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Abstract—This research investigates finite-time fault-tolerant
control (FTC) for switched stochastic nonlinear systems under
arbitrary switching laws. To address the challenges posed by
unmeasured state variables, a fuzzy observer is developed for
state estimation. Additionally, fuzzy logic systems (FLS) are
employed to approximate unknown nonlinear functions within
the system. The issue of differential explosion is mitigated
through the use of command filters, and compensation signals
are introduced to correct the errors introduced by these filters,
thereby enhancing the overall control performance. Considering
actuator faults such as bias faults and loss of effectiveness,
an adaptive fault-tolerant controller is proposed. It is shown
that, under arbitrary switching conditions, the proposed method
ensures finite-time closed-loop stability and rapid convergence
of the tracking error to a small neighborhood around the origin.
A simulation example is provided to validate the effectiveness
of the theoretical results.

Index Terms—Switched stochastic nonlinear system, Fault-
tolerant control, Arbitrary switching law, Fuzzy logic system,
Command filter.

I. INTRODUCTION

STOCHASTIC disturbances are commonly found in ac-
tual systems, including electricity generation systems,

thermal processes, and network control systems. These ran-
dom factors can have unpredictable effects on the controlled
objects or controlled processes within the system. Numer-
ous investigations into the adaptive control of stochastic
systems have been conducted, with notable contributions
including those in [1] and [2]. Researchers typically address
problems involving gradient and higher-order terms in Itô
stochastic differential equations by constructing quadratic
or quartic Lyapunov functions [3]. In reference [4], the
author introduced a stochastic system control method that
leverages backstepping technology, incorporating a quadratic
Lyapunov function and a cost-sensitive function. The work
of [5] marked a significant advancement by integrating the
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quadratic Lyapunov function into the backstepping frame-
work, thereby developing an adaptive control strategy for a
class of stochastic nonlinear systems with strict feedback.
Despite this progress, traditional control methods frequently
encounter difficulties in effectively handling unknown terms
or functions within the system. Consequently, the integration
of fuzzy logic systems or neural network technology with
adaptive control methodologies has been proposed to address
the challenges and enhance the performance of complex
control systems. Significant progress has been made in
researching these approaches [6, 7]. In these studies, the
parameters of fuzzy logic systems or neural networks are
dynamically tuned through adaptive control mechanisms to
approximate unknown functions. Meanwhile, the stability of
the resulting systems is rigorously analyzed and established
using Lyapunov theory.

In practical engineering applications, many systems re-
quire finite time to achieve control objectives, such as
spacecraft systems, robotic systems, and advanced missile
systems [8–10]. This goal can be achieved by employing
finite time control methods while improving the speed of
convergence, robustness, and precision of the system. In [11],
it was demonstrated that the tracking error can be confined
to a small neighborhood around the origin within a finite
time, while ensuring the boundedness in probability of the
closed-loop system. Sui et al. developed a stochastic finite-
time stability theorem by integrating finite-time theory and
Itô differential equations. This theorem addresses the finite-
time output feedback control problem for a non-standard
lower triangular stochastic nonlinear system with uncertain
parameters [12]. In [13], a disturbance observer which can
control disturbance attenuation was designed for a class of
multi-disturbance stochastic systems.

Nonetheless, the aforementioned control strategies are
fundamentally contingent upon the underlying assumptions
that there are no faults in the system actuators. In fact,
the control system is prone to various problems such as
equipment wear, aging, or component failure under long-
term working conditions, which may lead to the failure of
the actuator [14–16]. Therefore, it is important to study
the problem of maintaining system stability in the case of
actuator failure. In [17], the FTC problem for stochastic
multi-fault nonlinear systems was examined by Wang. In
[18], Bai et al. proposed an innovative approach known as the
adaptive fixed-time channel control technique, specifically
tailored for a particular class of nonlinear systems. This
method solves the problem of actuator failure and ensures
that the tracking error remains within the bounds of the spec-
ified performance funnel and achieves convergence within
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the designated time interval. In [19], a fuzzy controller was
designed for stochastic systems experiencing actuator failures
using backstepping and fuzzy logic control.

In recent times, adaptive FTC has also been extended from
general systems to switching systems[20]. Under the concept
of the Generalized Separation Principle (GSP), Yang et al.
designed an active FTC that can be applied to high-mobility
vehicles utilizing the average dwell time criterion. In address-
ing actuator faults in switching nonlinear systems, Zhang et
al. proposed a static output feedback (SOF) control strategy
to effectively mitigate the impact of such failures, as detailed
in [21], and the controller gain is determined through iterative
algorithms to avoid the conservatism of traditional singular
value decomposition methods. Through the application of
the average dwell time concept, it can ensure good tracking
performance under specified constraints. In [22], an adaptive
fault-tolerant control technique was developed for a class
of switching nonlinear systems with uncertain functions and
unobservable states. This approach integrates an enhanced
mean residence time method with the backstepping technique
to address the challenges posed by these systems.

