 

through one-dimensional transposed convolution upsampling 

and self-attention processing in the decoder, the global 3D 

shape is generated. Finally, after merging the incomplete 

point cloud with the global shape generated by the decoder, a 

resampling process is applied to obtain the final rough point 

cloud. 

The second part is the generation of the refined point cloud. 

A structured point cloud refinement module is proposed, 

which employs a cascaded dual-module refinement strategy 

to perform deep refinement and structural reconstruction of 

the rough point cloud. The quality of the point cloud is 

significantly improved, resulting in a more accurate and 

complete point cloud. 

A. Rough Point Cloud Generation Network 

The rough point cloud generation network is designed to 

reconstruct an initial complete point cloud structure from the 

input incomplete point cloud. First, a three-layer PointNet++ 

architecture is employed to extract features from the 

incomplete point cloud, capturing geometric information and 

structural characteristics, and generating a global feature 

vector. The incomplete point cloud is then projected from 

three different viewpoints to create corresponding depth 

maps, and ResNet18 is utilized to extract image features. 

Next, a multi-level feature fusion module is applied, where a 

cross-attention mechanism integrates point cloud and image 

features, while a self-attention mechanism captures global 

contextual relationships, resulting in more comprehensive 

and expressive output features. In the decoder, the fused 

features undergo upsampling and further self-attention 

processing to generate the initial 3D point cloud. Finally, the 

generated 3D shape is combined with the input incomplete 

point cloud, followed by resampling to obtain the rough point 

cloud, which serves as the foundation for the subsequent fine 

reconstruction module. Through these steps, the network 

effectively extracts rich geometric and structural information, 

generates an initial complete point cloud, and lays a solid 

foundation for subsequent optimization and refinement. 

 

 

 
 

Fig. 1. The overall structural diagram of the Image-guided Multi-level Feature Fusion Point Cloud Completion Network 
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Fig. 2. The structural diagram of the Efficient Residual Feature Extractor 

 

1) Efficient Residual Feature Extractor: The Efficient 

Residual Feature Extractor is a high-efficiency feature 

extraction module that combines the ResNet18 residual 

network with the Efficient Channel Attention (ECA) 

mechanism, as illustrated in Figure 2. In this module, the 

ECA attention mechanism is integrated into the residual 

blocks of ResNet18, with the goal of adaptively adjusting the 

weights of each channel. This enables the network to focus 

more effectively on features that are most relevant to the task, 

while suppressing irrelevant or noisy information. The ECA 

mechanism assigns different weights to each channel, 

optimizing the skip connections within the residual blocks 

and enhancing the network's ability to learn essential 

features. 

This approach improves the network's sensitivity to both 

the spatial structure and fine details of the image, making the 

extracted features more complementary to the point cloud 

features during subsequent feature fusion. Furthermore, the 

introduction of the ECA attention mechanism does not 

significantly increase computational cost, allowing the model 

to improve performance while maintaining high efficiency. 

Specifically, the process begins by extracting shallow 

features from the input 2D image I through a convolutional 

layer, denoted as 
LF . The feature is then enhanced using 

Batch Normalization and the ReLU activation function, 

improving the model's stability and introducing non-linearity, 

resulting in the feature 
OF , as shown in the following 

equation: 

 3 3( )LF Conv I=   (1) 

 Re ( ( )O LF LU BN F=  (2) 

Next, a second convolution and Batch Normalization 

operation are applied to extract higher-level features 
HF . 

Finally, the features are weighted using the ECA attention 

module to generate the final output feature Fout
outF , as 

described by the equation: 

 Re ( ( 3 3( )))H OF LU BN Conv F=   (3) 

 ( )outF ECA FH=  (4) 

In these equations, 3 3Conv   represents the convolution 

operation, BN  stands for Batch Normalization, and 

Re LU ReLU denotes the ReLU activation function. 

2) Multi-level Feature Fusion Module: Point cloud data and 

2D image data typically come from the same scene, which 

leads to certain similarities in their features. However, as they 

belong to different modalities, there are significant 

differences in their feature representations and information 

structures. In practical applications, one of the key challenges 

is how to effectively fuse these two types of data while 

preserving fine-grained and learnable features. Some 

researchers have attempted to fuse the features by directly 

concatenating point cloud and image features, but 

experiments have shown that this approach is not optimal. 

