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Abstract—Researchers have been devoting themselves to the
study of extended adjacency matrices, one of the many novel
graph matrices that are being proposed as a potential extension
of the spectral theory of classical graph matrices. The concept
of the Zagreb matrix and Zagreb energy of a graph has been
introduced to expand some beneficial molecular topological
properties. The (first) Zagreb matrix Z(G) = (zij)n×n of
a graph G whose vertex vi has degree di is defined by
zij = di+dj , if the vertices vi and vj are adjacent and zij = 0
otherwise. Let ζ1, ζ2, . . . , ζn be the Zagreb eigenvalues of Z(G)
and the Zagreb energy is the sum of the absolute values of
the Zagreb eigenvalues. The spectral properties of the Zagreb
matrix of some classes of graphs are explored in this article.
The main contribution of the article is that the Zagreb energy
of a graph, obtained by means of various graph products like
the strong product, corona product, Kronecker product etc. are
investigated, and well-established relations are derived in terms
of their base graphs.

Index Terms—Zagreb matrix, Kronecker product, Cartesian
product, coronal, quotient matrix.

I. INTRODUCTION

GRaphs considered here are simple, finite, undirected,
and connected with vertex set V = V (G) and edge set

E = E(G). The adjacency matrix A(G) of a graph G is the
n× n matrix in which its (i, j)th-entry is 1 if vivj ∈ E(G)
and 0 otherwise. By the denotation u ∼G v (or u ≁G v)
we mean that u is adjacent to v (or u is not adjacent to v) in
G. The degree of a vertex u in G is denoted by dG(u). The
suffix G in the notations ∼G, ≁G and dG(u) is conveniently
ignored if the graph under discussion is clearly understood.
For a subset S ⊆ V (G), the subgraph induced by the vertices
in S is denoted by ⟨S⟩.
Let λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn be the eigenvalues of
A(G). The largest eigenvalue λ1 is usually referred to as the
spectral radius of the graph G. The energy of the graph G

is defined as E(G) =
n∑

i=1

|λi|.
The first and second Zagreb indices are defined as

M1(G) =
∑

vϵV (G)

d2(v) =
∑

uvϵE(G)

[(d(u) + d(v))],

M2(G) =
∑

uvϵE(G)

[(d(u)d(v))].

In general convention, we write TI for a topological index
that can be represented as TI = TI(G) =

∑
u∼v

Φdudv , where
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Φ is an appropriately chosen function with the property
Φdudv

= Φdvdu
.

A general extended adjacency matrix AΦ(G) = (aΦuv ) of G
is defined as

Aϕ(G) = (aΦuv)n×n =

{
Φdudv ; if u ∼ v

0; otherwise .

If Φdudv
= d(u) + d(v), i.e., TI = M1(G) (the first Zagreb

index), we get the (first) Zagreb matrix [2]. The (first) Zagreb
matrix of a graph G is a square matrix Z(1)(G) = Z(G) of
order n, and is defined as

Zij =

{
d(u) + d(v); if uv ∈ E(G)

0; otherwise.

If the eigenvalues of Z(G) are ζ1, ζ2, . . . , ζn, then their
collection is called the Zagreb spectrum or Z-spectrum of
G. The Zagreb energy of a graph G is denoted by ZE(G)
and is defined as

ZE(G) =
n∑

i=1

|ζi|.

The largest eigenvalue ζ1 is the the spectral radius of the
Zagreb matrix, if its eigenvalues can be expressed as ζ1 ≥
ζ2 ≥ . . . ≥ ζn. A few articles on the spectral properties of
the Zagreb matrix can be found in [2]–[6].
Let A be the matrix of order n described in the block form

A =

M11 .... M1t
...

. . .
...

Mt1 .... Mtt


n×n

,

where the blocks Mij are ni×nj matrices for any 1 ≤ i, j ≤
t and n = n1 + · · ·+ nt.
A partition D of a square matrix A is said to be equitable
if all the blocks of the partitioned matrix have constant row
sums and each of the diagonal blocks is of square order. A
quotient matrix B of a square matrix A corresponding to an
equitable partition is a matrix whose entries are the constant
row sums of the corresponding blocks of A. A quotient
matrix is a useful tool for finding some eigenvalues of matrix
A. In the theory of graph spectra, equitable partitions play
an important role, mostly because of the following results.

