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Abstract—Accurate fault diagnosis of rolling bearings is
critical for ensuring the safety and efficiency of rotating
machinery. This study introduces a novel Extreme Learning
Machine (ELM) model optimized by the Modified Quasi-
Reflective Arithmetic Optimization Algorithm (MQRAOA) to
improve diagnostic performance. Initially, vibration signals
are decomposed using Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN), enabling the
extraction of intrinsic mode functions (IMFs) across multiple
frequency bands. Subsequently, Composite Multiscale Approx-
imate Entropy (CMAE) is utilized to capture the multiscale
features of the decomposed signals. These features are then
input into the ELM model, where MQRAOA optimizes the
random initialization of weights and biases by enhancing global
search capabilities and mitigating the risk of local optima.
Experimental results reveal that the MQRAOA-optimized ELM
outperforms models optimized using WOA, SCA, SSA, and
TLBO regarding classification accuracy and robustness. This
study establishes an effective framework for intelligent fault
diagnosis and offers a promising approach for broader indus-
trial applications.

Index Terms—fault diagnosis, extreme learning machines,
approximate entropy, optimization algorithm

I. INTRODUCTION

IN intelligent manufacturing, the manufacturing chain is
undergoing unprecedented transformations. Tang et al.

highlighted that smart manufacturing has significantly en-
hanced production efficiency and product quality by inte-
grating digitalization, automation, and intelligent technolo-
gies[1]. In this paradigm, the convenience, accuracy, and re-
liability of intelligent troubleshooting methods for equipment
are particularly critical. Technology-driven sensors and real-
time data acquisition systems provide precise data that help
rapidly detect and localize abnormalities. High diagnostic
accuracy minimizes production downtime and reduces main-
tenance costs, driving the manufacturing industry toward
greater efficiency and reliability.
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As a critical component of mechanical equipment,
rolling bearings are essential in equipment performance and
longevity. A failure in rolling bearings can drastically reduce
mechanical efficiency and may even cause severe equipment
damage. Studies indicate that approximately 40% of rotating
machinery failures originate from bearing damage. There-
fore, research into rolling bearing fault diagnosis is crucial
for improving equipment reliability and extending its service
life. Current research predominantly focuses on feature ex-
traction from rolling bearing vibration signals to achieve fault
identification. However, due to the influence of operating
environments and various other factors, the vibration signals
generated by rolling bearings exhibit high complexity. In
failure scenarios, these signals are often nonlinear and non-
stationary. Directly using these signals for fault identification
may result in weak feature representations, compromising
diagnostic accuracy. To address this issue, Variational Mode
Decomposition (VMD) is widely employed to reduce noise
in weak vibration signals caused by early bearing faults.

Entropy, a metric that reflects signal complexity, is often
used to construct feature vectors for nonlinear and nonsmooth
data. Common entropy metrics include sample entropy and
permutation entropy (PE). PE has been widely applied in
fault diagnosis for feature extraction. For example, Yang
Jingzong et al. combined local mean decomposition with
PE and an optimized Extreme Learning Machine (ELM) for
fault diagnosis [2], while Yang Yun et al. utilized VMD
and PE to identify and classify rolling bearing faults [3].
These approaches have effectively improved diagnostic ac-
curacy. However, despite its success, PE evaluates signal
complexity only on a single scale and fails to capture
rolling bearing vibration signal characteristics across multiple
scales.Compared to single-scale entropy, Composite Mul-
tiscale Approximate Entropy (CMAE) can analyze signals
across multiple time scales, enabling it to capture the com-
plexity of rolling bearing vibration signals more effectively.
This is particularly advantageous in nonlinear and nonsmooth
signal processing, as CMAE enhances the ability to detect
weak fault characteristics and comprehensively characterizes
the multiscale dynamics of the signals. Consequently, CMAE
significantly improves fault diagnosis accuracy.

Fault diagnosis methods for rolling bearings commonly
include decision trees, support vector machines (SVMs),
extreme learning machines (ELMs), and neural networks.
Yu et al. noted that decision trees perform well in small-
scale fault scenarios but are less effective when dealing with
high-dimensional, complex data [4]. Neural networks rely
on backpropagation algorithms, but as the network depth
increases, the training time grows substantially—this issue
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is particularly pronounced in rolling bearing fault diagnosis,
where the complexity of vibration signal characteristics can
hinder real-time diagnostic performance. To address these
challenges, the Extreme Learning Machine (ELM) has gained
popularity due to its fast training speed and strong clas-
sification capability. ELM, a feed-forward neural network
algorithm, is characterized by strong global generalization
and high training efficiency. Once fault features are extracted,
ELM can effectively learn and recognize these features
in rolling bearing fault diagnosis, significantly improving
diagnostic efficiency and real-time performance [5-6].