The main issue lies in the inherent differences in feature 

representation and information characteristics between the 

two modalities, which makes simple concatenation 

insufficient to fully exploit their complementary strengths. 

To address this problem, inspired by Perceiver IO, a 

multi-level feature fusion module is proposed, The structure 

diagram is shown in Figure 3. This module leverages two 

layers of cross-attention mechanisms and one layer of 

self-attention mechanism to achieve deep fusion and 

optimization of image and point cloud features. The 

cross-attention mechanism enables point cloud features to 

capture additional structural information from image features, 

thus improving their expressiveness. Meanwhile, the 

self-attention mechanism captures global contextual 

relationships within the fused feature sequence, enhancing 

feature consistency and semantic understanding. 

In the first step of the module, the extracted point cloud 

features 
PF  and image features 

IF  are input into the 

cross-attention module. The point cloud features 
PF  are 

projected into a query tensor (𝑄), while the image features 

IF  are projected into key (𝐾) and value (𝑉) tensors. By 

calculating attention weights between the point cloud and 

image features, the cross-attention mechanism automatically 

learns the correlation and complementarity between the two 

modalities, generating an initial fused feature 
SF . This fused 

feature contains both the geometric information of the point 

cloud and the visual information from the image. During this 

process, the geometric information of the point cloud is 

preserved, preventing information loss or excessive fusion, 

and thus achieving a balanced multi-modal feature 

integration. 

 

 

 
 

Fig. 3. The structural diagram of the Multi-level Feature Fusion Module 
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This fusion strategy not only enhances the semantic 

understanding of point cloud features but also strengthens the 

role of image information in point cloud completion tasks, 

providing a solid foundation for subsequent self-attention 

optimization: 

 1

P QQ F W=  (5) 

 1

I KK F W=  (6) 

 1

I VV F W=  (7) 

 ( , , ) softmax( )
T

k

QK
CrossAttention Q K V V

d
=  (8) 

 ( , , )S PF CrossAttention Q K V F= +  (9) 

In this context, 1

QW , 1

KW , and 1

VW  are learnable projection 

weight matrices, and 
kd  is the dimension of the key vectors. 

The fused initial feature 
SF  is passed into the 

self-attention module to further enhance its expressiveness. 

By capturing the global contextual relationships within the 

feature sequence, the self-attention mechanism makes the 

fused features more consistent and coherent, thus optimizing 

the fused feature 
EF . The simplified computation formula is 

as follows, with the other parameters explained in the same 

way as in the first layer cross-attention mechanism: 

 ( )
T

k

QK
SelfAttention softmax

d
=  (10) 

 ( , , )EF SelfAttention Q K V=  (11) 

After the first layer of cross-attention and self-attention 

mechanisms, the enhanced feature 
EF  has already integrated 

multi-modal information from both the image and the point 

cloud. However, further optimization is still needed to refine 

the semantic relationships and structural details. Therefore, in 

the second layer of the cross-attention module, the enhanced 

feature 
EF  is used as the query, and image features 

IF  are 

reintroduced as the keys and values, further optimizing the 

alignment and fusion of cross-modal features. This step 

addresses any potential misalignment issues that may arise 

from the first cross-attention stage. It strengthens the feature 

transfer and optimization process, thereby improving the 

model’s overall computational efficiency and performance. 

Finally, the output feature 
OF  generated by the second-layer 

cross-attention module captures deeper cross-modal 

relationships and complex semantic associations. The 

simplified computation formula is as follows: 

 ( , , ) ( )
T

k

QK
CrossAttention Q K V softmax

d
=  (12) 

 ( , , )O EF CrossAttention Q K V F= +  (13) 

By utilizing two layers of cross-attention and one layer of 

self-attention, this module achieves multi-level feature fusion 

and optimization. First, the first layer cross-attention 

mechanism performs the initial cross-modal fusion, where 

point cloud features serve as queries and image features serve 

as keys and values, effectively integrating structural 

information and semantic details from the image into the 

point cloud features. This significantly enhances the 

expressive capability of the point cloud features. Next, the 

self-attention mechanism further enhances the initially fused 

features by capturing global contextual information and the 

inherent relationships between features, deepening and 

ensuring the consistency of the features, making the fused 

features more comprehensive and semantically richer. 