Theorem I.1. [7] Let A be a real symmetric matrix with a
quotient matrix B. Then the characteristic polynomial of B
divides the characteristic polynomial of A.

Theorem I.2. [8] Let D be an equitable partition of the
connected graph G. Then A(G) and the quotient matrix B
of D has the same spectral radius λ1.

Definition I.1. The Kronecker product of a matrix A =
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(aij)p×q and Br×s is defined as

A⊗B =

a11B . . . a1qB
...

...
...

ap1B . . . apqB

 .

Theorem I.3. [1] Let A be a square matrix of order m
with spectrum σ(A) = (µi), 1 ≤ i ≤ m and B be a square
matrix of order n with σ(B) = (λj), 1 ≤ j ≤ n. Then
σ(A⊗B) = (µiλj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The rest of the article is organized as follows: Section 2
deals with Zagreb eigenvalues of a few standard classes of
graphs. One might be interested to know, how the Zagreb
energy of two graphs can be related with the graph obtained
from the original graphs by applying some graph operations.
The spectral properties of the Zagreb matrix of a graph
which is obtained by applying some graph operations like
Kronecker product, Corona product, Cartesian product and
Strong product on two graphs are discussed in Section 3
along with the Zagreb energy of a shadow graph which is
obtained by applying some graph operation on a given graph
itself.

II. SOME STANDARD CLASSES OF GRAPHS

A great deal of knowledge is available in the literature
about the energy of standard classes like wheel, complete
k-partite graph and friendship graph pertaining to the adja-
cency matrix. In a similar vein, this section deals with the
Zagreb energy of a wheel, a complete k-partite graph and a
friendship graph.

A. Wheel Graph

The wheel graph, denoted by Wn, can be obtained by
join of K1 and Cn−1. Let the vertices of Wn be labeled as
v1, v2, . . . , vn. The vertex vk ∼ vk+1 for 2 ≤ k ≤ n − 1,
and vn ∼ v2 and v1 is adjacent to all the other vertices. The
following remark gives the determinant of wheel graphs.

Remark II.1. [9] If n ≥ 4, then

det (A(Wn)) =

 2(n− 1), if n mod 4 is 3
0, if n mod 4 is 1

1− n, otherwise
.

Theorem II.1. Let λk ̸= 2 be the eigenvalues of
A(Cn−1) with the corresponding eigenvector Vk for
k = 1, 2, . . . , n − 2. Then for each of 1 ≤ k ≤ n − 2, 6λk

are the Zagreb eigenvalues of Z(Wn) with eigenvectors
(0, Vk)

T . Further, the other two eigenvalues of Z(Wn)
are 6 ±

√
n3 + 3n2 + 32 with corresponding eigenvectors

( n2+n−2
6±

√
n3+3n2+32

, 1, 1, . . . , 1)T .

Proof: The Zagreb matrix of Wn can be viewed as a
block matrix as

Z(Wn) =

(
0 (n+ 2)J1,n−1

(n+ 2)Jn−1,1 6A(Cn−1)

)
.

Let X = [0, Vk]
T . Then, Z(Wn)X = 6λkVk, where 1 ≤

k ≤ n−2, which proves the first part of the theorem. Further,
the quotient matrix of Z(Wn) is given by,

Bz(Wn) =

(
0 (n+ 2)

(n+ 2)(n− 1) 12

)
.

The characteristic polynomial of the above quotient matrix
is,

x2 − 12x− (n+ 2)2(n− 1) = 0.

Hence, 6±
√
n3 + 3n2 + 32 are the eigenvalues of Z(Wn).

On solving Bz(Wn)X = λX , we get the desired eigenvec-
tors.

From Theorem I.2 we have the following note.

Note II.1. The spectral radius of Z(Wn) is given by 6 +√
n3 + 3n2 + 32.

Corollary II.2. The determinant of Z(Wn) is given by,

det (Z(Wn)) =

 6n−2 2(n+ 2)22(n− 1), if n mod 4 is 3
0, if n mod 4 is 1

6n−2 2(n+ 2)2(1− n), otherwise
.

Proof: We have,

det (Z(Wn)) = (n+ 2)2det



0 1 1 1 . . . 1 1
1 0 6 0 . . . 0 6
1 6 0 6 . . . 0 0
...

...
...