Despite its advantages, ELM’s random initialization of
weights and biases in the input and hidden layers can result
in instability and poor robustness during operation [7]. This
randomness affects the model’s classification performance,
particularly when processing complex or noisy fault signals,
and reduces its generalization capability. Therefore, improv-
ing ELM’s initialization strategy or introducing more robust
training methods is crucial to enhancing its practical appli-
cation. Swarm intelligence algorithms have shown promise
in optimizing the classification performance of ELMs. For
example, Feng et al. optimized ELM weights and thresholds
using the Sparrow Search Algorithm (SSA) and its improved
version (ISSA), achieving better fault feature extraction and
classification accuracy [8]. Du et al. introduced a Hybrid Ker-
nel Extreme Learning Machine (HKELM) optimized by the
Improved Northern Eagle Optimization Algorithm (INGO) to
enhance fault diagnosis accuracy [9]. Yang et al. proposed
a rolling bearing fault diagnosis method combining Varia-
tional Mode Decomposition (VMD), improved Artificial Fish
Swarm Algorithm (AFSA), and multi-feature vector fusion
in ELM [10]. While these swarm intelligence algorithms
have improved ELM optimization, they still face challenges,
including lengthy optimization times, susceptibility to local
optima, and limited robustness, which must be addressed in
practical fault diagnosis scenarios.

The Arithmetic Optimization Algorithm (AOA) is a meta-
heuristic optimization algorithm designed for global opti-
mization based on the distributional properties of arithmetic
operators. While it achieves better solution efficiency than
other algorithms, it shares a common limitation of swarm
intelligence methods: susceptibility to local optima [11].
This paper proposes an Arithmetic Optimization Algorithm
based on Variational Quasi-Reflective Learning (MQRAOA)
to overcome this issue. The MQRAOA aims to effectively
avoid local optima and enhance the algorithm’s convergence
accuracy and speed.

In this study, MQRAOA is applied to optimize the weights
and biases of the ELM network, leading to the development
of an MQRAOA-ELM-based fault classification model. First,
the MQRAOA-optimized ELM network is constructed to
classify bearing faults. Then, extracted fault features are
then input into the model for accurate identification of
fault type. Comparative experimental results with four other
fault classification models—SCA-ELM, SSA-ELM, TLBO-
ELM, and WOA-ELM demonstrate that the MQRAOA-ELM
model outperforms the alternatives in recognition accuracy
and classification performance. These findings validate the
superiority of MQRAOA in rolling bearing fault diagnosis.

II. FUNDAMENTAL PRINCIPLE

A. Fully adaptive noise ensemble empirical modal decom-
position

Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) is an improved algorithm
for signal processing based on Ensemble Empirical Mode
Decomposition (EEMD), designed to address the standard
mode aliasing problem in traditional Empirical Mode De-
composition (EMD) [12]. As a data-driven, non-linear, and
non-smooth signal processing method, EMD is widely used
to analyze complex signals. However, its decomposition
results are often unstable due to noise interference. EEMD
reduces the effect of modal aliasing by adding white noise to
the signal and performing multiple decompositions, but the
problem is not completely resolved. CEEMDAN builds on
this foundation by introducing an adaptive noise adjustment
mechanism that gradually modifies the noise level in each
decomposition step. This approach makes the decomposition
results more stable and accurate, significantly improving fea-
ture extraction capabilities and noise suppression effects[13].
As a result, CEEMDAN has been widely applied and ver-
ified in the analysis of non-linear and non-smooth signals,
particularly in fault diagnosis and medical signal processing.