Finally, the second layer cross-attention mechanism 

reintroduces image features to further refine the fusion of 

multi-modal features, enhancing both the depth and the fine 

details of the fusion. This ensures that the final output 

features not only contain complementary multi-modal 

information but also possess higher expressiveness and 

global consistency. Through this multi-level feature fusion 

strategy, the model can deeply integrate information from 

different modalities and, through flexible feature interactions 

and dynamic weight distribution, significantly improve the 

performance and effectiveness of point cloud completion 

tasks. 

B. Fine-grained Point Cloud Generation Network 

To obtain a more refined and complete point cloud model, 

this paper introduces a refinement process after generating a 

rough point cloud. Inspired by SVDFormer[54], we propose 

an innovative structured point cloud recovery module. This 

module effectively addresses the issues of missing and 

incomplete data in the rough point cloud through deep 

refinement and structural reconstruction. Our approach 

adopts a cascaded dual-module refinement strategy. The first 

module is primarily responsible for initial optimization of the 

rough point cloud, focusing on restoring the overall structure 

and reconstructing key geometric features. Building upon 

this, the second refinement module further processes the 

point cloud, particularly enhancing the detail quality and 

geometric accuracy of local regions. This progressive 

refinement strategy allows the system to adaptively adjust the 

refinement level, maintaining global structural accuracy 

while gradually enhancing local details. Additionally, the 

synergistic effect of the two refinement modules ensures the 

continuity and stability of the reconstruction process. The 

final point cloud model not only maintains high completeness 

but also presents rich surface details and accurate geometric 

features. 

The structured point cloud recovery module refines the 

rough point cloud to obtain a high-resolution point cloud, as 

shown in Figure4. This process is achieved by fine-tuning 

and upsampling the local geometric structure of the missing 

point cloud. First, the rough point cloud generated by the 

rough point cloud generator is concatenated with the input 

incomplete point cloud, and farthest point sampling (FPS) 

[32] is applied to generate point cloud 
LF . Then, Chamfer 

Distance (CD) embedding is used to encode the relationship 

between the input incomplete point cloud and the generated 

point cloud. This encoding describes the differences between 

the two in a compact and informative way, capturing their 

feature discrepancies. Subsequently, the encoded information 

is fed into a self-attention layer along with the point cloud 
LF , 

helping the network more effectively identify and understand 

the shape of the missing regions, yielding intermediate 

features 
GF . Next, EdgeConv is used to extract the local 

structure of the input incomplete point cloud, and a 

cross-attention mechanism aligns the local features with 

features 
GF . In the cross-attention mechanism, the query
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Fig. 4. The structural diagram of the Structured Point Cloud Cecovery Module 

 

matrix comes from the results of the self-attention layer, 

while the key-value pairs come from the local structure of the 

incomplete point cloud. This alignment helps model the 

geometric similarity between the input incomplete point 

cloud and features 
GF , further assisting the refinement 

operation. 

To further improve the precision of point cloud refinement, 

we introduce Convolutional Block Attention Module 

(CBAM) to effectively capture and preserve the geometric 

details of point cloud features. The CBAM module 

emphasizes the most important feature channels for the 

refinement task by weighting the importance of each channel 

and suppressing irrelevant or redundant information, thus 

improving the accuracy and stability of the point cloud 

refinement. The CBAM module consists of two steps: 

channel attention and spatial attention. Finally, 𝐹𝑄 is 

obtained from the decoder. 

In channel attention, first, global average pooling and 

global maximum pooling are applied to the input features QF  

to generate two different context descriptions: 

 ( )avg QF AvgPool F=  (14) 

 max ( )QF MaxPool F=  (15) 

Where avgF  and 
maxF  both have the dimensions of 

1 1C   , with C  being the number of channels. 