...
. . .

...
...

1 0 0 0 . . . 0 6
1 6 0 0 . . . 6 0


.

By performing Ri → Ri −Ri+1, 2 ≤ i ≤ n− 1, we get

det (Z(Wn)) ≃ 6n−2(n+2)2det



0 1 1 . . . 1 1
0 −1 1 . . . 0 1
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 −1 0 . . . −1 1
1 1 0 . . . 1 0

 .

By performing Ri → Ri + Ri+1 + Ri+2 + · · · + Rn ; i =
2, 3, . . . , n− 1 we get,

det (Z(Wn)) = 6n−2(n+ 2)2det (A(Wn))

and by Remark II.1 the proof follows.

B. Complete k-partite Graph

A k-partite graph is a graph whose vertex set can be
partitioned into k independent sets and all the edges of the
graph are between the partite sets. We denote a k-partite
graph G with the k-partition of V = V1 ∪ V2 ∪ . . . ∪ Vk by
G(
⋃k

i=1 Vi, E). If G contains every edge joining the vertices
of Vi and Vj , i ̸= j, then it is a complete k-partite graph. A
complete k-partite graph with |Vi| = pi, 1 ⩽ i ⩽ k is denoted
by Kp1,p2,...,pk

.

Theorem II.3. The Z-spectrum of Kp,p,...,p is given by(
2p2(k − 1)2 −2p2(k − 1)) 0

1 k − 1 pk − k

)
,

where the first and the second rows in the above array rep-
resent the eigenvalues and their multiplicities, respectively.
The Zagreb energy is given by

ZE(Kp,p,...,p) = 4p2(k − 1)2.

Proof: We know that the spectrum of A(Kp,p,...,p) is
given by (

p(k − 1) −p 0
1 k − 1 pk − k

)
.
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The proof follows by noting that,

Z(Kp,p,...,p) = 2p(k − 1)A(Kp,p,...,p).

The results for the complete bipartite graphs follow as a
special case when k = 2.

Corollary II.4. The Z-spectrum of complete bipartite graph
Kp,q is given by(

(p+ q)
√
pq −(p+ q)

√
pq 0

1 1 p+ q − 2

)
,

and
ZE(Kp,q) = 2(p+ q)

√
pq.

Proof: Proof follows by noting that, Z(Kp,q) = (p +
q)A(Kp,q), and the eigenvalues of A(Kp,q) are ±√

pq with
multiplicity 1 and 0 with multiplicity p+ q − 2.

C. Friendship Graph

A friendship graph denoted by Fn, (for n ≥ 2) with 2n+1
vertices is obtained from a wheel graph W2n+1 by removing
every alternate edge on the outer cycle.

A(Fn) =

 0 J1,n J1,n
Jn,1 0n In
Jn,1 In 0n.

 .

The spectrum ( [13]) of A(Fn) is given as follows;

spec(A(Fn)) =

(
1+

√
1+8n
2

1−
√
1+8n
2 1 −1

1 1 n− 1 n

)
.

Similar to this, we give spectrum of Z(Fn) in the following.

Theorem II.5. Let Z(Fn) be the Zagreb matrix of the
friendship graph Fn with 2n+ 1 vertices. Then,

1) spec(Z(Fn)) =

(
2± 2

√
1 + 2n(n+ 1)2 4 −4

1 n− 1 n

)
2) ZE(Fn) = 4

(
(2n− 1) +

√
1 + 2n(n+ 1)2

)
3) det(Z(Fn)) = (−1)n+1(2)4n+1n(n+ 1)2.

Proof: The Zagreb matrix of Fn can be viewed as

Z(Fn) =

 0 (2n+ 2)J1,n (2n+ 2)J1,n
(2n+ 2)Jn,1 0n 4In
(2n+ 2)Jn,1 4In 0n

 .

