
 

  

Abstract—Traditional customized passenger transport (CPT) 

systems often rely on fixed stops derived from historical trip 

data and struggle to accommodate dispersed spatial-temporal 

demands. This paper presents a novel method for setting 

dynamic ride and drop-off sites based on spatial-temporal 

clustering. Firstly, a three-objective model is constructed, aimed 

at minimizing deviations between actual and expected locations 

and times of these sites while also reducing their overall number. 

Secondly, we design a refined NSGA-III algorithm that 

integrates the ST_DBSCAN algorithm to achieve Pareto 

optimal solutions for dynamic ride and drop-off sites, 

incorporating capacity and time considerations. Finally, 

experiments conducted using CPT data from Chongqing to 

Tongliang District, China, indicate that the refined algorithm 

effectively reduces the noise point ratio of the ST_DBSCAN 

algorithm to 5% and identifies 89 ride and drop-off sites across 

four categories. It also decreases the deviations of actual riding 

time and location from expectations to 12.97% and 12.62%, 

respectively. Additionally, employing CPLEX to solve the first 

type of dynamic ride and drop-off sites results in a 4.7% 

reduction in computation time. Compared to the unrefined 

algorithm, the total time for setting dynamic sites is shortened 

by 30.02% while optimizing the objective values. The refined 

algorithm exhibits high convergence efficiency, particularly 

with large-scale data. 

 
Index Terms—Customized passenger transport, dynamic 

ride and drop-off site, three-objective optimization model, 

spatial-temporal clustering, NSGA-III algorithm 

 

I. INTRODUCTION 

T the dawn of the 20th century, road travel was 

predominantly reliant on public transit and private cars, 
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with personalized travel options being virtually non-existent. 

The advent of mobile Internet technology in the 1990s 

ushered in a new era for on-demand travel services, leading to 

the emergence of customized passenger transport (CPT), 

customized buses (CB), flexible-route buses (FRB), and 

demand responsive transit (DRT). These innovations have 

significantly transformed personal mobility [1]. According to 

Armando [2], demand responsive transportation is 

particularly effective in low-density areas, has shown 

promise in suburban and inter-regional contexts. Within this 

context, CPT emerges as a pioneering model of personalized 

transport, leveraging Internet technology to align passenger 

travel demands with available capacity resources. By 

accounting for individual preferences regarding journey 

origins, destinations, and desired stops, CPT identifies 

optimal ride and drop-off locations, thus providing a regional 

demand responsive service that caters to the flexible and 

convenient travel preferences of modern passengers [3]. 

The strategic placement of CPT ride and drop-off sites is 

critical, impacting both passenger convenience and the 

economic viability of transport operators. When passenger 

demand is dispersed across time and space, transport 

companies must employ a flexible and comprehensive 

system for dynamically establishing these sites. Recent 

advancements in CB have enhanced service quality in urban 

areas, offering differentiated and high-quality services. While 

CPT provides agile, small-scale, and personalized road 

transport services [4], it shares similarities with CB. The key 

distinction lies in their customization approaches: CB 

employs a three-step process involving passenger demand 

surveys, route recruitment, and booking for route 

personalization [5]. In contrast, CPT bases service station 

locations solely on traveler demand, reflecting specific 

passenger needs. 

Despite the growing importance of dynamic ride and 

drop-off site setting for CPT (CPT-DRDSS), this area 

remains under-researched. Li [6] laid the groundwork by 

utilizing historical travel data to determine customized 

passenger ride and drop-off sites, but this data primarily 

reflects temporal and spatial patterns of passenger travel. In 

the context of site setting for CB services, several notable 

studies have been conducted. Seyed [7] focused on 

identifying suitable bus stations based on students’ 

decision-making for school bus routes, while Ren [8] 

identified candidate bus stops by mapping the relationship 

between demand locations and existing bus stops in 

demand-responsive scheduling. However, methods reliant on 

individual or enterprise decision-making often succumb to 
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irrational influences. Cortenbach [9] proposed a 

methodology for setting ride and drop-off sites that aims to 

reduce operating costs in route planning for the Dial-a-Ride 

problem, leveraging route intersections to establish potential 

pick-up and drop-off points. However, this approach, which 

considers the actual road network, adds complexity to the 

planning process. Thus, further empirical investigation into 

dynamic site setting within CPT is essential to enhance 

effectiveness and reliability. 

Zheng [10] developed a service unit generation model to 

determine riding locations and times for CB route planning. 

However, once the service area is defined, passengers at the 

boundaries may experience service loss. To better 

accommodate the personalized travel needs of CB 

passengers, Li [11] and Qiu [12] focused on optimizing 

individual travel experiences without clustering passenger 

demands, which can result in excessive stops, decreased 

comfort, and inefficient operations. In response, some 

researchers have employed clustering algorithms to group 

passenger travel demands, alleviating the spatial constraints 

of original ride and drop-off sites. For example, studies 

utilizing the K-means algorithm have spatially clustered 

similar origin-destination (OD) demands, with Lei [13] and 

Shen [14] designating cluster centers as ride and drop-off 

locations. Ayman [15] used clustering results as initial 

solutions for the mixed-integer programming (MIP) site 

coverage problem, subsequently designing an algorithm to 

identify optimal locations. Hu [16] and Yu [17] applied the 

DBSCAN algorithm to detect demand noise points, followed 

by K-means to establish ride and drop-off sites. Xue [18] and 

Hu [19] employed a hierarchical clustering algorithm to 

group reservation sites based on similar travel times, using 

DBSCAN to eliminate spatially isolated sites. Li [20] 

combined DBSCAN and the Partitioning Around Medoids 

(PAM) algorithms to spatially and temporally cluster 

passenger travel demands, generating synthetic stations for 

dynamic routes. Yuan [21] constructed a recognition model 

using a graph semi-supervised learning algorithm to identify 

potential CB demand from labeled internet taxi data and 

unlabeled cab data, clustering results with DBSCAN and 

further subdividing them to create CB stops based on 

reachable walking distances. 