Next, these two descriptions are processed through a 

shared fully connected layer to capture the inter-channel 

correlations. MLP (Multi-Layer Perceptron) is used to learn 

the dependencies between different channels and identify 

which channels are most important for the refinement task. 

The formula is as follows: 

 1( ) Re ( )avg avgMLP F LU W F=  (16) 

 
max 2 max( ) Re ( )MLP F LU W F=  (17) 

where 
1W  and 

2W  are the weight matrices of the two fully 

connected layers. Then, the outputs of the two MLPs are 

summed and passed through a sigmoid activation function to 

generate the channel attention weights: 

 2 max( ( ( ) ( )))c avgM W MLP F MLP F= +  (18) 

where   is the Sigmoid function, and 
cM  has dimensions 

1 1C   . Finally, the channel attention weights 
cM  are 

applied to QF  to obtain the enhanced features '

CF : 

 
'

C c QF M F=   (19) 

where   denotes the element-wise multiplication. By 

reducing the weight of unimportant channels, noise and 

redundant information are minimized, significantly 

improving the precision and stability of point cloud 

refinement. 

In spatial attention, first, the features are weighted in the 

spatial dimension to focus on key spatial regions of the point 

cloud, ensuring that the model attends to points or regions 

with important geometric information. The enhanced features 
'

CF , after the channel attention, are pooled in the spatial 

dimension using both average pooling and maximum pooling 

to generate two spatial descriptions: 

 
' '( )avg CF AvgPoolchannel F=  (20) 

 ' '

max ( )CF MaxPoolchannel F=  (21) 

where 
'

avgF  and '

maxF  have dimensions 1 H W  , with 

H  and W  representing the height and width of the feature 

map. Then, the average pooling and maximum pooling 

results are concatenated along the channel dimension to form 

a 2 H W   feature map: 

 
' ' '

max( )S avgF Concat F F= +  (22) 

By combining the average pooling and maximum pooling 

results, both global average information and extreme value 

information are fused, helping to better understand the 

important spatial regions and improve the accuracy of 

locating critical areas. A convolution operation is then 

applied to the concatenated feature map to capture the spatial 

dependencies.  

Similarly, the weights of each spatial position are 

generated via the sigmoid activation function: 

 '( )s SM F=  (23) 

where   is the Sigmoid function, and 
sM  has dimensions 

1 H W  . 

Finally, the spatial attention weights 
sM  are applied to the 

channel-attention-enhanced features '

CF , yielding the final 

enhanced features '

outF : 

 ' '

out s CF M F=   (24) 

The spatial attention mechanism helps the model 

accurately locate the key spatial regions in the point cloud, 

ensuring that these regions receive sufficient attention during 

the refinement process, thus improving the ability to capture 

and retain geometric details. The original features and the 

enhanced features are concatenated and passed through a 
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mapping layer to obtain the final coordinate offsets, which 

are then used to generate the refined point cloud. 

C. Loss Function and Evaluation Metrics 

To evaluate the difference between the generated point 

cloud and the ground truth 
gtP , we choose Chamfer Distance 

(CD) as the loss function. Chamfer Distance is a commonly 

used metric for point cloud generation and matching tasks, 

which measures the similarity between two point sets by 

calculating the distance from each point to its nearest 

neighbor. In recent years, Chamfer Distance has been widely 

applied in point cloud completion, generation, and 

reconstruction tasks due to its strong performance in 

capturing local structures of point clouds. 

Additionally, to support a coarse-to-fine generation 

process, we regularize the loss function during training. This 

regularization strategy helps guide the model to maintain 

global consistency throughout the generation process, while 

ensuring that details are gradually refined, thus improving the 

quality and accuracy of the generated point clouds. Through 

this approach, we are able to balance the recovery of global 

structure with the fine reconstruction of local details during 

training. The calculation formula is as follows: 

 ( , ) ( , )CD c gt CD i gtL L P P L P P= +  (25) 

Here, 1,2i = . During the calculation of the loss, the 

ground truth point cloud 
gtP  is downsampled to the same 

density as the predicted point sets 
cP  and 

iP . 