The core idea of CEEMDAN is to introduce noise through
recursive iterations and adaptively adjust the noise level to
maintain signal characteristics while reducing modal aliasing
during each decomposition step. First, multiple sets of white
noise are added to the original signal, and the ensemble
average of the first IMF layer is obtained through EMD
decomposition. Subsequently, in each iteration, the IMFs
extracted in the previous step are subtracted from the signal
to produce a residual signal. White noise is then introduced
to the residual signal to extract the next layer of IMFs.
As the decomposition progresses, the noise amplitude is
gradually adjusted to ensure the accuracy of subsequent IMF
extractions. This iterative process continues until the residual
signal can no longer be decomposed into additional IMFs or
a preset stopping condition is reached. Finally, the original
signal is decomposed into a series of IMFs and a residual
term. Algorithm steps for CEEMDAN:

Assume that the original signal X(t) is given:
1)White ωi(t) noise (i-rd noise) is added to the signal and

EMD decomposition is performed on it to obtain the first
IMF

(i)
1 (t), and the decomposition results of all the noises

are averaged to obtain the first layer of IMF:

IMF1 =
N∑
i=1

IMF
(i)
1 (t) (1)

2)Remove the first layer of IMF from the signal to get the
residual r1(t) = x(t)− IMF1(t) and add white noise to the
residual signal for the next decomposition.

3)When calculating the next layer of IMF, the noise
amplitude is adaptively adjusted based on the residuals’
characteristics to gradually reduce the noise’s impact. The
EMD decomposition is continued, and the second layer of
IMF is derived:

IMF2 =
N∑
i=1

IMF
(i)
2 (t) (2)
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4)Repeat the above steps until the residual signal cannot
decompose further or a preset condition is reached.

The original rolling bearing vibration signal is decom-
posed into multiple IMFs using CEEMDAN, as shown in Fig.
1. CEEMDAN effectively decomposes complex, nonlinear,
and non-smooth signals by gradually introducing noise and
adaptively adjusting the noise level, successfully avoiding the
modal overlapping problem commonly found in traditional
Empirical Mode Decomposition (EMD). With an increase in
the IMF order, the frequencies in the modes are gradually
reduced, enabling the extraction of signal features across
different frequency ranges.

The Pearson correlation coefficients of each IMF com-
ponent with the original signal are shown in Fig. 2. These
coefficients reveal the degree of correlation between each
IMF and the original signal. IMFs with higher correlation
coefficients indicate that the component contains more criti-
cal information.

In comparison, IMFs with lower correlation coefficients
primarily contain noise or minor components, providing a
visual measure of their contribution to the signal’s features.
Additionally, the variance contribution ratio of each IMF
component is shown in Fig. 3, which reflects the proportion
of energy each IMF accounts for in the original signal.
A higher variance contribution ratio indicates that the IMF
plays a more significant role in interpreting the signal and
represents a critical component for fault feature extraction.
These analyses demonstrate that CEEMDAN effectively
captures important features in rolling bearing signals and
provides reliable data for fault diagnosis.

The core advantage of CEEMDAN lies in its mechanism
of gradually adjusting the noise amplitude, significantly
improving the decomposition accuracy by avoiding modal
aliasing and preserving the local features of the signal
during the decomposition process. After each decomposition,
CEEMDAN adaptively adjusts the noise according to the
results, gradually reducing its influence on subsequent IMFs.
This mechanism enhances the stability of the decomposition,
enabling CEEMDAN to perform effectively when dealing
with complex, nonlinear, and non-smooth signals, particu-
larly in high-noise fault diagnosis scenarios.

B. Composite multiscale approximate entropy

Compound Multiscale Approximate Entropy (CMAE) is a
powerful tool for analyzing the complexity of time series. It
combines the advantages of Multiscale Entropy (MSE) and
Approximate Entropy (ApEn) to evaluate signal complexity
across different time scales comprehensively. CMAE is es-
pecially suitable for processing nonlinear and non-smooth
signals, with applications in rolling bearing fault diagnosis,
physiological signal analysis, and other fields.

Approximate Entropy (ApEn) is a nonlinear method for
measuring the irregularity and complexity of time series.
While it performs well with short time series, it has limita-
tions when applied to long time series or multiscale complex
signals. In contrast, Multiscale Entropy (MSE) provides a
better understanding of the global dynamic characteristics of
signals by reconstructing them across multiple time scales.
However, single-scale analysis methods often fail to reflect
the complexity of signals at different scales fully.

CMAE overcomes these limitations by combining the
strengths of MSE and ApEn, providing a comprehensive
assessment of signal complexity by calculating approximate
entropy at multiple scales. This multiscale approach enhances
the robustness and accuracy of the analysis, particularly
when dealing with complex signals. CMAE is capable of
capturing essential signal features more accurately. Com-
pared with single-scale approximate entropy, CMAE offers a
more comprehensive and adaptable analysis across different
time scales, demonstrating higher reliability in processing
complex, nonlinear, and non-smooth signals. The steps for
calculating the CMAE are as follows:

1)Signal reconstruction: for a given time series X =
{x1, x2, · · · , xN}, reconstruct it by different scale factors τ
to get a new series X(τ).

