
 

  

Abstract— In this research, the boundary value problems 

(BVPs) are solved by applying a variable step two-point block 

backward differentiation formula (2BDF) in a shooting 

technique. An iterative procedure known as Newton-Raphson 

and the linear combination of the initial guesses are applied in 

this shooting approach to find appropriate initial conditions for 

a related initial value problem (IVP) of BVP. Initially, the 

nonlinear BVP is reduced to the form of first-order ordinary 

differential equation (ODE). Subsequently, the missing IVP is 

approximated using the shooting technique and then solved by 

the 2BDF. Comparisons to exact solutions demonstrate the 

outcome of the proposed method for solving nonlinear BVP. The 

results show that the application of shooting technique is 

appropriate for the 2BDF to solve nonlinear BVP.  

Index Terms— backward differentiation formula, block 

method, boundary value problems, shooting technique.   

 

I. INTRODUCTION 

oundary value problems (BVPs) occur in an extensive 

variety of scientific disciplines. Some of them pursue 

engineering, technology, and optimisation theory [1, 2]. 

It is commonly understood that not all BVPs can be solved 

analytically. As a result of that, numerical approaches are 

essential for providing an approximate solution to the BVP.  
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There are numerous approaches proposed in the literature to 

solve BVPs. Three primary numerical approaches have been 

presented by [3] for solving the BVPs of ordinary differential 

equations (ODEs) Dirichlet, Neumann, and Robin boundary 

conditions. Using the least squares approach in conjunction 

with a third-degree B-spline function, [4] created an 

approximate solution for third-order linear and nonlinear 

BVPs. [5] proposed a quadratic nonpolynomial spline 

approach for numerically solving third-order two-point 

BVPs. For the numerical solution of a third-order two-point 

BVP, [6] provided second and fourth-order convergent 

approaches based on quartic nonpolynomial spline function. 

On the other hand, [7] used a two-step direct method by 

shooting technique to solve second-order BVP. In order to 

solve it directly, the fourth-order two-point block approach 

also uses shooting technique.  

[8, 9] proposed a second-order technique for solving a 

system of third-order two-point BVPs applying cubic and 

quartic polynomial spline functions, respectively, to obtain 

approximate solutions of such type of BVPs. However, at 

midpoints, [10] have developed a second order finite 

difference technique.  Other approaches for the solution of the 

BVP are the automatic differentiation, block strategies, the 

modified Adomian decomposition technique, multi-step 

methods, and the spline technique [3, 6, 11-15]. 

The shooting method is the numerical approach that is 

commonly employed in the iterative algorithm to determine 

the suitable initial conditions for an associated initial value 

problem (IVP) that gives the solutions to the initial BVPs. In 

essence, the shooting method for BVPs involves redefining a 

problem as one of non-linear parameter estimation. In order 

to solve the new problem, initial conditions for an associated 

IVP that approximates the boundary conditions at the other 

endpoint must be identified. If the boundary conditions are 

not met with the desired precision, the procedure is repeated 

with an alternate set of initial conditions until the required 

level of accuracy is attained or an iteration limit is reached. 

In this paper, the block backward differentiation formula is 

utilized in conjunction with the shooting technique method 

for solving ODEs with mixed boundary conditions. The 

variable step two-point block backward differentiation 

formula (2BDF)  was used for solving the initial value 

problems (IVP) of first-order ODEs [16]. Therefore, in this 

study, an appropriate shooting technique is applied to 2BDF 

for solving BVP. The 2BDF is implemented in a fixed ratio 
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of step size adjustment, which is a constant ratio (𝑟 = 1), 

increased by 1.9 (𝑟 = 10/19), and decreased by 0.5  

(𝑟 = 2.0).  The 2BDF method is given as: 

𝑟 = 1: 

𝑦𝑛+1 = −
1
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II. METHODOLOGY 

To solve the BVP, the shooting technique is applied to the 

2BDF method. This technique will transform the BVP to an 

IVP. Missing initial value in IVP is guessed and updated by 

using the linear combination of errors at the boundary 

conditions.  