IV. EXPERIMENTS AND RESULTS ANALYSIS 

It is recommended that footnotes be avoided (except for 

the unnumbered footnote with the receipt date on the first 

page). Instead, try to integrate the footnote information into 

the text and the reference part. 

A. Datasets 

The PCN dataset originates from the ShapeNet database 

and covers eight object categories (such as airplanes, cars, 

chairs, tables, etc.), comprising over 30,000 pairs of point 

cloud data. Each object's point cloud data is divided into 

partial point clouds (2048 points) and complete point clouds 

(16,384 points). The partial point clouds are generated by 

simulating common occlusions and noise found in real-world 

scenarios, representing the kind of incomplete point clouds 

that sensors might encounter in practical applications. In 

contrast, the complete point clouds are high-density, lossless 

representations. The partial point clouds in this dataset are 

created through the backprojection of 2.5D depth images, 

effectively mimicking the missing features that sensors 

experience when capturing point cloud data. Due to its 

diverse object categories and realistic generation of missing 

data, the PCN dataset has become a benchmark for evaluating 

algorithm performance in the field of point cloud completion. 

The ShapeNet-55 dataset is a subset of the ShapeNet 

database, containing point clouds from 55 different object 

categories, totaling 52,470 point cloud models. The point 

cloud data in this dataset are generated through automated 3D 

scanning and manual CAD modeling, ensuring the diversity 

and high quality of the data. Each point cloud model features 

a complete point cloud with 8,192 points, while partial point 

clouds are created by masking out specific areas, retaining 

2,048 points. The ShapeNet-55 dataset includes a variety of 

object categories such as furniture, vehicles, and everyday 

items, making it suitable for testing the generalization 

capability of algorithms across a broader range of object 

types. As one of the largest publicly available 3D datasets, 

ShapeNet-55 provides a wealth of diverse data, facilitating 

the study of point cloud completion tasks and aiding in the 

evaluation of algorithm performance and stability on 

large-scale datasets. Both datasets are widely used in point 

cloud completion research for their representativeness and 

standardization, offering a comprehensive test of algorithm 

performance on real-world data. 

B. Experimental Environment and Parameter Settings 

 The experiments in this paper are conducted on an Ubuntu 

20.04 operating system, with hardware consisting of an 

i9-13900KF processor, 32GB of RAM, and an NVIDIA 

GeForce RTX 4060TI GPU. The model is implemented using 

the PyTorch and CUDA frameworks, and trained with the 

AdamW optimizer. The initial learning rate is set to 

5×10^(-4) , with an appropriate weight decay value. 

During training, the batch size for the PCN dataset is set to 

32, with a total of 300 epochs. The learning rate is decayed by 

a factor of 0.9 every 20 epochs. For the ShapeNet-55 dataset, 

the batch size is adjusted to 48, and training is carried out for 

200 epochs. At the end of each epoch, the best model is 

selected based on the validation set and evaluated on the test 

set. The network parameters are iteratively updated by 

optimizing the loss function, and the best model is chosen for 

final evaluation. 

C. Comparative Experimental Analysis 

1) Comparison Results on PCN Dataset: To 

comprehensively validate the effectiveness of the algorithm 

in this chapter, we compare it with several classical and 

advanced point cloud completion methods. The models for 

comparison include the baseline model SVDFormer and 

other models such as PCN [12], GRNet [4], PoinTr [8], 

SnowflakeNet [3], SDT [36], PMP-Net++ [37], and 

Seedformer [23]. The experimental results are presented in 

Table I. The Chamfer Distance (Manhattan norm, cd-l1) and 

F-Score (F1) are used to evaluate the quality of point cloud 

completion on the PCN dataset. The bolded values in the 

table represent the best result for each row. 

As shown in Table I, the algorithm proposed in this chapter 

outperforms other methods in terms of both the mean CD 

distance and F1 score across eight object categories. In 

particular, the mean CD distance is 1.2% better than the 

best-performing SVDFormer model. This indicates that the 

IGMLNet algorithm proposed in this chapter has stronger 

capabilities in learning missing geometric features from 

incomplete point clouds. 