2)Approximate entropy calculation:for the reconstructed
signal at each scale factor τ , the approximate entropy value
is calculated ApEn(τ). The approximate entropy is used to
quantify the complexity of the signal, with larger values
indicating more complex signals.

3)Compound Multiscale Processing: The approximate en-
tropy calculated at each time scale is compounded and
averaged to obtain the final CMAE value, which measures
the signal’s multiscale complexity.

When applying Composite Multiscale Approximate En-
tropy (CMAE) to analyze rolling bearing fault signals, the
entropy values at various time scales are plotted, as shown
in Fig. 4. This plot illustrates the entropy variation of rolling
bearing signals across four states: normal, typical inner ring
failure, rolling element failure, and outer ring failure. The
signal complexity in the normal state is higher, with smoother
entropy values across all scales, indicating consistently high
complexity at all time scales. In contrast, the entropy values
for the inner ring and rolling element faults are higher
at small scales but gradually decrease as the scale factor
increases. This decrease is particularly prominent for inner
ring faults, which exhibit a noticeable trend of declining
complexity. Meanwhile, the entropy value for outer ring
faults remains consistently lower across all scales, indicating
lower signal complexity, making distinguishing from other
fault types easier.

C. Principles of Extreme Learning Machine Algorithm

Extreme Learning Machine (ELM) is a machine learning
algorithm similar to the single hidden layer feedforward
neural network (SLFN) model. Unlike SLFN, ELM replaces
gradient-based algorithms with random initialization of input
layer weights and biases. It uses generalized inverse matrix
theory to compute the output layer weights during testing.
ELM’s advantages, such as fast training and good general-
ization, make it well-suited for diagnosing rolling bearing
faults under complex working conditions. The implementa-
tion process of the ELM algorithm is as follows: The ELM
network model is depicted in Fig. 5. The model consists
of three layers: the input layer, the hidden layer, and the
output layer, arranged from left to right. All layers are fully
connected, ensuring efficient information transfer between
them.

The core of ELM lies in the processing of the inputs and
outputs of the hidden layer node hi(x),Suppose given the
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Fig. 1. Raw signals and their intrinsic modal functions (IMFs) obtained by CEEMDAN

training set
{
xi, ti | xi ∈ RD, ti ∈ Rm, i = 1, 2, · · · , N

}
;

denotes the i-rd data, ti denotes the label corresponding to
xi, according to the input relation, then the hidden layer node
hi(x) after the weighting operation can be expressed as.

hi(x) = g (ωi, bi, x) = g (ωix+ bi) , ωi ∈ RD, bi ∈ R (3)

Where, g (ωi, bi, x) is the activation function, ωi and bi
are the weights and biases of the hidden layer nodes, the
activation function used in this paper is the sigmoid function.

The set of hidden layer nodes can be denoted as H(x) =
[h1(x), h2(x), · · · , hL(x)],so the output of the single hidden
layer used for ”generalization”after the hidden layer is:

fL(x) =
L∑

i=1

βihi(x) = H(x)β | (4)

Where, β = [β1, β2, · · · , βL]
T is the output weight between

the L nodes of the hidden layer and the nodes of the output
layer.

Up to this point, three types of unknown quantities ap-
pear in the model ω,b,β. In ELM, the hidden layer node
parameter,at initialization, is randomly generated from any
continuous probability distribution and kept constant, which
can be solved by combining Eq. (3) and its set H(x). β is
determined by training on the data, and in order to minimize
the training error, the minimum squared deviation of H(x)β
from the sample labels T, i.e.min ∥Hβ − T∥L, β ∈ RL×m

, is taken as an objective of the solving function. The

objective function contains the matrices H and T, which can
be expressed as follows:

H = [h (x1) , h (x2) , · · · , h (xN )]
T

=

 h1 (x1) · · · hL (x1)
...

. . .
...

hL (x1) · · · hL (xN )


T =

[
tT1 , t

T
2 , · · · , tTN

]T
(5)

By matrix transformation, it can be deduced that the
objective function yields an optimal solution:

β∗ = H∗T (6)

Where, H is the Moore-Penrose generalized inverse matrix
of matrix H .

In the ELM model, the input and output parameters of the
hidden layer are determined in advance. Unlike traditional
neural networks, ELM does not require backpropagation to
update its parameters, enabling faster model training.