At first, 𝑠0 which is the missing initial value is estimated 

by using the gradient between the boundary conditions. We 

discuss the proposed shooting technique in terms of second-

order ODEs for the following BVP,  
𝑦′′(𝑥) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥)), 𝑦(𝑎) = 𝐴, 𝑦(𝑏)

= 𝐵 , 𝑥 ∈ [𝑎, 𝑏] 
(4) 

 
Reducing (4) in the equivalent first-order ODE, generates 

the following: 

𝑦′
1

(𝑥) = 𝑦2(𝑥),  

𝑦′
2

(𝑥) = 𝑓(𝑥, 𝑦1(𝑥), 𝑦2(𝑥)),  

with the boundary conditions 𝑦1(𝑎) = 𝐴, 𝑦1(𝑏) = 𝐵. The 

missing initial value,  𝑦2(𝑎) is predicted as 

𝑦2(𝑎) = 𝑠0 =
(𝑦1(𝑏) − 𝑦1(𝑎))

(𝑏 − 𝑎)
 (5) 

 

Subsequently, the 2BDF method as given by Eqs. (1-3) is 

applied, and the error at 𝑦1(𝑏) = 𝐵 is computed and is 

denoted as 𝐵0. The second guess for the missing initial value 

is updated by using the Newton-Raphson formula as below: 

𝑦2(𝑎) = 𝑠1 = 𝑠0 −
𝑦2(𝑏)

𝑦′2(𝑏)
 (6) 

2BDF is reapplied to obtain the second error of the 

approximation, 𝐵1. Two points,(𝑠0, 𝐵0) and (𝑠1, 𝐵1) are used 

for the iteration of the missing initial value 𝑦2(𝑎) = 𝑠𝑛 ,  𝑛 =
2,3, … . The approximation of 𝑠𝑛 , is predicted with the linear 

combinations of (𝑠𝑛−1, 𝐵𝑛−1) and (𝑠𝑛−2, 𝐵𝑛−2). The iteration 

of 𝑠2 is terminated when the error 𝐵𝑛 is less than the tolerance, 

𝑇𝑂𝐿. The algorithm to implement the proposed shooting 

technique in the 2BDF method is as follows: 

Step 1: Set TOL and calculate the missing initial value 𝑠0 

by using Eqn (5).  

Step 2: Apply 2BDF and record the 𝐵0. 𝐵0 is the error at 

the boundary condition when the IVP 𝑠0 is used.  

Step 3: The missing initial value is now updated, denoted 

as 𝑠1 using Newton-Raphson method (eqn (6). 

Step 4: Apply 2BDF and record the 𝐵1, the error when 

initial value 𝑠1 is applied.  

Step 5: The missing initial values, 𝑠𝑛 , 𝑛 = 2,3, . .. is updated 

by using linear combination of the previous two points, which 

are (𝑠𝑛−2, 𝐵𝑛−2) and (𝑠𝑛−1, 𝐵𝑛−1). The following equation is 

used: 

𝑠𝑛−2 = 𝑠𝑛−1 −
𝐵𝑛−1

𝑚𝑚
 

∴ 𝑚𝑚 =
𝐵𝑛−2 − 𝐵𝑛−1

𝑠𝑛−2 − 𝑠𝑛−1

 

Step 6: Apply 2BDF and record the 𝐵𝑛. 

Step 7: While 𝐵𝑛 ≥ 1.  × 10−3 and 𝑛 ≤ 10; repeat steps 

5-6. 

Step 8: Print the numerical result. 

Step 9: End 

III. RESULTS AND DISCUSSION 

In this section, five numerical examples are considered to 

evaluate the performance of the shooting 2BDF over the exact 

solution. For Problems 1-3, only one initial condition is 

missing. Thus, the shooting technique is applied to locate this 

missing initial condition. The graph of the plotting with the 

exact solutions and the absolute error are given in Fig. 2-4. 

Meanwhile, for Problems 4 and 5, two missing initial 

conditions are guessed using the shooting technique. The 

plots for Problems 4 and 5 include the solution and its 

derivative. The tolerance used is 1.× 10−3. 

 

Problem 1: The source of BVP is [17]. 

𝜀𝑦′′ + 𝑦′ − 1 − 2𝑥 = 0, 𝑦(0) = 0, 𝑦(1) = 1, 𝑥 ∈ [0,1], 𝜀
= 0.001 

Exact: 𝑦(𝑥) = 𝑥(𝑥 + 1 − 2𝜀) + (2𝜀 − 1)
(1−exp(−

𝑥

𝜀
))

(1−exp(−
1

𝜀
))

 