To visually demonstrate the performance of different 

algorithms in handling point cloud data, the completion 

results of several models are shown in Figure 5. The 

visualization clearly reflects the differences in detail recovery, 

global structure reconstruction, and filling of missing regions. 

The results show that IGMLNet performs the best among all 

methods. This model not only precisely restores local details 

but also maintains the coherence of global structure, 

demonstrating exceptional performance, particularly in 

completing complex shapes. For instance, in the detailed 
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regions such as the legs of a chair and the wings of an 

airplane, the point clouds generated by IGMLNet better 

preserve the geometric features and avoid over-smoothing or 

the introduction of artificial structures. Compared to other 

methods, IGMLNet’s completion results are more natural, 

with better detail recovery and more balanced overall 

structure. Furthermore, during the completion process, it can 

accurately restore object edges, concavities, and convexities, 

and when faced with large missing areas, it can reasonably 

fill in the gaps, avoiding significant geometric distortions or 

unnatural transitions. These advantages stem from 

IGMLNet’s innovative design in multi-level feature 

optimization, enabling it to refine completion results at 

multiple levels. Overall, the model demonstrates significant 

advantages in detail recovery, structural coherence, and 

global consistency, generating more natural and realistic 

completed point clouds. 

 

 
TABLE I 

CHAMFER DISTANCE OF DIFFERENT MODELS UNDER THE  PCN (CD-L1) 

Categories PCN GRNet PoinTr SnowflakeNet SDT PMP-Net++ Seedformer SVDFormer IGMLNet 

plane 5.50 6.45 4.75 4,29 4.60 4.39 3.85 3.62 3.54 

Cabinet 22.70 10.37 10.47 9.16 10.05 9.96 9.05 8.79 8.63 

Car 10.63 9.45 8.68 8.08 8.16 8.53 8.06 7.46 7.28 

Chair 8.70 9.41 9.39 7.89 9.15 8.09 7.06 6.91 6.86 

Lamp 11.00 7.96 7.75 6.07 8.12 6.06 5.21 5.33 5.19 

Sofa 11.34 10.51 10.93 9.23 10.65 9.83 8.85 8.49 8.35 

Table 11.68 8.44 7.78 6.55 7.64 7.17 6.05 5.90 5.72 

Watercraft 8.59 8.04 7.29 6.40 7.66 6.52 5.85 5.83 5.78 

CD-Avg 12.15 8.83 8.38 7.21 8.24 7.56 6.74 6.54 6.42 

F1 0.695 0.708 0.745 0.801 0.754 0.781 0.818 0.841 0.852 

 

 
Fig. 5. Visualization results of the PCN datase 

 

 

TABLE II 
COMPARISION RESULTS OF SHAPENET55 DATASET UNDER DIFFERENT DIFFICULTY LEVELS (CD-L2) 

 

 

 FoldingNet PCN GRNet PoinTr Seedformer SVDFormer IGMLNet 

CD-S 2.67 1.94 1.35 0.58 0.50 0.48 0.46 

CD-M 2.66 1.96 1.71 0.89 0.77 0.70 0.67 

CD-H 4.05 4.08 2.85 1.79 1.49 1.30 1.28 

CD-Avg 3.12 3.12 1.97 1.09 0.72 0.83 0.80 

F1 0.082 0.133 0.238 0.464 0.472 0.451 0.468 

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1326-1336

 
______________________________________________________________________________________ 



 

 
 

Fig. 6. Visualization results of the ShapeNet55 datase 
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Fig. 7. Visualization results of ablation experiments 

 

2) Comparison Results on ShapeNet55 Dataset: The 

experiments on the ShapeNet-55 dataset categorize the point 

cloud incompleteness into three difficulty levels: easy (25% 

missing), medium (50% missing), and hard (75% missing), to 

provide a clear illustration of the model's performance at 

different levels of missing data. To ensure a comprehensive 

and accurate evaluation, Chamfer Distance (Euclidean norm, 

CD-L2) and F-Score are used as evaluation metrics. The 

former measures the geometric distance between the 

completed point cloud and the ground truth, while the latter 

provides a comprehensive assessment of the accuracy and 

completeness of the point cloud distribution. The 

experimental results are shown in Table II. 