III. ROLLING BEARING FAULT DIAGNOSIS WITH ELM
OPTIMIZED BY ARITHMETIC OPTIMIZATION ALGORITHM
BASED ON VARIATIONAL QUASI-REFLECTIVE LEARNING

A. Arithmetic Optimization Algorithm

Arithmetic operators—multiplication, division, subtrac-
tion, and addition—are traditional computational methods
for studying numbers. Arithmetic Optimization Algorithms
(AOA) leverage these operators as mathematical optimization
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Fig. 2. Pearson’s correlation coefficient between each IMF component and the original signal

Fig. 3. Variance Contribution of IMF Componentsl

tools to identify the optimal solution from a set of candidate
solutions that best meet predefined criteria. The AOA process
is divided into initialization, exploration, and exploitation.
Fig. 6 illustrates the hierarchical structure of arithmetic
operators within the AOA framework.

(1) Initialization phase
In arithmetic optimization algorithms (AOA), initial can-

didate solutions are randomly generated, as shown in Eq. (7).
The best candidate solution in each iteration is regarded as
the best or near-optimal solution obtained so far [6].

X =

 x1,1 · · · x1,n

...
. . .

...
xN,1 · · · xN,n

 (7)

Before the AOA begins operating, it must determine the
appropriate search phase—exploration or exploitation. For
this purpose, the Mathematical Optimization Acceleration
(MOA) function, a coefficient used to guide the search phase,

is calculated using the formula provided in Eq. (8).

MOA (C−Iter ) = Min +C−Iter ×( Max − Min )/M− Iter
(8)

Where, MOA (C Iter) is the value of MOA for the current
iteration, which is calculated by Eq.(8); C Iter is the
current iteration and M Iter is the maximum number of
iterations;Min and Max denote the minimum and maximum
values of MOA, respectively. Its change image with the
number of iterations is shown in Fig. 7.

(2) Exploration phase
The exploration phase of AOA is performed using either

the division or multiplication operator; the MOA controls
this search phase. When the condition is r1 > MOA
( r1 is a random number), the algorithm carries out the
exploration phase; when r1 < 0.5 (r2 is a random number),
the division operator is used and the multiplication operator
will be ignored, and the multiplication operator will be used
to perform the current task instead of the division operator
when r2 > 0.5.The equation for updating the position of the
exploration phase of the AOA is Eq. (9).
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Fig. 4. Multi-scale approximate entropy analysis of rolling bearing signals
for different fault types

Fig. 5. ELM network model

xi,j (C−Iter ) =
{

best (xj)÷ (MOP+ ∈)× ((UBj − LBj)× µ+ LBj) r2 < 0.5
best (xj)×MOP × ((UBj − LBj)× µ+ LBj) otherwise

(9)
Where, xi,j (C−Iter ) denotes the j-rd position of the i-
nd solution of the current iteration, while best (xj) is the
j-th position of the best solution obtained so far. ∈ is a
small integer, UBj and LBj denote the upper and lower
bound values for the j-th position, respectively. µ is a control
parameter regulating the search process, µ = 0.5.

MOP (C−Iter ) = 1−
(
C−Iter 1/α

)
/
(
M−Iter 1/α

)
(10)

Where, MOP is a coefficient, MOP (C Iter ) denotes the
value of the function of the first iteration. α is a sensitive
parameter that defines the iteration’s development accuracy,
α = 5. The image of MOP variation with the number of
iterations is shown in Fig. 8.

(3) Development phase
The development phase of the AOA algorithm is carried

out using subtraction and addition operators. The MOA func-
tion also controls the development phase, and the algorithm
carries out the development phase under the condition that
r1 < MOA (r1 is a random number). When r3 < 0.5
(r3 is a random number), subtraction operator is used and
addition operator will be ignored and when r3 > 0.5 addition

Fig. 6. Hierarchy of arithmetic operators

Fig. 7. Image of MOA

operator will be used to perform the current task instead of
subtraction operator.The AOA development phase position
update equation is Eq. (11).

xi,j (C−Iter ) =
{

best (xj)−MOP × ((UBj − LBj)× µ+ LBj) r3 < 0.5
best (xj) +MOP × ((UBj − LBj)× µ+ LBj) otherwise

(11)