Despite these advancements, the determination of CB 

stations often overlooks the integrated spatial-temporal 

attributes of reservation demands. Hu [22] proposed an 

improved BIRCH clustering algorithm based on large-scale 

historical carpooling data, addressing challenges in big data 

clustering. However, limitations remain when clustering 

three-dimensional spherical data. Wang [23] introduced an 

improved ST_DBSCAN algorithm for clustering 

spatial-temporal data, but it does not directly address noise 

sites, potentially leading to inadequate analysis of 

spatial-temporal dispersed data. Erdmann [24] explored 

response strategies for on-demand travel services, 

emphasizing heuristic-based timely responses and global 

re-optimization. Zhang [25] proposed an optimization 

framework for dynamic ride and drop-off sites based on 

real-time travel demand, aiming to enhance the operational 

efficiency of flexible route buses. This approach seeks to 

maximize the fulfillment of passenger requests while 

minimizing time expenditure, transcending the spatial 

constraints of traditional ride and drop-off sites and 

significantly reducing the rate of rejected passenger bookings 

without incurring additional operational costs. Lu [26] 

addressed the issue of passengers lacking suitable travel 

options by eliminating bookings for those with viable 

alternatives, ensuring that dial-a-ride services effectively 

target individuals who truly need them. He highlighted the 

implementation of an active request rejection mechanism 

with dynamic thresholds to prevent system overloads in DRT 

systems. This proactive approach helps maintain service 

quality and safeguards against the degradation of standards 

that can occur with excessive demand. 

When constructing models for passenger station siting, 

two distinct perspectives emerge: passenger-centric models 

prioritize minimizing walking distances [27], while 

enterprise-focused models aim to optimize total route length 

and maximize profits [28]. These conflicting objectives 

complicate multi-objective optimization efforts. Cui [29] 

introduced the NSGA-II algorithm, which utilizes population 

average distance clustering to select the best individuals 

during the selection phase. However, this approach 

encounters reduced computational efficiency as population 

sizes increase. 

In conclusion, most existing studies primarily focus on CB 

stop configurations, personalized passenger routes, and CB 

route planning, with relatively little attention devoted to 

dynamic ride and drop-off sites for personalized passenger 

services. Additionally, many studies neglect actual passenger 

booking demands and fail to jointly consider the spatial and 

temporal characteristics of OD pairs and booking demands. 

This oversight results in insufficient consideration of both 

enterprise costs and passenger satisfaction. Furthermore, the 

algorithms used often exhibit inefficiencies when dealing 

with large-scale datasets. 

This paper aims to address these gaps by incorporating 

multi-attribute spatial-temporal demands of passengers and 

developing a multi-objective model for CPT-DRDSS. 

Spatial-temporal clustering techniques are employed to 

aggregate passenger booking needs into clusters, thereby 

reducing the proportion of noise sites and ensuring that the 

needs of all passengers are met. Furthermore, the individual 

initialization phase of the NSGA-III algorithm is enhanced 

through the integration of the ST_DBSCAN algorithm, 

facilitating effective model solutions. The effectiveness of 

this approach is validated using Point-of-Interest (POI) data 

within the service area of a customized passenger line, 

serving as a case study. 

 

II. DESCRIPTION OF THE PROBLEM 

This study systematically introduces the concept of CPT 

before addressing the associated issues. CPT is a passenger 

service that utilizes online ticketing provided by shuttle bus 

operators through e-commerce platforms. These platforms 

offer detailed information on passenger transport routes, 

allowing for flexible agreements on departure times and 

stopping places. The primary objective of this model is to 

deliver tailored transportation solutions that cater to the 

increasingly diverse and personalized travel needs of 

passengers. Given the complexity of high passenger 

reservation demand and significant spatial and temporal 
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variations in ride and drop-off locations, this study analyzes 

travel demand for CPT from urban centers to surrounding 

counties. It identifies a subset of dynamic ride and drop-off 

sites characterized by capacity and spatiotemporal attributes 

from a broad pool of demands. 

Within this framework, it is assumed that passengers 

submit their reservation details via a CPT information service 

platform. Based on the provided reservation demand 

information, the platform efficiently transports passengers 

from designated locations in the departure area to specified 

locations in the destination area. The CPT platform collects 

essential demand information, including the reservation site 

number, ride location (longitude and latitude), drop-off 

location (longitude and latitude), and expected riding time, as 

detailed in TABLE I.  

To account for the multitude of complex factors 

influencing the setting of dynamic ride and drop-off sites in 

practical scenarios, this study incorporates several 

assumptions regarding the setting of dynamic ride and 

drop-off sites: 

1) The setup cost for each dynamic ride and drop-off site is 

assumed to be uniform. 

2) Passenger reservation demands are considered 

independent and are assumed to remain constant. 

3) Travel conditions are deemed to be accessible at every 

reservation demand site as well as at the potential ride and 

drop-off sites. 

4) The distance between the reservation site and the 

dynamic site is calculated using Euclidean distance, without 

accounting for potential detours that passengers may 

encounter while traveling to the dynamic site. 

 

III. MODELING OF THE CPT-DRDSS PROBLEM 

Given the importance of minimizing deviations between 

actual and desired ride and drop-off locations, as well as 

between actual and expected riding times, effective 

implementation of door-to-door services in CPT is critical. 

Additionally, the number of dynamic stop settings impacts 

not only the operational efficiency of CPT companies but 

also, if excessive, can degrade the passenger travel 

experience. 

To address these challenges, this paper establishes a 

multi-objective optimization model for CPT-DRDSS. The 

model notations are summarized in TABLE II.  
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Equations (1) - (3) define the objective functions of our 

model. Specifically, equation (1) minimizes the distance 

deviation, while equation (2) minimizes the time deviation, 

respectively; both are critical indicators for maximizing 

passenger satisfaction. Equation (3) aims to minimize the 

number of vehicle stops, which is a key factor in reducing 

operational costs for the enterprise. 

The constraints are detailed in equations (4) - (7). Equation 

(4) specifies the range for the number of dynamic sites. 

Equation (5) ensures that each reservation site j is associated 

with exactly one dynamic site i. Equation (6) guarantees that 

at least one demand site should be covered within the service 

TABLE Ⅱ 

RELATED SYMBOLS 

 Symbol Definition 

Decision 

variable 

ijx
 

0–1 decision variable, 1ijx =  indicates that potential ride and drop-off site i covers reservation site j, otherwise it is 0 

iy
 

0–1 decision variable, 1iy =  indicates that potential ride and drop-off site i is selected as a dynamic ride and drop-off site, 

otherwise it is 0 

Intermediate 

variables and 
other 

parameters 

n Number of reservation sites or potential ride drop-off sites 

R Maximum distance deviation acceptable to passengers 

T Maximum time deviation acceptable to passengers 

iT
 

Time attributes of potential ride site i 

jT
 

Time attributes of reservation ride site j 

ijd
 

Distance from potential ride site i to reservation site j 

1Z
 

Total distance from each reservation site to the corresponding dynamic sites 

2Z
 

Total time deviation from each reservation sites to the dynamic sites 

3Z
 

Number of dynamic site settings 

 

TABLE I 
RESERVATION REQUEST INFORMATION 

No. 
Ride location 

(Lon, Lat) 
Drop location 

(Lon, Lat) 
Expected riding 

time 

1 ( )1 1,x y  ( )1 1,X Y  
1T  

2 ( )2 2,x y  ( )2 2,X Y  
2T  

… … … … 

i ( ),i ix y  ( ),i iX Y  
iT  
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radius R of any dynamic site. Finally, equation (7) stipulates 

that the deviation of actual departure time from the expected 

time must not exceed a predefined threshold T. 