Let the characteristic polynomial be ΦZ(ζ) = det(Z(Fn)−
ζI). That is,

ΦZ(ζ) = det

 −ζ (2n+ 2)J1,n (2n+ 2)J1,n

(2n+ 2)Jn,1 −ζIn 4In
(2n+ 2)Jn,1 4In −ζIn


By performing the row operation Ri → Ri − Rn+i ;

i = 2, . . . , n+ 1 we get,
ΦZ(ζ) ≃

(ζ + 4)ndet

 −ζ (2n+ 2)J1,n (2n+ 2)J1,n

0n,1 −In In
(2n+ 2)Jn,1 4In −ζIn


By performing the column operation Ci → Ci + Cn+i ;
i = 2, . . . , n+ 1 we get,
ΦZ(ζ) ≃

(ζ + 4)ndet

 −ζ (4n+ 2)J1,n (2n+ 2)J1,n

0n,1 0n In
(2n+ 2)Jn,1 (4− ζ)In −ζIn



By performing Ci → Ci − Ci+1 ; i = 2, . . . , n, we get,

ΦZ(ζ) = (ζ + 4)n(ζ − 4)n−1Ψ(ζ)

where Ψ(ζ) is the remaining factor of ΦZ(ζ).
The remaining two eigenvalues of Z(Fn) can be obtained from the
quotient matrix which is shown as below.

BZ(Fn) =

(
0 4n(n+ 1)

2(n+ 1) 4

)
.

The characteristic polynomial of the above quotient matrix is,

ζ2 − 4ζ − 8n(n+ 1)2 = 0.

Hence, the other two eigenvalues of Z(Fn) are
2± 2

√
1 + 2n(n+ 1)2.

Now,

det(Z(Fn)) =
2n+1∏
i=1

ζi = (−4)n(4)n−1(2 +

2
√

1 + 2n(n+ 1)2)(2 − 2
√

1 + 2n(n+ 1)2).det(Z(Fn)) =
(−1)n+1(2)4n+1n(n+ 1)2.

ZE(Fn) =
2n+1∑
i=1

| ζi |= 4
(
(2n− 1) +

√
1 + 2n(n+ 1)2

)
.

III. BINARY OPERATIONS OF GRAPHS

In this section we investigate the Zagreb energy of some
binary operations. Firstly, the Zagreb energy of a graph
obtained by means of some graph operation on a given graph
G is considered. We show that the new graph’s Zagreb energy
is a multiple of Zagreb energy of the original graph, which
is referred as a base graph. Next, we derive conditions on
G and H such that Zagreb energy of the graph Γ, which is
obtained by applying some graph operations on G and H ,
can be related to the Zagreb energy of G and H .

A. Shadow Graph

The shadow graph D2(G) of a connected graph G is
constructed by taking two copies of G, say G′ and G′′. Join
each vertex u′ in G′ to the neighbors of the corresponding
vertex u′′ in G′′.

Theorem III.1. ZE(D2(G)) = 4ZE(G).

Proof: The Zagreb matrix of D2(G) can be written as
a block matrix as follows:

Z(D2(G)) = 2

(
Z(G) Z(G)
Z(G) Z(G)

)
= J2 ⊗ 2Z(G).

Hence, from Theorem I.3, spec(Z(D2(G))) =

(
0 4ζi
n 1

)
,

where ζi, i = 1, 2, . . . , n, are the eigenvalues of Z(G).
Therefore,

ZE(D2(G)) =
n∑

i=1

| 4ζi |= 4ZE(G).

Corollary III.2. Let G be a regular graph with regularity
r. Then,

ZE(D2(G)) = 4rE(G).

Definition III.1. The m-shadow graph Dm(G) of a con-
nected graph G is constructed by taking m copies of G,
say G1, G2, . . . , Gm then join each vertex u in Gi to the
neighbors of the corresponding vertex v in Gj , 1 ≤ i, j ≤ m.

Theorem III.3. ZE(Dm(G)) = m2ZE(G).
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Proof: Proof follows by noting that

Z(Dm(G)) = Jm ⊗mZ(G).

B. Kronecker Product

Consider two graphs, G and H , with vertex sets V and
W , respectively. Then the Kronecker product of G and H
denoted by G⊗H is the graph with vertex set V ×W and
two vertices (v, w) and (v′, w′) are adjacent to each other
whenever v ∼G v′ and w ∼H w′.
Note that, A(G⊗H)mn×mn = A(G)⊗A(H)

=


a11A(H) a12A(H) · · · a1mA(H)
a21A(H) a22A(H) · · · a2mA(H)

...
...

. . .
...

am1A(H) am2A(H) · · · ammA(H)


mn×mn

.