This paper proposes a novel command filtering-based
output feedback fault-tolerant controller for a class of
switched stochastic nonlinear systems, leveraging an adaptive
backstepping control framework. The designed controller
achieves fast convergence of the control system under arbi-
trary switching laws and in finite time. A major highlight of
this scheme is the introduction of command filtering methods
in each step, which reduces the differential calculation in the
traditional backstepping method. The primary advantages can
be summarized as:

(1)Unlike the fault model in [23], our proposed model
accounts for the concurrent occurrence of both loss of
effectiveness and bias faults. This enhancement significantly
broadens the applicability of the model.

(2)In the process of developing the virtual control law, the
differential explosion problem is resolved by using the com-
mand filtering technique, and the filtering error problem is
resolved by incorporating an error compensation mechanism.
This method not only compensates for the DSC method’s
deficiency but also enhances the system’s tracking precision.

(3)Theoretical research demonstrates that when the system
actuator fails, the suggested control strategy may guarantee
that the output signal stays stable and that the tracking error
converges to a neighborhood around the origin within a
finite time. The semiglobal finite-time stable in probability
(SGFSP) of switched stochastic systems is guaranteed.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Examine the following strictly-feedback switched stochas-
tic nonlinear system with actuator faults: Ẋj =

(
fσj

(
X̄j

)
+ Xj+1

)
dt+ ϕσj

(
X̄j

)
dω

Ẋm =
(
fσm(X̄m) + uσ(t)

)
dt+ ϕσm(X̄m)dω

y = X1

(1)

where X̄j = [X1, · · · Xj ]
T ∈ Rj is the system state vector.

y ∈ R is the system output. σ : [0,∞) → N = {1, . . . , IN}
is the switching signal. fkj(·) and ϕkj(·), j = 1, . . . ,m, k ∈
N stand for the unknown smooth function of the kth
subsystem. Here, it is assumed that only X1 is available for
measurement.

This paper considers time-varying actuator faults, includ-
ing losing effectiveness and bias faults. Assuming an actuator
failure occurs at time t, the control input then be character-
ized by the following fault model:

uk(t) = ρkvk(t) + ūk(t) (2)

with vk(t) reflecting the actual input signal of the subsystem.
ūk(t) is an unknown function representing bias faults. ρk ∈
(0, 1] being the known factor, when ρk = 1, indicates that
the actuator does not have any losing effectiveness failure,
only considering bias faults. If 0 < ρk < 1, it means that
need to consider both losing effectiveness and bias faults
simultaneously.

Assumption 1: There exist normal numbers u∗ that satisfy
|ūk(t)| ≤ u∗.

Now consider a class of stochastic nonlinear systems:

dx = f(X )dt+ ϕ(X )dω (3)

where X , f(X ) and ϕ(X ) are defined in (1). The variable
ω represents an r-dimensional standard Brownian motion,
which is defined as E{dω · dωT} = ς(t)ς(t)Tdt.

Definition 1: For ∀V (X ) ∈ C2, give the following defi-
nition for the differential operator L:

LV =
∂V

∂X
f +

1

2
Tr{ϕT ∂

2V

∂X 2
ϕ} (4)

where Tr(·) represents the trace operation applied to a
matrix.

Lemma 1: [24] For sj ∈ R, 0 < r ≤ 1, there is m∑
j=1

|sj |

r

≤
m∑
j=1

|sj |r ≤ m1−r

 m∑
j=1

|sj |

r

(5)

Lemma 2: [25] For the system (3), there exist ∀V (X ) ∈
C2 and ψ1, ψ2 ∈ K∞, positive constants µ1, µ2, γ, κ and
0 < γ < 1, 0 < κ <∞, such that

ψ1(∥X∥) ≤ V (X ) ≤ ψ2(∥X∥)
LV (X ) ≤ −µ1V (X )− µ2V (X )γ + κ

(6)

Then, the system (3) is SGFSP, and a setting time T (X0)
meets the following relation

E[T (X0)] ≤
1

(1− γ)µ1
ln

 µ1V (X0)
1−γ + µ2ν

µ1

(
κ

(1−ν)µ2

) 1−γ
γ

+ µ2ν


(7)

where 0 < ν < 1 is a constant.
Lemma 3: [26] For the parameters F1 and F2, the fol-

lowing equation holds without input noise process: Φ1 =
ᾱr, γ1 = ˙̄αr. If input noise satisfies |αr − ᾱr| ≤ ρ,
the following inequalities are satisfied within a finite time
interval with scalars p1 > 0 and p2 > 0

|Φ1 − αr| ≤ p1ρ = h1∣∣γ1 − α̇r

∣∣ ≤ p2ρ
1
2 = h2

(8)