B. Arithmetic Optimization Algorithm Based on Mutation
Quasi-Reflection Learning

To overcome the local optimization problem in AOA,
mutation quasi-reflection learning (MQR) was introduced to
improve the original algorithm using mutation and quasi-
reflection operations[14]. Mutation quasi-reflective learning
is a learning-theory-based optimization mechanism that aims
to enhance the global search capability of the algorithm
by combining random mutation and quasi-reflective oper-
ations. First, the mutation operation prevents the solution
from falling into the local optimum in the local search by
introducing random perturbations in the neighborhood of
the solution; second, the quasi-reflection operation simulates
the reflection phenomenon and maps the current suboptimal
solution to another symmetric location, thus realizing the
jump search in the global scope. With these two mechanisms,
the algorithm remains versatile in later development stages,
avoids local optimum traps, and significantly improves global
search efficiency.
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Fig. 8. Enter Caption

The mutation operation prevents the solution from falling
into a local optimum by introducing a random perturbation
in the neighborhood of the solution, which is updated using
the following formula:

The random perturbation is generated using a normal dis-
tribution with a mean of 0 and a specified standard deviation.
This ensures that most perturbation values are concentrated
near the current solution while there is a certain probability
of introducing larger perturbations. A stochastic coefficient
controls the strength of the perturbation, determining how
much the random perturbation influences the update of the
current solution. The value of this coefficient ranges between
[0, 1].

With the introduction of variational quasi-reflective learn-
ing, the updated formulation of the Arithmetic Optimiza-
tion Algorithm (AOA) significantly improves the algorithm’s
global search capability and the efficiency of local ex-
ploitation by introducing random perturbations and control
coefficients. These changes ensure that the algorithm can
avoid local optima and quickly converge to a globally optimal
solution when dealing with complex optimization problems.
Specifically, random perturbations enhance the diversity of
solutions, allowing the algorithm to escape local regions and
maintain diversity in the solution space. The control coeffi-
cients enable the algorithm to adjust dynamically according
to the search requirements at different stages, thus improving
robustness and adaptability. During the exploitation phase,
the introduced perturbations and jump searches accelerate the
convergence process, rapidly approaching the optimal solu-
tion and improving optimization efficiency. The flowchart of
the improved AOA algorithm is shown in Fig. 9.

C. ELM optimized based on variational quasi-reflective
learning arithmetic optimization algorithm

Proposed Methodology for Rolling Bearing Fault Diagno-
sis:

(1)Signal Preprocessing: The vibration signals of rolling
bearings are first preprocessed. This involves denoising the
signals, decomposing them using the Complete Ensem-
ble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN), and extracting key Intrinsic Mode Functions

(IMFs). This IMFs capture critical fault-related features for
further analysis.

(2) Feature Extraction:The Complexity Measure Adaptive
Entropy (CMAE) is employed to extract the complexity
features of the signals across multiple scales. This multi-scale
analysis allows for a comprehensive characterization of the
rolling bearing fault signals, enriching the representation of
fault characteristics and enhancing classification accuracy.

(3) ELM Model Construction:An Extreme Learning Ma-
chine (ELM) model is constructed. The input-to-hidden layer
connection weights and bias parameters are initialized ran-
domly, while the hidden layer output is calculated using the
generalized inverse matrix theory, ensuring efficient compu-
tation.

(4) MQR-AOA Optimization of ELM Parameters: The
Multi-Quasi-Reflective Arithmetic Optimization Algorithm
(MQR-AOA) is introduced to optimize the ELM model’s
random weights and biases. MQR improves the algorithm’s
global search capability by incorporating random pertur-
bations and quasi-reflective operations, effectively avoiding
local optima.

(5) Optimization process:During each iteration, the
weights and biases of the ELM model are updated using the
MQR-AOA algorithm. Subtraction and addition operators are
applied during the developmental phase to accelerate conver-
gence toward the global optimal solution. The global search
capability and exploration diversity are further enhanced
through variational quasi-reflective learning (MQR). This
mechanism improves the global jump potential of the search
process, effectively avoiding local optima and significantly
boosting optimization efficiency.

(6) Classification and diagnosis: The optimized ELM
model is trained using the extracted fault features. This
enables the accurate classification and diagnosis of rolling
bearing faults, ensuring high reliability and performance.