 

IV. MODEL SOLUTION 

A. Algorithm Design 

The location selection problem is fundamentally NP-hard. 

Research has demonstrated that the NSGA-III algorithm 

consistently outperforms MOEA/D algorithms across a range 

of problems with objectives varying from 3 to 15 [29]. In 

scenarios where minimizing objective Z1 may result in an 

increase in objectives Z2 and Z3, this paper employs the 

NSGA-III algorithm to solve the constructed three-objective 

model for CPT-DRDSS. 

In the realm of clustering algorithms, the ST_DBSCAN 

algorithm extends DBSCAN by adding an additional 

dimension, transforming the two-dimensional circular search 

area into a three-dimensional spherical search area. This 

enables density-based spatial-temporal clustering of spatial 

point data with temporal attributes [30]. For CPT demands 

that are temporally and spatially dispersed and involve large 

volumes of data, it is challenging to cluster them into groups 

with similar attributes using a single criterion [31]. Such 

difficulties can lead to an increased number of rejected 

passenger reservation requests. 

To tackle the challenges associated with data scale and 

noise points identified by density-based clustering algorithms, 

this study employs the ST_DBSCAN algorithm in three 

iterations during the individual initialization phase of the 

NSGA-III algorithm. This process clusters the mapping 

relationships between potential dynamic ride and drop-off 

sites (core objects) and reservation sites (cluster points) 

extracted from the reservation demand data, effectively 

dividing them into smaller, distinct sets of ride and drop-off 

sites. This categorization streamlines individual encoding, 

reduces chromosome length, and enhances the performance 

of the NSGA-III algorithm. The detailed process is outlined 

in Algorithm 1. Here, D1 represents the dataset of passenger 

reservation demands, while D2 and D3 correspond to the 

noise sets derived from the first and second rounds of 

spatial-temporal clustering, respectively, and are consistent 

with the data type of D1. 

 

B. Three Rounds of ST_DBSCAN Algorithm 

This study employs the ST_DBSCAN algorithm, which is 

characterized by its multidimensional approach to evaluating 

both spatial and non-spatial similarities within datasets. 

Specifically, the algorithm defines the Eps1 neighborhood for 

reservation sites in the departure area and the Eps2 

neighborhood for those in the arrival area to quantify spatial 

similarity. Non-spatial similarity, based on the temporal 

dimension, is assessed through the Eps3 neighborhood 

associated with departure times.  

The density parameter MinPts establishes the minimum 

number of points required within the neighborhood of a core 

object for it to be classified as such. The parameter Δε is 

crucial for fragmenting clusters that are spatially contiguous 

but exhibit significant disparities in non-spatial attributes. 

Additionally, the algorithm employs a stack-based iterative 

methodology to aggregate all density-reachable data points 

from the core objects, ensuring a comprehensive and robust 

clustering process. 

 

1) Initial Spatial-Temporal Clustering 

The initial spatial-temporal clustering focuses on the 

geographic locations of ride and drop-off sites, as well as the 

departure times, considering the joint origins and destinations. 

This process aggregates passengers whose ride and drop-off 

locations, along with their departure times, are in close 

geographic and temporal proximity. Following this 

procedure, the reservation information 

1,2,3, 1,2,3, 1,2,3, 1,2,3, 1,2,3,( , , , , )x y x y T   undergoes a clustering 

process, resulting in the formation of distinct clusters denoted 

as , , , , ,( , , , , )x y x y T       , along with a set of noise points. 

In this context, identifiers such as 1, 2, 3, etc., represent the 

reservation sites, while I, etc., denote the cluster identifiers 

assigned post-clustering. The attributes of the noise points 

maintain their status as reservation information. The specific 

procedures for the initial spatial-temporal clustering are 

detailed as follows. 

Input: D1, Eps1, Eps2, Eps3, and MinPts. 

Output: D2, C, M, , , ( )Eps Eps EpsN p
1 2 3 , pqt , and 

1
pqd .  

Algorithm 1 Generation t of NSGA-III procedure 

Input: NSGA-III related parameters, including MaxGen, Pm, Pc, and H 

(Structured reference sites sZ ) 

     ST_DBSCAN related parameters, including dataset D1, and 
clustering parameter Eps1, Eps2, Eps3, MinPts, and Δε 

Output: Pt+1 

1. St = Ø, i = 1 

2. When t = 1: 

3.    Three rounds of ST_DBSCAN procedure 

4.    Pt = H individual initialization + Population initialization 

5.    (F1, F2, …) = Non-dominated-sort (Pt) 

6.    Qt = Selection + Crossover + Mutation (Pt)  

7. When t > 1: 

8.    Qt = Selection + Crossover + Mutation (Pt) 

9. Rt = Pt ∪ Qt 

10. (F1, F2, …) = Non-dominated-sort (Rt)  

11. repeat  

12.    St = St ∪ Fi and i =i +1 

13. until |St| ≥ H 

14. Last front to be included: Fl = Fi 

15. if |St| = H then 

16.    Pt+1 = St, break 

17. else 

18.    Pt+1 = ⋃ Fj
l-1
j=1  

19.    Sites to be chosen from Fl: K = H − |Pt+1| 

20.    Normalize objectives and create reference set Zr 

21.    Associate each member s of S1 with a reference site 

22.    Compute niche count of reference site 

23.    Choose K members one at a time from Fl to construct Pt+1 

24. end if 
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Let C denote the set of clusters, p represent a core object, 

and M signify the set of all core objects. Let set 

, , ( )Eps Eps EpsN p
1 2 3  be defined as the collection of sites within 

the neighborhood of site p; specifically, this notation reflects 

the inverse mapping relationships between p and q (where q

 , , ( )Eps Eps EpsN p
1 2 3 ). Additionally, pqt and 

1
pqd  represent the 

spatial-temporal distances between sites p and q. The 

neighborhood set , , ( )Eps Eps EpsN p
1 2 3  is determined by 

equation(8), while the pqt and 
1
pqd  are calculated using 

equation (9). 
 

 

( )
( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )

1 2 3

1 1 1

, , 2 2

3 3

2 2
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2 2
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, ,

, ,

,

,

,
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Eps Eps Eps

p q p q

p q p q

p q

q D dist p q Eps

N p dist p q Eps

dist p q Eps

dist p q x x y y

dist p q X X Y Y

dist p q T T

   
  

=   
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  
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 
 
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1

1 2

,

, ,

pq

pq

t dist p q

d dist p q dist p q

=


= +
 (9) 

 

Here, 1dist , 2dist , and 3dist  represent the spatial 

deviation associated with the riding location, the spatial 

deviation associated with the dropping location, and the 

temporal deviation associated with the riding time for sites p 

and q, respectively. 