Lemma 4: [27] For ∀(l1, l2) ∈ R2, and positive constants
x, y, p, one has

|l1|x |l2|y ≤ x

x+ y
p |l1|x+y

+
y

x+ y
p−x/y |l2|x+y (9)
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Lemma 5: [28] For a continuous function f(Z), it pos-
sesses the following property:

sup
Z∈Ω

∣∣∣f(Z)− θTS(Z)
∣∣∣ ≤ ε, ε > 0 (10)

where S(Z) = [p1(Z), · · · , pN (Z)]T , pj(z)(=∏n
i=1 µF j

i
(zi)/

∑N
j=1[

∏n
i=1 µF j

i
(zi)]) is the fuzzy basis

functions. θ = [θ1, · · · , θN ]T , the point θi is where the
fuzzy membership function µGi(θi) attains its maximum
value.

Assumption 2: The covariance is bounded: ϕT ς(t)ς(t)Tϕ
= ςςT , ϕ = [ϕσ1(X1), ϕσ2(X 2), ..., ϕσm(X )]T .

Assumption 3: In this paper, the desired signal yd of
the system and its first time derivative are continuous and
bounded.

III. FUZZY STATE OBSERVER DESIGN

To address the issue of unmeasured states, a fuzzy state
observer is introduced to provide accurate state estimates.
Subsequently, an observer-based controller is constructed
utilizing the backstepping methodology.

According to Lemma 5, we have f̂kj(X̂ j | θ̂kj) =

θ̂TkjSj(X̂ j), where θ̂kj = θkj − θ̃kj is the estimate of the
unknown ideal vector θkj .

θkj = arg min
θ̂kj∈Ωkj

|f̂kj(X̂ j | θ̂kj)− fkj(X̂ j) |] (11)

There exist the fuzzy estimation error such that

δkj = fkj(X j)− f̂kj(X̂ j | θ̂kj)

εkj = fkj(X j)− f̂kj(X̂ j | θkj)
(12)

where |δkj | < δkj , |εkj | < εkj , δkj > 0, and ε̄kj > 0 are the
constant.

Subsequently, system (1) can be reformulated as follows:

Ẋ = [AkX + kky +
m∑
j=1

Bjfkj
(
X j

)
+Duk(t)]dt+ ϕdω

y = CTX (13)

where Ak =

−kk1
... Im−1

−kkm 0 · · · 0

 , kk =

kk1...
kkm

, Bj =

[0 · · · 1 · · · 0]T , C = [1 · · · 0 · · · 0], D = [0 · · · 0 · · · 1], ϕ =
[ϕk1(X1), ϕk2(X 2), . . . , ϕkm(X )]T .
Ak can be designed as a Hurwitz matrix by choosing the

appropriate vector kk

AT
k Pk + PkAk = −2Qk (14)

where Pk and Qk are required to be symmetric and positive
definite.

The following adaptive fuzzy observer is constructed:

˙̂X =AkX̂ + kky +
m∑
j=1

Bj f̂kj(X̂ j |θ̂kj) +Duk(t)

ŷ =CT X̂ (15)

Let e = X − X̂ , e = [e1, ..., em]T . According to (13) and
(15), one can be obtained

de = [Ake+
m∑
j=1

Bj(fkj
(
X j

)
−f̂kj(X̂ j |θ̂kj))]dt+ϕdω (16)

Choose the Lyapunov function as V0 = 1
2e

TPe, so

LV0 =
1

2
eTP ė+

1

2
ėTPe

= −eTQke+ eTP
m∑
j=1

Bjδkj + Tr{ςϕTPϕςT } (17)

where P = {Pk | maxk ∥Pk∥}.
Applying Young’s inequality and leveraging Assumption

2, it follows that

eTP
m∑
j=1

Bjδkj ≤
m

2
eT e+

1

2
∥P∥2

m∑
j=1

δ∗2j (18)

Tr{ςϕTPϕςT } ≤ 1

2
∥P∥2 + 1

2

∣∣ςςT ∣∣2 (19)

where δ∗j = maxk∈K{δkj}.
By using (13), (14) and let λmin(Q) being the smallest

eigenvalue of matrix Q with Q = {Qk | mink ∥Qk∥}, the
following result can be obtained:

LV0 ≤− (λmin(Q)− 1

2
m)eT e+

1

2
∥P∥2

m∑
j=1

δ∗2j +
1

2
∥P∥2

+
1

2

∣∣ςςT ∣∣2 ≤ −η0eT e+ µ0 (20)

where η0 = λmin(Q) − 1
2m,µ0 = 1

2∥P∥
2
∑m

j=1 δ
∗2
j +

1
2∥P∥

2 + 1
2

∣∣ςςT ∣∣2.