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS

A. Data set

To verify the validity and superiority of the MQRAOA-
ELM fault diagnosis model proposed in this study, the
rolling bearing fault vibration signals publicly provided by
the Bearing Data Center of Case Western Reserve University
were selected as the research object. The experimental data
consists of deep groove ball bearing fan-end data, where the
fault types include inner ring, outer ring, and rolling element
failures, each with a fault damage diameter of 0.007 mm. The
vibration signals were collected at a sampling frequency of
12 kHz across four states: normal bearing, inner ring failure,
rolling element failure, and outer ring failure. A total of
480 samples were collected for each state, with each sample
containing 2048 data points.

B. Fault diagnosis and comparison verification

The experimental dataset was preprocessed by extracting
features from the raw vibration signals and applying dimen-
sionality reduction. The resulting dataset comprises four fault
states, each representing 100 feature samples. The dataset
was divided into training and testing sets to ensure model
generalization: the first 70 samples were used for training,
and the remaining 30 were used for testing. All input data
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Fig. 9. MQRAOA Flowchart

were normalized to avoid the influence of feature value dis-
crepancies on model training. Specifically, the mapminmax
function was applied to linearly transform the data into the [0,
1] range, accelerating network convergence and improving
model stability and robustness.

This study employs a hybrid model that combines the
Extreme Learning Machine (ELM) and the Multi-Quasi-
Reflective Arithmetic Optimization Algorithm (MQRAOA)
for classification tasks. The ELM network consists of an
input layer, a hidden layer, and an output layer. The input
layer matches the input feature dimensions, the hidden layer

contains 45 nodes with a Sigmoid activation function, and
the output layer corresponds to the number of classification
categories. In the standard ELM model, input weights and
biases are randomly initialized, and the output weight matrix
is determined using the least squares method.

To enhance classification accuracy, the MQRAOA algo-
rithm is introduced to optimize ELM’s input weights and
biases. MQRAOA is a global optimization algorithm that
combines multi-population search strategies with quantum
mechanics principles to achieve efficient global optimization.
Its main goal is to maximize classification accuracy. The

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1462-1472

 
______________________________________________________________________________________ 



algorithm uses a population size of 30 and up to 100 iter-
ations. The optimized weights and biases obtained through
this process are used to retrain and test the ELM model.
Classification accuracy is then calculated on the test set to
assess model performance.

To improve the robustness of the experimental results and
reduce randomness, the optimization process was repeated
10 times, each starting from random initialization. Classifi-
cation accuracy, fitness curves, and confusion matrices were
recorded during each run. The average results of these 10
experiments were used to evaluate the optimization effect,
reducing the risk of errors from a single experiment and
ensuring the stability and reliability of the results.

Furthermore, the performance of the MQRAOA-ELM
model was compared with several classic optimization
algorithms, including WOA[15], SCA[16], SSA[17], and
TLBO[18]. Each algorithm was executed for 10 iterations,
and the average classification accuracy was computed for
comparison. Fitness curves and confusion matrices were
analyzed to demonstrate each algorithm’s optimization effec-
tiveness and classification performance, providing a compre-
hensive comparison of their advantages and disadvantages.

Figure 10 shows the fitness trends of various optimization
algorithms in optimizing the ELM model for rolling bearing
fault diagnosis. The results indicate that MQRAOA out-
performs other algorithms, especially regarding convergence
speed and optimization effectiveness. MQRAOA achieves
rapid convergence, reaching near-optimal results in fewer
than 50 iterations with a final fitness value close to 1.0. In
contrast, WOA and SCA exhibit significant fluctuations in
early iterations, especially in the first 30 iterations, indicating
a tendency to get stuck in local optima during the global
search phase. Although WOA and SCA stabilize later, with
fitness values approaching 0.98, their convergence speed and
overall optimization performance still lag behind MQRAOA.

Fig. 10. Algorithm fitness plot

Similarly, SSA and TLBO show relatively smooth conver-
gence patterns, with final fitness values approaching 0.99,
slightly lower than MQRAOA. However, their fluctuations
in the early iterations are less pronounced compared to
WOA and SCA. The advantage of MQRAOA lies in its
variation and quasi-reflection operations, which significantly
enhance its global search ability, enabling it to more ef-

fectively locate near-optimal solutions while avoiding local
optima. While other algorithms possess some global search
capabilities, their convergence speed and final optimization
results are insufficient when handling complex fault signals,
highlighting the superior performance of MQRAOA in terms
of convergence speed and optimization effectiveness.

Figures 11–13 and Table 1 clearly illustrate the perfor-
mance of ELM models with different optimization algorithms
in the rolling bearing fault classification task. These experi-
mental results reveal the impact on classification accuracy
and robustness, particularly when dealing with complex
nonlinear fault signals. By analyzing the results of the
standard ELM, AOA-ELM, and MQRAOA-ELM models,
the importance of introducing optimization algorithms to
improve classification performance becomes evident.