 

2) Second and Third Spatial-Temporal Clustering 

The second spatial-temporal clustering phase focuses on 

the pre-response of ride and drop-off sites within the 

departure region regarding their spatial-temporal dynamics. 

In this framework, the clustering algorithm categorizes the 

spatial-temporal attributes associated with ride actions at the 

noise sites. Following this step, the noise points dataset 

1,2,3, 1,2,3, 1,2,3, 1,2,3, 1,2,3,( , , , , )x y x y T   is subjected to a 

clustering process, resulting in the segregation into distinct 

clusters , , 1,2,3, 1,2,3, ,( , , , , )x y x y T     and a set of noise 

points. The significance of the numbering remains consistent 

with the previous step, while the attributes of the noise sites 

continue to be retained as reservation information. 

The third spatial-temporal clustering then focuses on the 

spatial latitude pre-response of the destination region. In this 

step, the same clustering algorithm is applied to cluster the 

drop-off locations and departure times of the noise points. 

Upon completion of this step, the noise points dataset 

1,2,3, 1,2,3, 1,2,3, 1,2,3, 1,2,3,( , , , , )x y x y T   is subjected to a 

clustering process, resulting in segregation into distinct 

clusters 1,2,3, 1,2,3, , , ,( , , , , )x y x y T     and a set of noise 

points with the attributes of the noise points continuing to be 

retained as reservation information. 

The second and third instances of spatial-temporal 

clustering are analogous to the initial clustering process, with 

differences in the input and output datasets. Specifically, the 

second clustering uses dataset D2 as input and produces 

dataset D3 and set , ( )Eps EpsN p
1 3  as output, while the third 

clustering takes D3 as input and yields the noise site dataset 

D4 and set , ( )Eps EpsN p
2 3  along with the final output. Within 

the output results, the sets , ( )Eps EpsN p
1 3  and , ( )Eps EpsN p

2 3  are 

calculated using equation (10), and the spatial distances are 

determined by equation (11). 
 

 

( )
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( )
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1 3

2 3

2 1 1
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3 3

3 2 2
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3 3
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Eps Eps
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q D dist p q Eps
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pq
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
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Here, 
2
pqd  and 

3
pqd  denote the spatial distance between p 

and q during the second and third stages of spatial-temporal 

clustering. 

 

3) Encoding and Decoding Rules 

This study employs a binary hybrid structure for encoding 

chromosomes, which represent the decision variables of the 

model. The hybrid structure consists of two layers of 

numerical codes. The upper layer comprises two additional 

codes, encoded using natural numbers, representing sets M 

and C, respectively. The lower layer consists of two variable 

codes that are encoded in binary notation.  

The chromosome length corresponding to iy  equals the 

number of elements p in M, with the sum of the digits 

indicating the number of dynamic site setups. In contrast, the 

chromosome length for ijx  corresponds to the number of 

sites in set C, where each gene segment's length matches that 

of iy . A sum of the digits in a gene segment equal to 1 

signifies that each reservation site belongs to a single 

dynamic site, while a sum of 0 indicates that the reservation 

site is a core site within the dynamic site structure. A 

schematic illustration of the chromosome encoding is 

provided in Fig. 1. 

As depicted in Fig. 1, the demand dataset used in this case 

is defined as follows: set M includes the elements {24, 111, 

75, 89, 193, 147}, while set C consists of {24, 99, 111, 75, 89, 

193, 147, 53}. The association between potential dynamic 

sites and reservation sites is represented in the format {core 

site: [set of reservation sites]} , specifically as follows: {24: 

[24, 75, 99, 53, 111, 147, 193], 111: [111, 24, 89, 53], 75: [75, 

24, 89], 89: [89, 75, 111, 193], 193: [ 193, 24, 89], 147: [147, 

24, 75, 53, 99]}. Analyzing this example yields the decoding 

result, revealing the set of dynamic sites as {24, 89, 147}. 

The relationship between these dynamic sites and the 

reservation sites they serve is expressed as follows: {24: [24, 

 

 
 

Fig. 1  Schematic diagram of chromosome encoding  
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99, 53], 89: [89, 111, 193], 147: [147, 75]}. 

 

4) Crossover and mutation rules 

Initially, two individuals are randomly selected along with 

the genetic segments of the lower iy  variable code 

chromosomes. Subsequently, a crossover operation is 

meticulously executed on these selected gene segments in 

conjunction with their corresponding upper layer codes. This 

process modifies the lower ijx  variable code chromosome 

segments while ensuring that the changes align with the 

association mapping between potential dynamic sites and 

reservation sites. The mutation operation follows similar 

principles to those of the crossover operation.  

A graphical illustration of the chromosome crossover 

process is detailed in Fig. 2. In this figure, shaded squares 

indicate the selected crossover segments, whereas squares 

with scattered dots represent the segments that have been 

modified as a result of the crossover operation. In this 

example, the additional code for the selected crossover 

segment is 75. After the crossover, reservation site 75 in 

Individual 1 is transformed into a dynamic site, necessitating 

adjustments to its associated reservation sites, which change 

to {75: [75, 24]}. As a result, dynamic site 24 is reclassified 

as a reservation site, and the reservation sites within its 

service range, {99, 53}, are randomly reassigned to the 

service range of dynamic site 147 based on the existing set of 

relationships. This adjustment rule is similarly applied to 

modify the encoding of Individual 2.  

Following the crossover, the dynamic sites of Individual 1 

are {75, 89, 147}, with the relationship between dynamic 

sites and the reservation sites they serve expressed as {75: 

[75, 24], 89: [89, 111, 193], 147: [147, 99, 53]}. For 

Post-crossover Individual 2, the dynamic sites are {111, 147}, 

with the corresponding relationship being {111: [111, 89, 193, 

24], 147: [147, 53, 99, 75]}. 

 

C. Improved Algorithm Interpretation 

The depiction in Fig. 3 elucidates the improvement process 

of the NSGA-III algorithm through the application of the 

ST_DBSCAN algorithm in three rounds to address the model 

effectively. This figure highlights the methodological 

integration of the spatial-temporal clustering approach with 

the multi-objective optimization algorithm, showcasing the 

synergy between these computational techniques. 