IV. FAULT TOLERANT CONTROLLER DESIGN

In this section, the actual input for each subsystem is
designed based on backstepping method to guarantee that
the system output y(t) converges to the desired trajectory yd
within a finite time. Subsequently, the stability properties of
the system are examined.

Introduce the tracking error for the command filtered
backstepping approach as

z1 = X1 − yd, zj = X̂j −Xj,c (21)

for j = 2, ...,m, where yd is the desired target signal and
Xj,c denotes the output of the command filter with αj−1 as
its input.

To avoid the problem of differential explosion, the follow-
ing command filtering method is introduced as follows

Φ̇j,1 = γj,1

γj,1 = −F1 |Φj,1 − αj |
1
2 sign (Φj,1 − αj) + Φj,2

Φ̇j,2 = −F2 sign (Φj,2 − γj,1) , 1 ≤ j ≤ m− 1

(22)

where Xj+1,c(t) = Φj,1(t) and Ẋj+1,c(t) = γj,1(t), F1 and
F2 are positive constants.

To mitigate the adverse effects of filtering errors caused
by the introduction of command filtering on control accuracy,
we have designed the following error compensation mecha-
nism:

χ̇1 = −c1χ1 + χ2 + (X2,c − α1)− ι1 sign (χ1)
χ̇j = −cjχj + χj+1 + (Xj+1,c − αj)

− ιj sign (χj)− 1
4χj

χ̇m = −cmχm − ιm sign (χm)− 1
4χm

(23)

where cj and ιj are positive constants. Define the signals for
compensation tracking error as νj = zj−χj , j = 1, 2 . . . ,m.
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Step 1: Based on z1 = X1 − yd, ν1 = z1 −χ1, we can get
the following equation

dν1 =(z2 + fk1(X̂1|θk1) + εk1 + X2,c + e2 − ẏd

− χ̇1)dt+ ϕk1dω (24)

Select the Lyapunov function as V1 = V0 +
1
4ν

4
1 + 1

2r1
ϑ̃21,

where ϑ̃j = ϑj − ϑ̂j is the estimation error with ϑj =
maxk∈K{∥θkj∥2} and ϑ̂j being the estimation of ϑj and
r1 is a positive constant. According to (4) and (24), we get

LV1 =LV0 + ν31(z2 + fk1(X̂1

∣∣θk1) + εk1 + X2,c + e2

− ẏd − χ̇1) +
3

2
ν21ϕ

T
k1ς1ς

T
1 ϕk1 −

1

r1
ϑ̃1

˙̂
ϑ1 (25)

Substituting χ̇1 into (25), based on Assumption 2 and
Young’s inequality, we get the following inequalities

ν31(εk1 + e2) ≤ ν61 +
1

2
ε∗21 +

1

2
eT e (26)

ν31 ι1sign(χ1) ≤
1

2
ν61 +

1

2
ι21 (27)

3

2
ν21ϕ

T
k1ς1ς

T
1 ϕk1 ≤ 3

4
ν41 +

3

4

∣∣∣ςςT ∣∣∣2 (28)

where ε∗1 = maxk∈K{εk1}.
Applying FLS, we have

ν31fk1(X̂1

∣∣θk1) = ν31θ
T
k1S1(X̂1)

≤ 1

2a21
ν61ϑ1S

T
1 (X̂1)S1(X̂1) +

a21
2

(29)

where aj > 0, j = 1, 2, . . . ,m, are designed constants.
Substituting (26)-(29) into (25), and there is an inequality

ν31ν2 ≤ 3
4ν

4
1 + 1

4ν
4
2 , we have

LV1 ≤LV0 + ν31(
1

2a21
ν31ϑ1S

T
1 (X̂1)S1(X̂1) + α1 +

3

2
ν1

+
3

2
ν31 + c1χ1 − ẏd) +

1

2
eT e+

3

4

∣∣ςςT ∣∣2 + a21
2

+
1

2
ε∗21 +

1

2
ι21 +

1

4
ν42 − 1

r1
ϑ̃1

˙̂
ϑ1 (30)

Next, we define the virtual control function and the adap-
tive parameter update law as follows:

α1 =− c1z1 −
1

2a21
ν31 ϑ̂1S

T
1 (X̂1)S1(X̂1)−

3

2
ν1

− 3

2
ν31 + ẏd − s1ν

4β−3
1 (31)