Figure 11 and Table 1 show that the standard ELM
performs relatively well on simple categories (e.g., cate-
gories 1 and 4), with classification accuracies of 86.7%
and 100%. However, its performance in categories 2 and
3 is poor, with only 46.7% and 53.3% accuracies. This
highlights a major limitation in handling complex categories.
Specifically, the left plot in Figure 11 shows that there is a
significant deviation between predicted and true values for
categories 2 and 3, leading to frequent misclassifications.
This limitation stems from the standard ELM’s weak ability
to model nonlinear data, which makes it difficult to capture
the complex distribution of such data, resulting in unstable
overall classification performance.

In contrast, the AOA-optimized ELM classifier signifi-
cantly improves performance, with classification accuracy
increasing to 81.67%, as shown in Figure 12. According to
Table 1, the classification accuracy for categories 1 and 4
remains stable at 86.7% and 100%, while for categories 2
and 3, accuracy improves to 70.0%. These improvements
indicate that the AOA algorithm enhances the ELM model’s
ability to capture complex category features. In the left plot
of Figure 12, the overlap between predicted and true values
is significantly improved, and the number of misclassified
samples is reduced, demonstrating the effectiveness of the
AOA algorithm and indicating that the optimized model is
more reliable when handling complex data.

The MQRAOA-optimized ELM classifier shows even
greater enhancement, with outstanding performance, as il-
lustrated in Figure 13 and Table 1. Its overall classification
accuracy is 99.17%, the highest among all models. The
classification performance for all categories is close to or
reaches 100%, with categories 2 and 3 improving from 46.7%
and 53.3% under the standard ELM to 100% and 96.7%,
respectively. Furthermore, in the left plot of Figure 13, the
predicted values almost perfectly align with the true values
and misclassification points are nearly eliminated. These
findings highlight the strong global optimization capability
of the MQRAOA algorithm. Its efficient search mechanism
and rapid convergence significantly enhance the parameter
optimization of the ELM classifier, improving its ability to
model and classify complex data.

A comprehensive analysis of Figures 11, 12, 13, and
Table 1 leads to the conclusion that different optimization
algorithms significantly affect the performance of the ELM
classifier. While the standard ELM performs well on simple
categories, its limited modeling ability restricts its perfor-
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Fig. 11. Standard ELM classification results

Fig. 12. AOA-ELM classification results

Fig. 13. MQRAOA-ELM classification results
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TABLE I
CLASSIFICATION RESULTS FOR DIFFERENT CLASSIFIERS

Classifier Category 1 Category 2 Category 3 Category 4 Average

Standard ELM 86.7% 46.7% 53.3% 100% 76.6667%
AOA-ELM 86.7% 70.0% 70.0% 100% 81.1667%
WOA-ELM 90.0% 63.3% 66.7% 100% 80.0000%
SCA-ELM 86.7% 70.0% 80.0% 100% 84.1667%
SSA-ELM 90.0% 66.7% 76.7% 100% 83.3333%
TLBO-ELM 86.7% 63.3% 80.0% 100% 82.5000%
MQRAOA-ELM 100.0% 100.0% 96.7% 100% 99.1667%

mance on complex categories. Optimization algorithms like
AOA enhance the overall performance, particularly when
dealing with complex categories. However, MQRAOA stands
out, with its optimized ELM achieving nearly perfect classi-
fication accuracy across all categories, with an overall accu-
racy of 99.17%. These results demonstrate that MQRAOA,
with its excellent optimization capability, provides a robust
and efficient solution for complex fault signal classification
tasks.

V. CONCLUSION

This study proposes an arithmetic optimization algorithm
based on variational quasi-reflective learning ELM for rolling
bearing fault diagnosis. The accuracy of fault diagnosis is
significantly improved by extracting vibration signal features
using CEEMDAN and CMAE.MQRAOA avoids the local
optimum problem by optimizing the weights and biases of
the ELM model and enhances the algorithm’s global search-
ing ability and convergence speed. The experimental results
show that the MQRAOA-ELM model outperforms other
algorithms’ classification accuracy and robustness, verifying
the method’s effectiveness. The method provides a reliable
solution to improve the efficiency and accuracy of rolling
bearing fault diagnosis and has good application prospects.
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