Note III.1. Let G and H be two graphs of order m
and n with eigenvalues {λ1, . . . , λm} and {µ1, . . . , µn},
respectively. Then, the eigenvalues of A(G ⊗ H) will be
{λiµj : 1 ≤ i ≤ m; 1 ≤ j ≤ n} and E(G ⊗ H) =
E(G)E(H).

Let the vertices of G and H be {v1, v2, . . . , vm} and
{u1, u2, . . . , un} respectively. Observe that Z(G ⊗ H) is a
block matrix B = (Bij) of order m, with all diagonal blocks
Bii being a 0 matrix of order n and other blocks Bij are
either a 0 matrix of order n or a non-zero block matrix of
order n depending upon whether vi ≁G vj or vi ∼G vj in
G. Suppose vr ∼G vs then the block Brs is a non-zero block
given by,

Brs =


(vs, u1) (vs, u2) . . . (vs, un)

(vr, u1)
(vr, u2)
...
(vr, un)

.

The entries corresponding to (vr, ub)
th row and (vs, ud)

th

column of the block Brs is dG(vr)dH(ub) + dG(vs)dH(ud)
if ub ∼H ud, otherwise it is zero.

Theorem III.4. Let Z(G) and Z(H) be the Zagreb matrices
of graphs G and H respectively. Then,

Z(G⊗H) ̸= Z(G)⊗ Z(H).

Proof: Suppose vi ∼G vj and vr ∼H vs. Then,
(vi, vr) ∼G⊗H (vj , vs). The entry corresponding to (i, r)th

row and (j, s)th column in Z(G⊗H) is given by (dG(vi)×
dH(vr)) + (dG(vj) × dH(vs)), which is not equal to the
entry corresponding to (i, r)th row and (j, s)th column i.e.,
(dG(vi) + (dG(vj))× (dH(vr) + dH(vs)).

Next, we have a theorem which guarantees that the Zagreb
matrices do not preserve the operation of Kronecker product
as in the case of adjacency matrices.

Theorem III.5. Z(G ⊗ H) = A(G) ⊗ B for some block
matrix B if and only if G is regular.

Proof: We know that if Brs is a non-zero block, then
the entries corresponding to (vr, ub)

th row and (vs, ud)
th

column of the block Brs is dG(vr)dH(ub) + dG(vs)dH(ud)

if ub ∼H ud, otherwise it is zero. Then, the entry corre-
sponding to (vr, ud)

th row and (vs, ub)
th column of the

block Brs is dG(vr)dH(ud) + dG(vs)dH(ub). In order to
write Z(G⊗H) = A(G)⊗B, every non-zero block Bij of
Z(G ⊗ H) must be same. By symmetry, dG(vr)dH(ub) +
dG(vs)dH(ud) = dG(vr)dH(ud) + dG(vs)dH(ub). This
implies dG(vs) = dG(vr). Hence, the result follows.
Conversely, let G be a regular graph with regularity r and
let vr ∼G vs and ub ∼H ud. Then the entry corresponding
to (vr, ub)

th row and (vs, ud)
th column of the block Brs

is r(dH(ub) + dH(ud)) which is also equal to the entry
corresponding to (vl, ub)

th row and (vt, ud)
th column of

the block Blt, if vl ∼G vt. Hence, each non zero blocks
Brs = Blt = B. The diagonal blocks Bii and other blocks
Bij are equal to a zero matrix of order n when vi ≁G vj .
Hence, the converse part follows.

Corollary III.6. Let G and H be two graphs. Then,

Z(G⊗H) =
1

2
Z(G)⊗ Z(H) = kA(G)⊗ Z(H)

if and only if G is k-regular.

Proof: Proof follows from Theorem III.5 by noting that
B = kZ(H) implies G to be regular with regularity k and
Z(G) = 2kA(G).

Corollary III.7. Let G be a regular graph with regularity
r. Let λi, µj and θl be the eigenvalues of A(G), Z(G)
and Z(H) respectively, 1 ≤ i, j ≤ m and 1 ≤ l ≤ n.
Then, the eigenvalues of Z(G⊗H) are either {rλiθl | i =
1, . . . ,m; l = 1, . . . , n} or { 1

2µjθl|j = 1, . . . ,m; 1, . . . , n}.
Also,

ZE(G⊗H) =
1

2
ZE(G)ZE(H) = kE(G)ZE(H).

Next, we derive conditions on G and H such that the
Zagreb matrix Z(G ⊗ H) has exactly two entries ‘0’ and
‘k’ for some constant k.