˙̂
ϑ1 =

r1
2a21

ν61S
T
1 (X̂1)S1(X̂1)− λ1ϑ̂1 (32)

where s1 and λ1 are positive constants.
By using (31) and (32), the formula (30) can be expressed

as

LV1 ≤ LV0 − c1ν1 − s1ν
4β
1 +

1

2
eT e+

3

4

∣∣ςςT ∣∣2 + a21
2

+
1

4
ε∗21 +

1

4
ν42 +

λ1
r1
ϑ̃1ϑ̂1

≤ −η1eT e− c1ν1 − s1ν
4β
1 +

1

4
ν42 +

λ1
r1
ϑ̃1ϑ̂1 + µ1

(33)
where η1 = η0 +

1
2 , µ1 = µ0 +

3
4

∣∣ςςT ∣∣2 + a2
1

2 + 1
4ε

∗2
1 + 1

2 ι
2
1.

Step j (2 ≤ j ≤ m− 1): From (21) and νj = zj −χj , we
can get

dνj =(zj+1 + fkj(X̂ j

∣∣θkj) + δkj − εkj + Xj+1,c

+ kje1 − Ẋj,c − χ̇j)dt+ ϕkjdω (34)

Construct the Lyapunov function as Vj = Vj−1 +
1
4ν

4
j +

1
2rj
ϑ̃2j , and let rj > 0 be the design parameter, then we derive

LVj =LVj−1 + ν3j (zj+1 + fkj(X̂ j |θkj) + δkj − εkj

+ Xj+1,c + kje1 − Ẋj,c − χ̇j) +
3

2
ν2j ϕ

T
kjςjς

T
j ϕkj

− 1

rj
ϑ̃j

˙̂
ϑj

(35)
Applying Young’s inequality, the same as in step 1, one

has
ν3j (δkj − εkj) ≤ ν6j +

1

2
δ∗2j +

1

2
ε∗2j (36)

ν3j ιjsign(χj) ≤
1

2
ν6j +

1

2
ι2j (37)

3

2
ν2j ϕ

T
kjςjς

T
j ϕkj ≤

3

4
ν4j +

3

4

∣∣ςςT ∣∣2 (38)

Applying FLS, we have

ν3j fkj(X̂ j |θkj) =ν3j θTkjSj(X̂ j)

≤ 1

2a2j
ν6j ϑjS

T
j (X̂ j)Sj(X̂ j) +

a2j
2

(39)

Substituting (36)-(39) into (35), and there is an inequality
ν3j νj+1 ≤ 3

4ν
4
j + 1

4ν
4
j+1, we have

LVj ≤LVj−1 + ν3j (
1

2a2j
ν3j ϑjS

T
j (X̂ j)Sj(X̂ j) + αj −

1

4
χj−1

+
3

2
νj +

3

2
ν3j + cjχj − Ẋj,c + kje1) +

3

4

∣∣ςςT ∣∣2
+
α2
j

2
+

1

2
δ∗2j +

1

2
ε∗2j +

1

2
ι2j +

1

4
ν4j+1 −

1

rj
ϑ̃j

˙̂
ϑj

(40)
Establish the virtual control function and the adaptive

parameter update law in the following manner:

αj =− cjzj −
1

4
zj−1 −

1

4
νj−1 −

1

2a2j
ν3j ϑ̂jS

T
j (X̂ j)Sj(X̂ j)

− 7

4
νj −

3

2
ν3j + Ẋj,c − kje1 − sjν

4β−3
j (41)

˙̂
ϑj =

rj
2a2j

ν6jS
T
j (X̂ j)Sj(X̂ j)− λj ϑ̂j (42)

where sj and λj are positive constants.
Then, the formula (34) can be expressed as

LVj ≤ LVj−1 − cjνj − sjν
4β
j +

3

4

∣∣ςςT ∣∣2 + a2j
2

+
1

2
δ∗2j +

1

2
ε∗2j +

1

2
ι2j +

1

4
ν4j+1 +

λj
rj
ϑ̃j ϑ̂j

≤ −η1eT e−
j∑

i=1

ciνi −
j∑

i=1

siν
4β
i +

1

4
ν4j+1

+

j∑
i=1

λi
ri
ϑ̃iϑ̂i + µj (43)
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where µj = µj−1 +
3
4

∣∣ςςT ∣∣2 + α2
j

2 + 1
2δ

∗2
j + 1

2ε
∗2
j + 1

2 ι
2
j .