In the figure, the spatial distribution of demands is 

represented, where sites in City A denote departure demand, 

and sites in City B signify arrival demand, collectively 

forming complete trips. In the improved algorithm, sites 

sharing the same shape indicate travel reservation OD 

demand from similar passengers. The ellipses represent 

clustered data that maintain consistent attributes among sites 

within these clusters. Dashed circles indicate the coverage 

areas surrounding reservation sites categorized as dynamic 

sites. The circular, square, and triangular symbols within 

Cities A and B correspond to the outcomes of the first, second, 

 

 
 

Fig. 2  Chromosome crossover schematic 

 

 
 

Fig. 3  Improved algorithm interpretation  
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and third rounds of spatial-temporal clustering, respectively. 

Black dots denote noise points that remain unclustered after 

three rounds of clustering.  
In the results of the improved algorithm, dynamic ride and 

drop-off sites are represented by a combination of pentagram 

markers and original reservation site indicators. Distinct 

shapes and colors are used to differentiate the four types of 

reservation sites. For the direct solution component of the 

model, five-pointed stars represent the determined dynamic 

ride and drop-off sites.  

A comparative analysis of the two solution methods 

reveals that the improved NSGA-III algorithm effectively 

reduces the processed data through spatial-temporal 

clustering, establishing ride and drop-off sites within these 

clusters. This approach maximizes the number of served 

reservation sites while minimizing the number of ride and 

drop-off sites, thereby avoiding scenarios where a single ride 

and drop-off site serves only one reservation site. 

Consequently, this methodology enhances the efficiency and 

effectiveness of the algorithm. 
 

V. EXAMPLE VALIDATION AND RESULT ANALYSIS 

A. Example Data  

The mathematical model developed within the scope of 

this study work is implemented utilizing the Python 3.7 

programming environment, along with the CPLEX 22.1.0.0 

optimization solver, facilitating both algorithmic coding and 

resolution processes. The computational experiments were 

conducted on a personal computer equipped with an Intel 

Core i5-8265U CPU operating at 1.60 GHz, coupled with 8 

GB of random-access memory (RAM).  

This study aims to explore a CPT service model designed 

to transport passengers directly from their designated pick-up 

sites at the origin to their designated drop-off sites at the 

destination. The research is contextualized within Chongqing, 

one of China's four municipalities, focusing specifically on 

its significant district, Tongliang. The study utilizes CPT 

ticketing data from the "Chongqing Yukexing" platform for 

the year 2021. By analyzing the spatial and temporal 

distribution characteristics of this data and integrating it with 

actual POI data from residential areas within the region, we 

simulated the demand for CPT bookings from Chongqing's 

main urban area to Tongliang District over a single day, 

selecting a sample of 200 demands. Specific details of the 

related data are presented in TABLE Ⅲ. 

Furthermore, this paper provides a detailed examination of 

the current operational status of CPT routes from 

Chongqing's main urban area to Tongliang District, with 

specific data available in TABLE Ⅳ. Through this research, 

we aim to assess the efficiency and feasibility of the CPT 

service model in actual operations, thereby offering 

theoretical support and practical guidance for urban 

transportation planning and management. 

 

B. Model Solving Results 

1) Parameterization 

Based on the data provided in TABLE Ⅳ, this study 

derived the current scheduling results for the example case, 

along with the deviations between passengers' actual 

departure locations times compared to their expectations. 

Under the current operational mode, the deviation of the 

actual drop-off locations from expectations is not considered 

due to the strategy of dropping off passengers within the 

regional service area. The detailed analysis results are 

presented in TABLE Ⅴ. 

According to TABLE Ⅴ, the total time deviation on the 

current routes is approximately 260 hours, indicating 

relatively low sensitivity to time among passengers. From 

this analysis, a specific reservation site was selected, and the 

time distances between this site and other reservation sites 

were calculated and ranked in ascending order. A significant 

inflection point was identified at a 2-hour time difference, 

leading to the establishment of the Eps3 parameter to 2 hours 

as a critical threshold for the time distance.  

Furthermore, considering that the average speed of a 

customized passenger vehicle for riding and dropping 

passengers in the origin and destination areas is 40 km/h, and 

TABLE Ⅲ 

DATA OF RESERVATION DEMAND SITE 

No. Departure Destination Ride location Drop location Expected riding time 

1 Royal View Riverside Sunshine Waterfront (106.588687, 29.569077) (106.057794, 29.850683) 9:42 

2 34 Dahuang Rd. 
The Garden of the Tilling of the 

Heart 
(106.529592, 29.542067) (106.011960, 29.856476) 7:42 

… … … … … … 

200 Kunyu Mansion Shihe Village 13 (106.565501, 29.563165) (106.002172, 29.856307) 17:00 

 
TABLE Ⅳ 

CURRENT OPERATION OF THE LINE 

Line name No. Ride site Drop-off site Vehicle type 
Total number of 

shift 

Chongqing 

⇒ 
Tongliang 
Highway 

(G93) 

1 

Longhu Paradise Street, Daping → Daping Hospital → Daping 

Elementary School → The First Hospital of Chongqing Medical 

University → Chenjiaping Passenger Station 

Ride and drop within 
the service area 

9-seater 

commercial 
vehicle 

36 2 

Hongqihegou passenger Station → North District Public 

Transportation Service Site → Ranjiaba Maternal and Child 
Health Center 

Ride and drop within 

the service area 

3 
Chongqing West Railway Station Passenger Station → Xinqiao 
Hospital Outpatient Clinic → Southwest Hospital Outpatient 

Clinic → Shapingba Yankou Bus Stop 

Ride and drop within 

the service area 
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based on the data in TABLE Ⅴ, we assumed an upper limit of 

4 sites per trip. Consequently, we set the density parameter 

MinPts to 2 to ensure that the density requirement in the 

clustering process is satisfied. Additionally, since passenger 

ride and drop-off services need to be completed within 40 

minutes, we set both the Eps1 and Eps2 parameters to 7 

kilometers as thresholds for spatial distance. This facilitates 

the definition of the geographic distribution of passengers 

and the service range of reservation sites in the clustering 

analysis. These parameters are designed to optimize the 

scheduling strategy for customized passenger services, 

aiming to reduce passenger waiting times, improve service 

efficiency, and enhance the overall travel experience. 

 

2) Improved algorithm solving results 

For the population operation, we divided the axes of the 

three objectives into 12 equal segments (p = 12), resulting in 

H = 91 reference points. We set the population size (PopSize) 

to H, the mutation probability (Pm) to 0.9, the crossover 

probability (Pc) to 0.1, and the maximum number of 

generations (MaxGen) to 500. This configuration allowed us 

to generate three sets of spatial-temporal clustering results, as 

detailed in TABLE Ⅵ. 