Theorem III.8. Z(G⊗H) is a (0, k) matrix, where k is any
constant, if and only if the graphs G and H satisfies any one
of the following conditions.

i) both G and H are regular.
ii) G is a regular graph and H is bipartite biregular graph

with partition {V1, V2} and ⟨V1⟩ is r1 regular and ⟨V2⟩
is r2 regular.

iii) G is regular and H is a disconnected graph with k
components c1, c2, . . . , ct such that each components ci
is bipartite biregular graph with partition {V i

1 , V
i
2 } and

⟨V i
1 ⟩ is ri regular and ⟨V i

2 ⟩ is si regular, such that
ri + si = rj + sj where i ̸= j and 1 ≤ i, j ≤ t

Proof: Let vr ∼G vs and ub ∼H ud. Then,
(vr, ub) ∼G⊗H (vs, ud) and (vr, ud) ∼G⊗H (vs, ub) in
G ⊗ H. Then the entries corresponding to (vr, ub)

th row
and (vs, ud)

th column of the block Brs is dG(vr)dH(ub) +
dG(vs)dH(ud) and that of (vr, ud)

th row and (vs, ub)
th

column is dG(vr)dH(ud) + dG(vs)dH(ub). Now, in order
to get all the non-zero entries of the non-zero blocks of
Z(G⊗H) as same, G must be regular.
Let G be regular with regularity r. Now suppose H is
connected, then ub is adjacent to another vertex say, uc

in H . Then the entries corresponding to (vr, ub)
th row
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and (vs, uc)
th column of the block is r(dH(ub) + dH(uc))

and that must be equal to r(dH(ub) + dH(ud)) implying
dH(ud) = dH(uc). Hence H must be either regular with
regularity s or a bipartite biregular graph with partition
{V1, V2} and ⟨V1⟩ is r1 regular and ⟨V2⟩ is r2 regular. In
both the cases the non-zero entries of the block matrix be
either k = 2rs or k = r(r1 + r2) a constant.

Suppose H is disconnected graph with t components say
c1, c2, . . . , ct. Let ub ∼ ud in ci, 1 ≤ i ≤ t. Then the
component ci must be biregular bipartite graph with partition
{V i

1 , V
i
2 } and ⟨V i

1 ⟩ is ri regular and ⟨V i
2 ⟩ is si regular.

Similarly, if ua ∼ uc in cj , i ̸= j, then again we get that the
component cj must be biregular bipartite graph with partition
{V j

1 , V
j
2 } and ⟨V j

1 ⟩ is rj regular and ⟨V j
2 ⟩ is sj regular. In

order to get all the non-zero entries of the blocks Bij as some
constant, we get ri + si = rj + sj for every 1 ≤ i, j ≤ t.

Conversely, if the condition (i), (ii) or (iii) is true then it
is easy to observe that Z(G ⊗H) is a (0, k) matrix where
k is any constant.

Corollary III.9. Let G be a regular graph with regularity
r.

• Suppose H is also regular with regularity s, then
ZE(G⊗H) = 2rsE(G)E(H).

• Suppose H is bipartite biregular graph with partition
{V1, V2} and ⟨V1⟩ is r1 regular and ⟨V2⟩ is r2 regular,
then ZE(G⊗H) = r(r1 + r2)E(G)E(H).

C. Cartesian Product

Let G and H be two graphs with vertex sets V and W
respectively. Then the Cartesian product, G□H is the graph
with vertex set V ×W , where (v, w) ∼G□H (v′, w′) when
either v = v′ and w ∼H w′ or w = w′ and v ∼G v′. If
A(G) and A(H) are the adjacency matrices of G and H of
order m and n respectively, then

A(G□H) = A(G)⊗ In + Im ⊗A(H).

Theorem III.10. [12] The eigenvalues of A(G□H) are
λi+µj , where λi; i = 1, . . . ,m are the eigenvalues of A(G)
and µj ; j = 1, . . . , n are the eigenvalues of A(H).