Initial guess 𝑠0 = 𝑦′(0) = 1 

 
TABLE 1: APPROXIMATE SOLUTION FOR PROBLEM 1 

𝒙 𝒚 Exact 

0.00075 -0.529563 -0.529554 

0.00933 -0.988520 -0.988511 

0.01066 -0.987230 -0.987221 

0.01259 -0.985279 -0.985270 

0.01625 -0.981517 -0.981508 

0.02322 -0.974288 -0.974279 

0.04838 -0.947382 -0.947373 

0.13918 -0.839724 -0.839715 

0.46700 -0.313850 -0.313841 

1.00000 0.999991 1.000000 

 

Table 1 compares the computed values 𝑦 to the exact 

values for various 𝑥, along with the associated absolute errors 

shown in Fig. 1. The results demonstrate that the numerical 

method provides an accurate approximation of the exact 

solution across the entire range of 𝑥, with only minor 

deviations. The method seems robust and effective for 

solving this problem. 

 

Problem 2: This BVP is obtained from [3]. 

𝑦′′ = 𝑦 + 𝑥2 − 2, 𝑦(0) = 0, 𝑦(1) = 1, 𝑥 ∈ [0,1] 

Exact: 𝑦(𝑥) =
(𝑒2𝑥2−𝑥2+2𝑒1−𝑥−2𝑒𝑥+1)

(1−𝑒2)
 

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1405-1410

 
______________________________________________________________________________________ 



 

Initial guess 𝑠0 = 𝑦′(0) = 1 

 
Fig. 1.  Plotting of solution and absolute error for Problem 1 

 
TABLE 2. APPROXIMATE SOLUTION FOR PROBLEM 2 

𝒙 𝒚 Exact 

0.01109 0.018754 0.018753 

0.02108 0.035443 0.035442 

0.0400 0.066614 0.066611 

0.07615 0.123928 0.123923 

0.14469 0.226186 0.226176 

0.27493 0.398245 0.398226 

0.40517 0.544428 0.544400 

0.65263 0.765320 0.765287 

0.90009 0.937040 0.937021 

1.00000 1.000026 1.000000 

 

Results of Problem 2 are tabulated in Table 2 where the 

computed 𝑦 values and the precise values for various 𝑥 

positions are compared. The outcomes show that the 

procedure is reliable and with minimal errors. From Fig. 2, it 

can be seen that the absolute errors stay small across all 

𝑥 values, demonstrating that the approach is substantially 

accurate.  

 
Fig. 2. Plotting of solution and absolute error for Problem 2 

 

Problem 3: This BVP is obtained from [3]. 

𝑦′′ = 𝑦3 − 𝑦𝑦′, 𝑦(1) =
1

2
, 𝑦(2) =

1

3
, 𝑥 ∈ [1,2] 

Exact: 𝑦(𝑥) =
1

𝑥+1
 

Initial guess 𝑠0 = 𝑦′(1) = −
1

6
 

 

TABLE 3: APPROXIMATE SOLUTION FOR PROBLEM 3 

𝒙 𝒚 Exact 

1.00433 0.498919 0.4989197 

1.00824 0.497946 0.497946 

1.01568 0.496109 0.496109 

1.02982 0.492655 0.492654 

1.05667 0.486223 0.486222 

1.10769 0.474454 0.474452 

1.20463 0.453594 0.453589 

1.38882 0.418625 0.418616 

1.73877 0.365145 0.365126 

2.00000 0.333363 0.333333 

 

Table 3 highlights the computed values for 𝑦 at various 𝑥. 

According to the findings, the procedure reliably and closely 

approximates the precise values. Fig. 3 shows the absolute 

errors that correspond to the differences between the 

computed 𝑦 values and the exact values for various 𝑥 

positions. The absolute error progressively rises as 𝑥 gets 

larger, however still satisfied the required error tolerance of 

below 1.× 10−3. 

 
Fig. 3. Plotting of solution and absolute error for Problem 3 

 

The convergence of the boundary condition for Problem 1- 

3 is given in Table 4. It is clearly seen that a low number of 

iterations are needed to satisfy the stopping condition of error 

tolerance below 1.× 10−3.  

 
TABLE 4: CONVERGENCE OF PROBLEMS 1 – 3 

Problem Iteration 

Convergence Test 

(-Log(Absolute Error)) 

1 1 5.047941 

2 1 4.572431 

3 
1 2.69307 

2 4.514382 

 

Two initial values are missing in Problems 4 and 5. These 

values are approximated by utilizing the gradient formula 

applied to the points of lower derivatives. 

  

Problem 4: The source of BVP is [18]. 