As indicated in TABLE Ⅵ, the three rounds of clustering 

effectively partitioned the reservation demands. The initial 

clustering yielded 28 clusters comprising 100 reservation 

sites and 100 noise sites, successfully clustering 50% of the 

reservation demands. The second round produced 9 clusters 

containing 78 reservation sites and 22 noise sites, while the 

third round identified 5 clusters with 12 reservation sites and 

10 noise sites. Collectively, the three rounds of the 

ST_DBSCAN algorithm partitioned 95% of the reservation 

demands, thereby reducing the proportion of noise sites to 

5%. This process established mapping relationships between 

potential dynamic ride and drop-off sites and reservation sites, 

effectively decreasing the data scale of the CPT-DRDSS 

model. 

The improved algorithm, when applied to solve the model, 

yields a total of 31 Pareto-optimal solutions, with their 

distribution in the solution space illustrated in Fig. 4. The 

minimum and average values of these 31 Pareto-optimal 

solutions across the three objective dimensions are presented 

in TABLE Ⅶ. 

As evidenced in TABLE Ⅶ, an inverse relationship is 

observed between the growth trend of Z3 (the number of 

 
 

Fig. 4  The distribution of 31 Pareto optimal solutions 

 

TABLE Ⅴ 
RESULTS OF EXAMPLE DATA LOADING ON CURRENT ROUTES AND SCHEDULING 

Shift 
Line 

No. 
Ride time Passenger ridding Service Sequence 

Distance deviation Time deviation 

Z1 (km)  Z2 (h) 

1 1 6:50 → 6:53 → 6:55 → 7:00 → 7:20 183 → (24, 43, 69, 122, 6, 23) → ( ) → ( ) → ( ) 119.88 1.65 

2 2 8:20 → 8:26 → 8:30 (137, 142, 67, 36) → (108, 26, 21) → 126 118.90 4.14 

… … … … … … 

35 3 19:45 → 19:50 → 19:55 → 19:55 18 → 179 → (101, 45, 89) → (91, 96, 172) 365.18 15.87 

36 1 20:30 → 20:33 → 20:35 → 20:40 → 21:00 
(75, 167, 156) → (57, 85) → ( ) → (120, 71) → 

178 
53.98 6.40 

Total — — — 4723.23 262.98 

 

TABLE Ⅵ 

RESULTS OF THREE-TIME SPATIAL-TEMPORAL CLUSTERING 

Spatial -temporal 

clustering 
Cluster No. {Core site: [Reservation site]} 

Number of core sites Number of noise site 

Cluster inside Total Noise site Total 

No.1 

1 {188: [0, 28, 121, 61, 127], …, 101: [153]} 14 

100 [5, 10, …, 195, 196] 100 … … … 

28 {178: [198], 198: [178]} 2 

No.2 

29 {5: [81, 19], …, 75: [59]} 25 

78 [24, 32, …, 192, 195] 22 … … … 

37 {72: [27, 82, 99], …, 77: [68]} 6 

No.3 

38 {24:[49],49:[24]} 2 

12 [50, 52, …, 192, 195] 10 … … … 

42 {158:[46],46:[158]} 2 
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dynamic ride and drop-off sites) and Z1 (the deviation of 

actual ride and drop-off locations from expectations) as well 

as Z2 (the deviation of passengers' actual riding times from 

expectations). Specifically, an increase in Z3 corresponds to a 

decrease in both Z1 and Z2. This finding suggests that 

increasing the number of dynamic ride and drop-off sites can 

lead to a reduction in the deviations of actual ride and 

drop-off locations and passengers' riding times, thereby 

enhancing the overall quality of passenger travel services. 

Furthermore, the results for the four types of dynamic ride 

and drop-off site settings corresponding to the minimum in 

the first target direction are shown in TABLE Ⅷ. The 

NSGA-III algorithm, improved by three rounds of 

spatial-temporal clustering, effectively identified four 

distinct categories of dynamic ride and drop-off sites during 

the model-solving process. The initial round of 

spatial-temporal clustering yielded 43 dynamic sites, the 

second round produced 31 dynamic sites, and the third round 

resulted in 5 dynamic sites. Furthermore, 10 dynamic ride 

and drop-off sites were classified under the fourth category. 

For the dynamic ride and drop-off sites of this fourth 

category, we considered the objectives embedded within the 

model and the prevailing operational paradigm of the case 

line within the drop-off service area. These sites were 

assigned to those exhibiting minimal deviation in spatial and 

temporal attributes of departure times. Consequently, these 

sites are serviced accordingly, optimizing allocation and 

service delivery within the dynamic ride and drop-off system. 

The study also visualizes the effects of the first, second, 

and third spatial-temporal clustering in Fig. 5 (a) - (c), 

respectively, while the dynamic site setup is summarized in 

TABLE Ⅷ. This visualization provides additional insights 

into the clustering process and highlights the effectiveness of 

the improved algorithm in enhancing the CPT service model. 

C. Comparative Analysis of Algorithms 

1) Validation of the validity of the algorithm 

To verify the effectiveness of the proposed algorithm, we 

designed two experiments. The first experiment involved 

comparing the results of scheduling case data on the current 

line with the scheduling outcomes derived from the methods 

presented in this paper. This simulation of the algorithm's 

scheduling, based on the frequency of the current line, 

TABLE Ⅶ 
PARTIAL RESULTS OF THE PARETO OPTIMAL SOLUTION ARE SHOWN 

 Z1 (km) Z2 (h) Z3 

Z1 minimum 490.38 113.32 79 

Z2 minimum 497.08 106.52 80 

Z3 minimum 518.08 120.12 74 

Average value 511.85 112.83 76 

 

TABLE Ⅷ 

RESULTS OF DYNAMIC RIDE DROP SITE SETTING 

Dynamic 

site 

Cluster 

No. 

{Dynamic site: 

[reservation site]} 

Number of sites 

Cluster 

inside 
Total 

Type 1 

1 
{188: [0], 153: [101], …, 

28: [1, 61, 121]} 
6 

43 … … … 

28 {178: [198]} 1 

Type 2 

29 
{5: [81], 76: [19], …, 59: 

[75, 32]} 
10 

31 … … … 

37 {72: [27], 68: [77]} 3 

Type 3 

38 {24:[49]} 1 

5 … … … 

42 {158: [46]} 1 

Type 4 — [50, 52, …, 192, 195] — 10 

 

(a) 

 
 

 
 

 
 

(a) The initial round; (b) The second round; (c) The third round 

Fig. 5  Improved NSGA- III algorithm solution (Z1 minimum) 

 

(b) 

(c) 

(a) 
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employed the following systematic approach: 

a) Reservation demands within the same cluster are 

allocated to a single vehicle for service delivery. 

b) Reservation demands across different clusters are 

consolidated and scheduled onto the same vehicle by 

calculating the average spatial-temporal distances among 

them. 

c) Clusters with a substantial number of reservation sites 

are directly assigned vehicles for operation. 

d) Clusters with a limited number of sites are considered 

for demand consolidation, wherein reservation demands from 

different clusters are amalgamated and scheduled onto the 

same vehicle. 