Lemma III.11. Let Z(G) and Z(H) be the Zagreb matrices
of G and H respectively. Then, Z(G□H)

=

 (dG(vi) + dH(vr))+
(dG(vj) + dH(vs)); (vi, vr) ∼G□H (vj , vs)

0; otherwise.

where, dG(vi), dG(vj) are the degrees of the vertices vi and
vj in G and dH(vr), dH(vs) are degrees of the vertices vr
and vs in H and vi ∼G vj and vr ∼H vs.

Theorem III.12. Let G and H be any two graphs of order
m and n respectively. Then,

Z(G□H) = A(G)⊗2(r+dH(ui))Im+Im⊗(Z(H)+2rA(H))

if and only if G is r-regular and dH(ui) is the degree of a
vertex ui, 1 ≤ i ≤ n in H .

Proof: Let the vertices of G and H be {v1, v2, . . . , vm}
and {u1, u2, . . . , un} respectively. First we try to write
Z(G□H) = A(G)⊗ In + Im ⊗Dn, where Dn is a matrix
of order n.

Note that Z(G□H) is a block matrix B = (Bij) with
Brs, r ̸= s being a non zero diagonal block, with (ii)th diag-
onal entry equal to dG(vr) + dG(vs) + 2dH(ui), 1 ≤ i ≤ n,
if vr ∼G vs otherwise it is a zero block.

Also, Bii being a non zero block and the entries cor-
responding to (vi, ur)

th row and (vi, us)
th column is

2dG(vi) + dH(ur) + dH(us) which must be equal to
2dG(vj) + dH(ur) + dH(us). This implies G is regu-
lar with regularity r. Hence, the entry corresponding to
(vi, ur)

th row and (vi, us)
th column of the block Bii is

2r + dH(ur) + dH(us). Also, the (ii)th diagonal entry of
the block Brs, r ̸= s is equal to 2r + 2dH(ui), 1 ≤ i ≤ n,
if vr ∼G vs.
Converse is trivial.

Theorem III.13. If G and H are regular with regularity
r1, r2 and order n,m respectively. Then, Z(G□H)

= 2(r1+r2)(A(G)⊗In+Im⊗A(H)) = 2(r1+r2)A(G□H).

Proof: Proof follows from Theorem III.10 and III.12.

Corollary III.14. Let G and H be two regular graphs
with regularity r1 and r2 respectively. If λi and µj are
the eigenvalues of A(G) and A(H) respectively, then the
eigenvalues of Z(G□H) are 2(r1 + r2)(λi + µj) and
ZE(G□H) = 2(r1 + r2)(E(G) + E(H)).

We know that the ladder graph Ln = Pn□K2. From
Theorem III.12, the following corollary follows.

Corollary III.15. Z(Ln) = A(K2) ⊗ 2(2 + dPn(ui))In +
I2 ⊗ (Z(Pn) + 2A(Pn)).

The circular ladder graph CLn = Cn□K2. From Theorem
III.13, Z(Cn□K2) = 6A(Cn□K2). Hence using Corollary
III.14, we get the eigenvalues of CLn as given in the
corollary below.

Corollary III.16. The eigenvalues of Z(CLn) are
12(cos( 2πkn )± 1) where, k = 1, . . . , n.

The Hypercube graph Qn, n ≥ 2 is defined recursively
in terms of the Cartesian product of two graphs as Qn =
K2□Qn−1 with Q1 = K2.

Proposition III.17. [10] A(Qn) = K2 ⊗ I2n−1 + I2 ⊗
A(Qn−1) for n > 1 and eigenvalues of A(Qn) are {(n −
2k)(

n
k); k = 0, . . . , n}.

The next corollary gives the Zagreb eigenvalues of Qn

using Proposition III.17 and Theorem III.13.

Corollary III.18. Let Qn, n > 1 be the hypercube graph.
Then,

Z(Qn) = 2n(K2 ⊗ I2n−1 + I2 ⊗A(Qn−1))

and eigenvalues of Z(Qn) are {(2n(n − 2k))(
n
k); k =

0, . . . , n}.

D. Strong Product

Let G and H be two graphs with vertex sets V and
W respectively. Then the strong product G ⊠ H is the
graph with vertex set V × W , where two distinct vertices
(u, v) ∼G⊠H (u′, v′) whenever u = u′ and v ∼H v′ or
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v = v′ and u ∼G u′ or u ∼G u′ and v ∼H v′.
If A(G) and A(H) are adjacency matrices of graphs G and
H , then,
A(G⊠H) = (A(G)□A(H)) +A(G)⊗A(H)

= (A(G) + IG)⊗ (A(H) + IH)− IG×H

Proposition III.19. [12] The eigenvalues of A(G⊠H) are
(λ+1)(µ+1)− 1, where λ and µ are the eigenvalues of G
and H respectively.