Step m: According to zm = x̂m − xm,c, νm = zm − χm,
one has

dνm =(uk(t) + fkm(X̂m|θkm) + δkm − εkm + kme1

− Ẋm,c − χ̇m)dt+ ϕkmdω (44)

Consider the following Lyapunov function as

Vm = Vm−1 +
1

4
ν4m +

1

2rm
ϑ̃2m +

IN∑
k=1

ũ2k(t) (45)

where rm is a positive constant, ũk(t) = uk(t)−ûk(t), ûk(t)
is the estimation of uk(t), then we can get

LVm =LVm−1 + ν3m(ρkνk + uk + fkm(X̂m|θkm)

+ δkm − εkm + kme1 − Ẋm,c − χ̇m)

+
3

2
ν2mϕ

T
kmςmς

T
mϕkm − 1

rm
ϑ̃m

˙̂
ϑm

−
IN∑
k=1

ũk(t) ˙̂uk(t) (46)

Similar to inequality (36)-(38), we have

ν3m(δkm − εkm) ≤ ν6m +
1

2
δ∗2m +

1

2
ε∗2m (47)

ν3mιmsign(χm) ≤ 1

2
ν6m +

1

2
ι2m (48)

3

2
ν2mϕ

T
kmςmς

T
mϕkm ≤ 3

4
ν4m +

3

4

∣∣ςςT ∣∣2 (49)

Applying FLS, we have

ν3mfkm(X̂m|θkm) = ν3mθ
T
kmSm(X̂m)

≤ 1

2a2m
ν6mϑmS

T
m(X̂m)Sm(X̂m) +

a2m
2
(50)

Substituting (47)-(50) into (46), we have

LVm ≤LVm−1 + ν3m(ρkνk + uk − 1

4
χm−1

+
1

2a2m
ν3mϑmS

T
m(X̂m)Sm(X̂m) +

3

4
νm +

3

2
ν3m

+ cmχm − Ẋm,c + kme1) +
3

4

∣∣ςςT ∣∣2 + a2m
2

+
1

2
δ∗2m

+
1

2
ε∗2m +

1

2
ι2m − 1

rm
ϑ̃m

˙̂
ϑm −

IN∑
k=1

ũk(t) ˙̂uk(t)

(51)

Design the actual fault-tolerant controller and the adaptive
laws as

vk =
1

ρk

(
− cmzm − 1

4
zm−1 −

1

4
νm−1 −

1

2a2m
ν3mϑ̂m

ST
m(X̂m)Sm(X̂m)− νm − 3

2
ν3m + Ẋm,c − kme1

− ûk − smν
4β−3
m ) (52)

˙̂
ϑm =

rm
2a2m

ν6mS
T
m(X̂m)Sm(X̂m)− λmϑ̂m (53)

˙̂uk =

{
−ϖkûk + ν3n, σ = k

−ϖkûk, σ ̸= k
(54)

where ϖk is designed constants.

Combing (52)-(54), we can conclude that

LVm ≤− η1e
T e−

m∑
j=1

cjνj −
m∑
j=1

sjν
4β
j +

m∑
j=1

λj
rj
ϑ̃j ϑ̂j

+

IN∑
k=1

ϖkũk(t)ûk(t) + µm (55)

where µm = µm−1 +
3
4

∣∣∣ςςT ∣∣∣2 + α2
m

2 + 1
2δ

∗2
m + 1

2ε
∗2
m + 1

2 ι
2
m.

Utilizing the Young’s inequality again, one obtains

λj
rj
ϑ̃j ϑ̂j ≤ − λj

2rj
ϑ̃2j +

λj
2rj

ϑ2j (56)

ϖkũk(t)ûk(t) ≤ −ϖk

2
ũ2k(t) +

ϖk

2
u∗2k (57)

Then, we have

LVm ≤− η1e
T e−

m∑
j=1

cjνj −
m∑
j=1

sjν
4β
j −

m∑
j=1

λj
2rj

ϑ̃2j

−
IN∑
k=1

ϖk

2
ũ2k(t) + µ (58)

where µ = µm +
∑m

j=1
λj

2rj
ϑ2j +

∑Ik
k=1

ϖk

2 u
∗2
k .

Theorem 1: Consider a switched stochastic nonlinear sys-
tem (1) that is affected by actuator faults (2), including actu-
ator effectiveness loss and bias failure. Under Assumptions
1-3, the designed virtual controllers (31), (41), subsystem
controllers (52), and adaptive updating laws (32), (42),
(53) ensure that all variables in the closed-loop system are
bounded in the frame of arbitrary switching signals. The
tracking error converges to a small neighborhood near the
origin in finite time. The system is SGFSP.