Using this method, we calculated the deviations between 

actual ride locations and times compared to passengers' 

anticipated preferences. The results of this analysis are 

detailed in TABLE Ⅸ. 

Operational data from Shift 2 revealed that the customized 

passenger vehicle reached dynamic stop 'B Chun Court' 

(numbered 128) at 7:54, successfully picking up passengers 

with reservation demand numbers 6, 83, and 128. 

Subsequently, at 8:12, the vehicle arrived at dynamic site 

'Kafu Community' (numbered 8) to collect passengers with 

reservation demand numbers 7 and 8. The vehicle then 

proceeded to dynamic site 'Jade Ark of Chongqing Tiandi' 

(numbered 136) at 8:24 to pick up passengers with 

reservation demand numbers 68 and 136. For this trip, the 

mean deviation between the passengers' actual and desired 

ride locations was recorded as 22.92 kilometers, while the 

mean deviation between actual and desired boarding times 

was 1.5 hours. 

A comparative analysis of the results from the proposed 

algorithm with those detailed in TABLE Ⅴ indicates a 

significant reduction in the frequency of trips. Specifically, 

the deviation of passengers' actual ride locations from their 

expected ones decreased to 12.97%, representing a reduction 

of 4,110.67 kilometers compared to the previous scenario. 

Similarly, the deviation of actual ride times from the 

anticipated times dropped to 12.62%, leading to a total 

reduction of 229.78 hours, or an average decrease of 1.15 

hours per individual. These findings strongly support the 

effectiveness of the algorithm. 

To further validate the accuracy and efficacy of the 

improved algorithm, a comparative analysis was conducted 

between the outcomes of the first category of dynamic ride 

and drop-off site configurations and the computational results 

obtained from solving the 0-1 integer programming problem 

using CPLEX. The comparison metrics included the fitness 

values Z1, Z2, and Z3, as well as the computational time 

required for solution convergence. The detailed comparative 

results are presented in TABLE Ⅹ. This analysis provides a 

quantitative basis for assessing the algorithm's performance, 

confirming its superiority in practical operational contexts. 

In a second experiment, we compared the validation 

results of the first type of dynamic site setup using CPLEX to 

solve the 0-1 integer programming problem with the results 

obtained from the method presented in this paper. The 

experimental results, as depicted in TABLE X, demonstrate 

that the improved algorithm significantly outperforms the 

CPLEX solution in both solution quality and efficiency. 

Notably, the improved algorithm reduces the computation 

time to just 4.7% of that required by CPLEX. This substantial 

reduction in computation time enhances the algorithm's 

practicality and better aligns it with the demands of 

real-world applications. 

 

2) Efficient validation of algorithms 

To verify the efficiency of our algorithms, we conducted 

two experiments. Given that the NSGA-II algorithm can 

handle simple three-objective models, the first experiment 

compares the performance of the improved strategy 

integrated into the NSGA-II framework for solving the 

CPT-DRDSS model with that of the refined NSGA-III 

algorithm. 

Through iterative execution of the program, we 

consistently obtained approximately three Pareto-optimal 

solutions, all of which are part of the set of 31 Pareto-optimal 

solutions derived from the refined NSGA-III algorithm 

presented in this study. This observation highlights the 

instability and incompleteness of the optimal solutions 

generated by the improved NSGA-II algorithm. To compare 

the operational outcomes of the improved NSGA-III and the 

improved NSGA-II algorithms, we employed two widely 

recognized performance metrics: Inverted Generational 

Distance (IGD) and Hypervolume (HV). 

a) Inverted Generational Distance (IGD) [33]. This metric 

measures the distance between the obtained solution set and 

the real or ideal Pareto front. It reflects the coverage and 

separation between the solution set and the ideal set by 

calculating the average of the minimum distances from a set 

of reference points to the target solution set. Smaller values 

indicate a closer distance between the solution set from the 

algorithm and the Pareto front, signifying better algorithm 

performance. 

b) Hypervolume (HV) [34]. This metric assesses the 

performance of a multi-objective optimization algorithm by 

measuring the volume of the objective space enclosed by the 

TABLE Ⅸ 
ARITHMETIC SIMULATION OF SCHEDULING RESULTS 

Shift 

No. 

Passenger riding service sequence 

{Dynamic site: [reservation site] (time)} 

Fitness 

Z1 (km) Z2 (h) 

1 
153: [101] (6:42) → 42: [161] (6:48) → 

188: [0, 61, 121] (8:36) 
28.13 1.80 

2 
128: [6, 83] (7:54) → 8: [7] (8:12) → 

136: [68] (8:24) 
22.92 1.50 

… … … … 

33 
179: [118, 108] (19:30) → 126: [124] 

(20:00) → 88: [100] (20:10) 17.46 0.80 

Total — 612.56 33.20 

 

TABLE Ⅹ 
COMPARISON RESULTS OF THE IMPROVED ALGORITHM WITH CPLEX 

Comparison 

parameters 

Improved 

algorithm 
CPLEX 

Difference 

value 

Z1 (km) 328.57 403.27 -74.70 

Z2 (h) 50.41 59.33 -8.92 

Z3 40 43 -3 

Computation 
time (s) 

59.79 1,267.56 -1,207.77 
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Pareto front. A larger HV value indicates better quality and 

diversity of the solutions. 

We performed a comparative analysis of the IGD and HV 

metrics over 30 independent runs for both the improved 

NSGA-III and NSGA-II algorithms to evaluate their 

performance and efficacy in addressing the CPT-DRDSS 

model. The results of these runs are presented in TABLE Ⅺ. 

Upon examination of the data in TABLE Ⅺ, it is evident that 

the improved NSGA-III algorithm significantly outperforms 

the improved NSGA-II algorithm in terms of both IGD and 

HV metrics. 

The second experiment aimed to validate the efficiency of 

the algorithm through a comparative analysis between the 

solution outcomes from the enhanced algorithm—utilizing 

the mean of Pareto-optimal solutions—and those from the 

unimproved NSGA-III algorithm, which, while lacking 

spatial-temporal clustering, follows the methodologies 

presented in this study. 

Consistent with the approach of the unimproved algorithm, 

we incrementally input reservation data of varying scales, 

labeled as D1, D2, and D3, into the model to determine the 

first three types of dynamic stations. The comparative 

outcomes of the two algorithms are delineated in TABLE 

Ⅻ. 