𝑦(4) = 𝑦 + 𝑦′′ + 𝑒𝑥(𝑥 − 3),  
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𝑦(0) = 1, 𝑦(1) = 0, 𝑦′′(0) = −1, 𝑦′′(1) = −2𝑒, 𝑥 ∈ [0,1] 
 

Exact: 𝑦(𝑥) = (1 − 𝑥)𝑒𝑥 

Initial guess 𝑠0,1 = 𝑦′(0) = −1 

Initial guess 𝑠0,2 = 𝑦′′′(0) = −2𝑒 + 1 

Problem 4 uses up to nine iterations to satisfy the error 

tolerance of 1.  × 10−3. Fig. 4a and 4b give the convergence 

of these nine iterations at the boundary conditions. The final 

solutions of 2BDF are 𝑦(1) = −0.000979764, and 𝑦′′(1) =
−5.43651, while the exact solutions are 𝑦(1) = 0 and 

𝑦′′(1) = −2𝑒. These produce absolute errors of 9.8 × 10−4 

and 5.4 × 10−5 respectively. 

 

 
(a) 

 

 
(b) 

Fig. 4. Iteration of Problem 4 

 

The absolute maximum errors for the computation of  𝑦(1) 

and 𝑦′′(1) are illustrated in Fig. 5. At ninth iterations, both 

numerical values of 𝑦(1) and 𝑦′′(1) satisfy the conditions of 

absolute error of less than 1.  × 10−3. 

 
Fig. 5. Convergence for Problem 4 

 

The solution at the ninth iteration with its absolute error for 

problem 4 is plotted in Fig. 6. 

 
Fig.6. Plotting absolute error for problem 4 

 
From the absolute error at the ninth iteration, the solution 

produces absolute errors which are less than 1.  × 10−3. 

 
TABLE 5: APPROXIMATE SOLUTION FOR PROBLEM 4 

𝒙 𝒚 𝒚 Exact 𝒚’’ 𝒚” Exact 

0.00250 9.999E-01 9.999E-01 -1.0050 -1.0050E+00 

0.00476 9.999E-01 9.9998E-01 -1.0095 -1.0095E+00 

0.00905 9.999E-01 9.9995E-01 -1.0182 -1.0182E+00 

0.11814 9.923E-01 9.9244E-01 -1.2583 -1.2583E+00 

0.43716 8.709E-01 8.7144E-01 -2.2251 -2.2251E+00 

0.54350 7.855E-01 7.8609E-01 -2.6579 -2.6579E+00 

0.64984 6.699E-01 6.7062E-01 -3.1597 -3.1598E+00 

0.75618 5.185E-01 5.1935E-01 -3.7408 -3.7409E+00 

0.86253 3.248E-01 3.2568E-01 -4.4125 -4.4126E+00 

0.96887 8.107E-02 8.2024E-02 -5.1878 -5.1879E+00 

1.00000 -9.797E-04 0.000E+00 -5.4365 -5.4365E+00 
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Table 5 shows a comparison of numerical and exact values of  

𝑦 and 𝑦′′ for a given set of 𝑥-values. The values of 𝑦 and 𝑦′′ 

computed numerically are highly consistent with the exact 

values, as seen in the minimal differences between the 

corresponding columns. The method used for calculating the 

values of 𝑦 and 𝑦′′ is highly effective and accurate across the 

range of 𝑥-values, as indicated by the low absolute errors 

visualized in Fig. 6. This suggests a strong agreement 

between the numerical and exact solutions, confirming the 

reliability of the computational approach. 

Problem 5: The source of BVP is [18]. 

𝑦(4) = 𝑒−𝑥𝑦2  
𝑦(0) = 1, 𝑦(1) = 𝑒, 𝑦′′(0) = 1, 𝑦′′(1) = 𝑒, 𝑥 ∈ [0,1] 

Exact: 𝑦(𝑥) = 𝑒𝑥 

Initial guess 𝑠0,1 = 𝑦′(0) = 𝑒 − 1 

Initial guess 𝑠0,2 = 𝑦′′′(0) = 𝑒 − 1 

Problem 5 uses up to five iterations to satisfy the error of 

convergence of 1.× 10−3. Fig. 7 gives the convergence of 

these five iterations at the boundary conditions, 𝑦(1) = 𝑒 

(Fig. 7(a)) and 𝑦′′(1) = 𝑒 (Fig. 7(b)). The final solutions 

produced by 2BDF are 𝑦(1) = 2.71848, and 𝑦′′(1) =
2.71834, while the exact solutions are 𝑦(1) = 𝑦′′(1) = 𝑒. 