Proof: Equation (58) can be rewritten as

LV
m
≤− η1e

T e+ (
λmin(Q)

2
eT e)β − (

λmin(Q)

2
eT e)β

−
m∑
j=1

cjνj −
m∑
j=1

sjν
4β
j +

m∑
j=1

[− λj
2rj

ϑ̃2j − (
1

2rj
ϑ̃2j )

β

+ (
1

2rj
ϑ̃2j )

β ] +

IN∑
k=1

[−ϖk

2
ũ2k(t)− (

1

2
ũ2k(t))

β

+ (
1

2
ũ2k(t))

β ] + µ (59)

Based on Lemma 4, we choose l1 = 1, l2 =
λmin(Q)

2 eT e, 1
2ri
ϑ̃2i ,

1
2 ũ

2
k(t), x = 1−β, y = β, p = ββ/(1−β).

Then, the following relationship is obtained

(
λmin(Q)

2
eT e)β ≤ (1− β)p+

λmin(Q)

2
eT e (60)

(
1

2rj
ϑ̃2j )

β ≤ (1− β)p+
1

2rj
ϑ̃2j (61)

(
1

2
ũ2k(t))

β ≤ (1− β)p+
1

2
ũ2k(t) (62)
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According to (60)-(62), further sorting can get

LVm ≤− (η1 −
λmin(Q)

2
)eT e−

m∑
j=1

cjνj −
m∑
j=1

λj − 1

2rj
ϑ̃2j

−
IN∑
k=1

ϖk − 1

2
ũ2k(t)− (

λmin(Q)

2
eT e)β −

m∑
j=1

sjν
4β
j

−
m∑
j=1

(
1

2rj
ϑ̃2j )

β −
IN∑
k=1

(
1

2
ũ2k(t))

β + µ (63)

Then define C = min

{
η1−

λmin(Q)

2

λmax(P ) , 4cj , λj − 1, ϖk−1
2

}
,

D = min

{(
λmin(Q)
λmax(P )

)β

, 4βsj , 1,
(
1
2

)β}
, µ = µ+3(1−β)p,

the following inequality can be obtained

LVm ≤ −CVm −DV β
m + µ (64)

Step n+ 1: Choose the Lyapunov function for χj :

Vm+1 =
1

4

m∑
j=1

χ4
j (65)

Differentiating Vm+1 yields that

V̇m+1 =χ3
1 (−c1χ1 + (X2,c − α1) + χ2 − ι1sign(χ1))

+
m−1∑
j=2

χ3
j (−cjχj + (Xj+1,c − αj) + χj+1

− ιjsign(χj)−
1

4
χj) + χ3

m(−cmχm

− ιmsign(χm)− 1

4
χm) (66)

where

χ3
jχj+1 ≤ 3

4
χ4
j +

1

4
χ4
j+1 (67)

Then, it follows

V̇m+1 ≤
m−1∑
j=1

((−cj +
3

4
)χ4

j +
∣∣∣∣χ3

j

∣∣ (Xj+1,c − αj)|
)

− cmχ
4
m −

m∑
j=1

ιj
∣∣χ3

j

∣∣
≤

m−1∑
j=1

(−cj +
3

4
)χ4

j +
m−1∑
j=1

∣∣∣∣χ3
j

∣∣ (Xj+1,c − αj)
∣∣

− cmχ
4
m −

m∑
j=1

ιj
∣∣χ3

j

∣∣+ |hm1|
∣∣χ3

m

∣∣ (68)

According to Lemmas 3, one has |Xj+1,c − αj | ≤ hj1

V̇m+1 ≤
m−1∑
j=1

(−cj +
3

4
)χ4

j +
m∑
j=1

|hj1|
∣∣χ3

j

∣∣− cmχ
4
m

−
m∑
j=1

ιj
∣∣χ3

j

∣∣
≤

m−1∑
j=1

(−cj +
3

4
)χ4

j + h
m∑
j=1

∣∣χ3
j

∣∣− cmχ
4
m

− ι

2
√
2

m∑
j=1

∣∣χ3
j

∣∣
≤

m−1∑
j=1

(−cj +
3

4
)χ4

j − (
ι

2
√
2
− h)

m∑
j=1

∣∣χ3
j

∣∣
− cmχ

4
m (69)

where h = max {hj1} and ι = 2
√
2min {ιj} , j = 1, . . . ,m.

Based on Lemma 1, we have

V̇m+1 ≤
m−1∑
j=1

(−cj +
3

4
)χ4

j − cmχ
4
m − (ι− 2

√
2m

1
4h)

(
1

4

m∑
j=1

χ4
j )

3
4

≤ −q1Vm+1 − q2V
3
4
m+1 (70)

where q1 = min
{
4(c1 − 3

4 ), . . . , 4(cm−1 − 3
4 ), 4cm

}
, q2 =

1−2
√
2m

1
4h. We can be certain that χj will attain finite-time

stability based on Lemma 2.