Upon examining the objective values derived from the 

algorithmic solutions in TABLE Ⅻ, it is evident that the 

improved algorithm outperforms the unimproved counterpart 

across the Z1, Z2, and Z3 metrics. Notably, the Z1 metric was 

reduced by 60.9 kilometers, while the Z2 metric constituted 

24.84% of that of the unimproved algorithm. This indicates 

that the improved algorithm is more effective in minimizing 

the deviation between actual and desired passenger drop-off 

locations, as well as in reducing ride time deviations.  

The improvement is particularly pronounced in the 

establishment of the second category of dynamic sites, where 

the Z1 metric decreases by 59.33 kilometers, while the Z2 

metric accounts for 18.20% of that obtained using the 

unimproved algorithm. This suggests that the improved 

algorithm is most effective in reducing passenger distance 

and time deviations associated with the configuration of the 

second category of dynamic sites. Furthermore, the Z3 metric 

obtained from the improved algorithm slightly outperforms 

that of the unimproved algorithm, thereby substantiating the 

accuracy of the enhancements made. 

Regarding algorithmic convergence time, the improved 

algorithm demonstrates expedited performance in both 

incremental and cumulative time requirements for resolving 

the initial three types of dynamic stops, with the total time 

being 30.02% of that required by the unimproved algorithm. 

This suggests that the improved algorithm can significantly 

reduce the duration for establishing dynamic sites. When 

addressing the first and second types of dynamic stops with 

input data sizes of 200 and 100, respectively, the convergence 

time for the improved algorithm is 29.39% and 29.37% of 

that for the unimproved algorithm. Conversely, when solving 

for the third type of dynamic stops with an input of 22 

reservation sites, the convergence time is 64.21% of that of 

the unimproved algorithm. This indicates that the improved 

algorithm's high convergence efficiency is more pronounced 

with larger datasets and less noticeable with smaller ones. 

The input data for the first type of dynamic stops is more 

substantial, making it more indicative of real-world 

scenarios. 

As shown in Fig. 6, both algorithms rapidly converge to 

the Pareto optimal solutions of the model. However, the 

improved algorithm demonstrates a higher frequency of 

convergence and a shorter overall convergence time, 

indicating a more efficient convergence rate and more 

pronounced effects compared to the unimproved algorithm. 

This underscores the enhanced efficiency of the improved 

algorithm, particularly in the context of large-scale datasets. 

To further elucidate the convergence efficiency of the 

improved algorithm, we compared the two algorithms in 

resolving the first type of dynamic stops, with the improved 

algorithm utilizing a dataset structured into 28 clusters and 

the unimproved algorithm using a dataset comprising 200 

reservation sites. The variation in the size of the Pareto front 

is illustrated in Fig.6. 

TABLE Ⅺ 
COMPARISON OF 30 RUNS OF IGD AND HV BETWEEN THE IMPROVED 

NSGA-III AND THE IMPROVED NSGA-II 

Name 
IGD HV 

Min Median Max Min Median Max 

NSGA-III 0.1746 0.1927 0.1998 0.3605 0.4671 0.7202 

NSGA-Ⅱ 0.2165 0.2305 0.3583 0.0788 0.2974 0.4418 

 

 
 

Fig. 6  Comparison of Pareto front-end size change 

 

TABLE Ⅻ 

COMPARISON RESULTS OF THE IMPROVED ALGORITHM WITH UNIMPROVED ALGORITHM 

Dynamic type 
Results of the improved algorithm Results of the unimproved algorithm 

Z1 (km) Z2 (h) Z3 Convergence time (s) Z1 (km) Z2 (h) Z3 Convergence time (s) 

Type 1 328.57 50.41 40 59.79 329.45 131.88 40 203.42 

Type 2 178.23 57.52 31 42.31 237.56 316.00 35 144.05 

Type 3 5.05 4.90 5 4.18 5.74 6.30 5 6.51 

Total 511.85  112.83  76 106.28 572.75 454.18 80 353.98 
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VI. CONCLUSION AND FUTURE WORK  

The main conclusions drawn from this paper, along with 

future outlooks, are as follows: 

1) Current operational models in CPT enterprises typically 

establish fixed service sites based on historical passenger 

travel data. Vehicle scheduling results are announced through 

platforms, allowing passengers to purchase tickets according 

to their needs. However, this approach results in passive 

engagement from passengers, failing to fully address their 

personalized spatial and temporal needs. In contrast, the 

model and solution algorithm proposed in this study 

effectively cater to these personalized demands, thereby 

leveraging the full advantages of CPT. 

2) This study proposes a novel CPT-DRDSS method, 

grounded in actual reservation needs. This method 

comprehensively considers both departure and arrival 

locations, analyzing data from spatial and temporal 

dimensions through three rounds of ST_DBSCAN 

spatial-temporal clustering. The NSGA-III algorithm is 

enhanced by reducing the initial individual size, which allows 

for the classification of dispersed and large volumes of CPT 

spatial-temporal demand into clusters with similar attributes. 

This approach effectively minimizes the impact of noise sites 

in the density clustering algorithm and categorizes dynamic 

ride and drop-off sites into four distinct types. 

3) The results of the refined algorithm analysis show that 

three rounds of ST_DBSCAN spatial-temporal clustering can 

classify 95% of the reservation needs into four types of 

clusters. Based on these classifications, the number of 

dynamic ride and drop-off sites is set at 43, 31, 5, and 10, 

respectively. Compared to current route results, the proposed 

method reduces the deviation of passengers' actual ride 

locations from their expectations to 12.97%, translating to a 

total reduction of 4,110.67 kilometers. Additionally, the 

deviation of actual ride times is reduced to 12.62%, equating 

to a total reduction of 229.78 hours, or an average of 1.15 

hours per passenger. When comparing with CPLEX solution 

results, the proposed algorithm reduces computation time to 

just 4.7% of that required by CPLEX, demonstrating its 

suitability for practical applications. Moreover, when 

comparing the settings of the first three types of dynamic 

stations with those of the unimproved algorithm, the 

proposed method shortens algorithm convergence time to 

30.02% of that of the unimproved algorithm, optimizing the 

objective function value. The algorithm exhibits greater 

efficiency, particularly when the customized passenger ride 

and drop-off sites are spatial-temporally dispersed and the 

data scale is large. 

4) While this paper introduces a novel method for solving 

the CPT-DRDSS problem by considering the time and 

distance of passengers arriving at dynamic stations, it is 

limited by the number of ride and drop-off sites set by 

enterprises. The layout of these sites significantly impacts the 

order of rides and the distances traveled by vehicles, which in 

turn affects route planning. Future studies should aim to 

further optimize route design in conjunction with the layout 

of ride and drop-off sites. This optimization should take into 

account both the total time passengers spend on the vehicle 

and the economic efficiency of the enterprise during the 

planning process. Additionally, exploring the integration of 

real-time data and advanced predictive analytics could 

enhance the responsiveness and adaptability of CPT systems. 
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