These produce absolute errors of 1.98 × 10−4 and 5.82 ×

10−5 respectively. 

  
(a) 

     
 (b) 

Fig. 7. Iteration of Problem 5 

The absolute maximum error for the computation of  𝑦(1) 

and 𝑦′′(1) are shown in Fig. 8. At the fifth iteration, both 

numerical values of 𝑦(1) and 𝑦′′(1) satisfy the conditions of 

absolute error of less than 1.  × 10−3. 

 
Fig. 8. Convergence Results for Problem 5 

 

The solution at the fifth iteration with its absolute error for 

problem 5 is plotted in Fig. 9. 

 
Fig. 9. Plotting of absolute error for problem 5 

 

From the absolute error at the fifth iteration, the solution 

produces absolute errors which are less than 4.5 × 10−4. 

 
TABLE 6: APPROXIMATE SOLUTION FOR PROBLEM 5 

𝒙 𝒚 𝒚 Exact 𝒚’’ 𝒚” Exact 

0.00031 1.000316 1.000316 1.00032 1.00031 

0.00061 1.000616 1.000616 1.00062 1.00061 

0.01568 1.015812 1.015807 1.0158 1.01580 

0.10767 1.113722 1.113688 1.11364 1.11368 

0.20460 1.227101 1.227036 1.22694 1.227036 

0.38876 1.475265 1.475150 1.47497 1.475150 

0.57291 1.773588 1.773434 1.77316 1.773434 

0.75707 2.132214 2.132032 2.13169 2.132032 

0.94123 2.563334 2.563141 2.56272 2.563141 

1.00000 2.718481 2.718281 2.71785 2.718281 

Table 6 demonstrates that the numerical method provides 

accurate approximations for both the function 𝑦 and its first 
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derivative 𝑦′, particularly at initial steps. However, Fig. 9 

shows as 𝑥 increases, the absolute errors for both 𝑦 and 𝑦′′ 

increase, with the error in the second derivative being more 

pronounced at higher 𝑥 values. Despite the growing errors, 

the approximations remain reasonably close to the exact 

values, particularly for the function 𝑦. 

For Problems 1–3, there is one unknown for the initial 

conditions. Meanwhile, for problems 4 and 5, two unknowns 

are needed. Problems 1 and 2 only require one iteration to 

satisfy the stopping condition, while Problem 3 needs 2 

iterations. Problem 4 requires nine iterations to satisfy the 

stopping condition, and only five iterations are needed to 

satisfy the stopping condition for Problem 5. This indicates 

that the proposed shooting technique is suitable for the 2BDF 

method. 

Tables 1- 3 and 5- 6 represent the numerical results for five 

chosen BVPs to illustrate the performance of the variable step 

two-point block BDF with the embedded shooting technique. 

For each problem, it contains the value at 𝑥 with 

corresponding approximate solution, 𝑦𝑎𝑝𝑝𝑟𝑜𝑥 and exact 

solution, 𝑦𝑒𝑥𝑎𝑐𝑡 . Whereas Figs 1-3, 6 and 9 included the 

absolute error between the approximate solution and the exact 

solution, |𝑦𝑒𝑥𝑎𝑐𝑡  – 𝑦𝑎𝑝𝑝𝑟𝑜𝑥 |. 

On each problem, approximate solutions are approximate 

to the exact ones, and the absolute errors remain very small. 

This proves that both variable step 2BDF and shooting 

technique are reliable and accurate combinations for the 

solution of nonlinear BVPs as the errors are below the 

tolerance of 1.× 10−3. The small magnitude of the errors 

indicates that the proposed approach can handle different 

types of BVPs rather effectively, making the approach quite 

robust and applicable in practice for scientific and 

engineering applications.  

IV. CONCLUSION 

This work presents the development of a variable-step, 

two-point block BDF to the shooting technique for the 

solution of BVPs. The methodology is commenced by 

reducing a given nonlinear BVP into a first-order ODE form, 

approximating the missing IVP through the implementation 

of a shooting technique, then solving it using the 2BDF. The 

results have consistently shown that the proposed method, 

which involves comprehensive comparisons with exact 

solutions, furnishes an accurate and reliable solution for 

nonlinear BVPs.  

Future studies could be oriented towards extending this 

method to more complex BVPs, possibly with prospects for 

the application of higher-dimensional problems and 

integration with parallel computing frameworks that further 

scale up its feasibility for many scientific and engineering 

applications.  
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