V. SIMULATION EXAMPLE

Example 1: Consider the following switched second-order
system, which can be described as dX1 = (fσ1 (X1) + X2) dt+ ϕσ1 (X1) dω

dX2 =
(
fσ2

(
X̄2

)
+ uσ(t)

)
dt+ ϕσ2

(
X̄2

)
dω

y = X1

(71)

σ = {1, 2}, when σ = 1, f11 = 0.5X 2
1 , ϕ11 = 0.2X 3

1 , f12 =
2X 2

1X2, ϕ12 = 0.5X 2
1+X 2

2 , u1(t) = 0.6ν1+0.5 sin(t) , when
σ = 2, f21 = 0.1 sin(X1), ϕ21 = 0.2X1 sin(2X1), f22 =
1.5 cos(X1)X2, ϕ22 = 0.25X1 sin(X2), u2(t) = 0.4ν2 +
1 − 0.25 sin2(t). yd is given: yd = sin(t).Based on the
(31),(32),(52),(53)and (54), we can obtain

˙̂
ϑ1 =

r1
2a21

ν61S
T
1 (X̂1)S1(X̂1)− λ1ϑ̂1 (72)

˙̂
ϑ2 =

r2
2a22

ν62S
T
2 (X̂ 2)S2(X̂ 2)− λ2ϑ̂2 (73)

α1 =− c1z1 −
1

2a21
ν31 ϑ̂1S

T
1 (X̂1)S1(X̂1)−

3

2
ν1 −

3

2
ν31

+ ẏd − s1ν
4β−3
1 (74)

vk =
1

ρk

(
− c2z2 −

1

4
z1 −

1

4
ν1 −

1

2a22
ν32 ϑ̂2S

T
2 S2 − ν2

− 3

2
ν32 + Ẋ2,c − k2e1 − ûk − s2ν

4β−3
2 ) (75)

˙̂uk =

{
−ϖkûk + ν32 , σ = k

−ϖkûk, σ ̸= k
(76)
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with the parameters c1 = 20, c2 = 30, a1 = a2 = 100, r1 =
r2 = 20, λ1 = λ2 = 1, β = 99/100, ϖ1 = 0.4, ϖ2 =
0.8 , s1 = s2 = 200 , k1 = [4, 4] , k2 = [10, 120] , R1 =
R2 = 40 , ι1 = ι2 = 0.001, ρ1 = 0.2 + sin2(t), ρ2 =
0.1 + |sin(t)|.

Fig. 1 shows the switching signal. Fig. 2 illustrates the
tracking performance of the system in response to the
reference signal yd. From the results, the output signal
rapidly converges to the reference signal within a brief time
interval. Depending on Fig. 3, the tracking error converges
to near zero within a short period, and the tracking error
fluctuation during fault occurrence is also small, indicating
that the designed fault-tolerant controller effectively achieves
the desired control objectives. From Fig. 4, it seems that the
system state X2 is bounded. The control inputs ν1 and ν2
of subsystems 1 and 2, respectively, are displayed in Figs. 5
and 6. The adaptive update laws ϑ̂1 and ϑ̂2 are shown in Fig.
7, which can maintain the bounded stability in finite time.
From them, the simulation results validate the feasibility and
efficiency of the proposed method.

0 5 10 15 20 25 30

Time(s)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Fig. 1. The switching signal σ(t).

VI. CONCLUSION

In this study, we investigate the finite-time fault-tolerant
control problem for switching stochastic nonlinear systems,
with a focus on addressing both loss of effectiveness and bias
faults in the actuators. In order to address the uncertainty
of the system, the unmeasured states are estimated via the
observer, while the unknown functions are approximated
using FLS. The command filtering technique employed effec-
tively avoids the complexity of differential computation. The
designed controller avoids the problem of off-line calculation
of the upper and lower bounds of virtual control laws in DSC
method, and reduces the computational burden. Maintaining
bounded signals in the system under arbitrary switching rules
is proved in the stability analysis, and the system tracking
error converges to a tight set. Due to the choice of arbitrary
switching laws, it is necessary to ensure that all subsystems
must be stable. Future research will focus on the control of
switched systems with unstable subsystems.
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Fig. 2. Output y = X1 and yd.
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Fig. 3. Tracking error z1.
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Fig. 4. System state X2.
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Fig. 5. Control input ν1.

0 5 10 15 20 25 30

Time(s)

-400

-300

-200

-100

0

100

200

300

400

2

11.3 11.4 11.5

-40

-20

0

0.2 0.4 0.6 0.8 1

-200

0

200

400

Fig. 6. Control input ν2.
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Fig. 7. Adaptive update law of Example.
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