The results show that the IGMLNet model performs 

exceptionally well across all difficulty levels, particularly in 

the hard-level point cloud completion, where both CD and 

F-Score values significantly outperform those of other 

models. In the easy setting, the model achieves an excellent 

CD value of 0.46; in the medium setting, the CD value is 0.67; 

and in the hard setting, the CD value is 1.28. Although the 

model's performance decreases with higher levels of 

incompleteness, it still maintains a high level of accuracy, 

demonstrating its robustness across different difficulty 

settings. Additionally, the IGMLNet model achieves an 

F-Score of 0.468, showing strong recall and effective detail 

recovery. Comparisons with other models further highlight 

IGMLNet's advantages across various missing patterns and 

incompleteness levels. During the completion process, the 

model excels at recovering global structures and accurately 

capturing local details, particularly when completing 

complex geometric shapes. Moreover, as shown in the visual 

results in Figure 6, the proposed model demonstrates a 

balanced performance in terms of point cloud uniformity and 

detail recovery, which contributes to its strong adaptability 

and superiority in point cloud completion tasks. 

D. Ablation Experimental Analysis 

To further assess the impact of the efficient residual feature 

extractor, multi-level feature fusion module, and structured 

point cloud recovery module on the experimental results, we 

conducted four ablation experiments on the PCN dataset. In 

each experiment, one of the aforementioned modules is 

removed, and the model performance is compared. The final 

results are then compared with those of the full model. The 

comparison results of the ablation experiments are shown in 

Table III. 

 
TABLE III 

COMPARISON OF RESULTS OF ABLATION EXPERIMENTS (CD-L1) 

Method Description CD 

(A) complete model 6.42 

(B) without efficient residual feature extractor 6.68 

(C) without multi-level feature fusion module 6.81 

(D) without structured point cloud recovery module 7.05 

 

The experimental results indicate that removing any of the 

modules leads to a decline in both model performance and 

point cloud completion quality. Specifically, removing the 

efficient residual feature extractor (B) and the multi-level 

feature fusion module (C) caused the average CD values to 

increase by 2.6% and 3.9%, respectively. When using the 

baseline model decoding structure (D), the average CD value 

increased by 6.3%. The complete IGMLNet model (A) 

achieved the lowest values across all evaluation metrics. 

These results demonstrate that the efficient residual feature 

extractor, multi-level feature fusion module, and structured 

point cloud recovery module each significantly affect point 

cloud completion accuracy, confirming their crucial 

contribution to the network's performance and their mutually 

reinforcing role. 

The visual results of the ablation experiments are shown in 

Figure 7. Method (D), which lacks the structured point cloud 

recovery module, results in less smooth predictions, as seen 

in the airplane and lamp examples. Method (C), which does 

not use the multi-level feature fusion module to optimize and 

integrate multi-level features, shows blurred boundaries in 

parts of the chair and lamp, with less defined local details. 

Method (B), which only employs the ResNet18 residual 

network for feature extraction, suffers from the loss of 

detailed features, leading to poorer completion performance. 

V. CONCLUSION 

This paper proposes a novel point cloud completion 

network, IGMLNet. The network uses image guidance and 

employs an efficient residual feature extractor to deeply 

extract image features, capturing more prominent spatial 

structures and details. These enhanced features provide 
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stronger support for guiding subsequent point cloud features. 

In terms of feature fusion, IGMLNet utilizes a multi-level 

feature fusion module that progressively merges point cloud 

and image features, generating fused features rich in 

structural information, thereby effectively enhancing the 

expressive power of the features. To further improve 

completion performance, the network introduces a cascaded 

structured point cloud recovery module, which enhances 

local details while maintaining global structural accuracy, 

effectively addressing the issues of missing and incomplete 

data in coarse point clouds. 

We conduct comprehensive evaluations of IGMLNet on 

widely used PCN and ShapeNet55 datasets. Experimental 

results demonstrate that, compared to existing state-of-the-art 

methods, the proposed model achieves significant 

performance improvements in point cloud completion tasks, 

proving its superiority in practical applications. 
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