Lemma III.20. Let Z(G) and Z(H) be Zagreb matrices
of two graphs G and H . Then Z(G ⊠ H) is expressed as,
Z(G⊠H) =

(dG(vi) + dH(vr)+
dG(vi)× dH(vr))+
(dG(vj) + dH(vs)+
dG(vj)× dH(vs)); (vi, vr) ∼G⊠H (vj , vs)

0; otherwise

.

Theorem III.21. If G and H are regular with regularity r1
and r2, then,

Z(G⊠H) = 2(r1 + r2 + r1r2)A(G⊠H).

Proof: Let the vertices of G and H be {v1, v2, . . . , vm}
and {u1, u2, . . . , un} respectively. Let vr ∼G vs and
ub ∼H ud. Then, (vr, ub) ∼G⊠H (vs, ud), (vr, ub) ∼G⊠H

(vr, ud), (vr, ub) ∼G⊠H (vs, ub), (vr, ud) ∼G⊠H (vs, ud)
and (vs, ub) ∼G⊠H (vs, ud) in G⊠H.

The proof follows from Lemma III.20 and by noting that
the entries in A(G⊠H) due to the above adjacencies is 1,
where as in Z(G⊠H) is 2(r1 + r2 + r1r2).

From Theorem III.21 and Proposition III.19, the following
corollary follows.

Corollary III.22. Let G and H are regular with regularity
r1 and r2 respectively. If λi and µj are the eigenvalues of
A(G) and A(H) respectively, then eigenvalues of Z(G⊠H)
are 2 (r1 + r2 + r1r2) ((λi + 1)(µj + 1)− 1) .

E. Corona Product

Let G and H be two graphs with m and n vertices. The
corona product of G and H denoted by G ◦ H is obtained
by taking one copy of G and m copies of H , and by joining
each vertex of the ith copy of H to the ith vertex of G, i =
1, 2, . . . , n.

Consider H to be a regular graph with regularity r2.
Then Z(H) can be viewed as a matrix over the field
of rational functions C(λ), and the characteristic equation
det(λI−2(r2+1)A(H)) = ϕH(λ) ̸= 0, so is invertible. Due
to the non-singularity, one can define the coronal of of A(H),
denoted by χH(λ) ∈ C(λ). The coronal χH(λ) ∈ C(λ) of
A(H) is defined to be the sum of the entries of the matrix
(λI − 2(r2 + 1)A(H))−1 [11]. Also,

χH(λ) = (r1+r2+n+1)2Jn,1(λIn−2(r2+1)A(H))−1J1,n.

We show that, the Z-spectrum of G ◦ H is completely
determined by the characteristic polynomials ΦG and ΦH

and the coronal χH of H in the following theorem.

Theorem III.23. Let G be a r1-regular graph with m
vertices and H be a r2-regular graph with n vertices,
and χH(λ) be the coronal of H . Then the characteristic

polynomial of Z(G ◦H) is, ΦZ(G◦H)(λ) =

2m(r2+1)mΦH

( λ

2(r2 + 1)

)m
2m(r1+n)mΦG

(λ− χH(λ)

2(r1 + n)

)
Proof: Let A(G) and A(H) be the adjacency matrices of

G and H respectively. The Zagreb matrix of corona product
two graphs G and H can be expressed as, Z(G ◦ H) =(

2(r1 + n)A(G) (r1 + r2 + n+ 1)J1,n ⊗ Im
(r1 + r2 + n+ 1)Jn,1 ⊗ Im 2(r2 + 1)A(H)⊗ Im

)
.

To compute the characteristic polynomial of the matrix
Z(G ◦ H), we recall the elementary results given below
from linear algebra on multiplication of Kronecker products
and determinants of block matrices:

i. In cases where each multiplication makes sense, we
have

M1M2 ⊗M3M4 = (M1 ⊗M3)(M2 ⊗M4).

ii. If M4 is invertible, then

det

(
M1 M2

M3 M4

)
= det(M4)det(M1 −M2M

−1
4 M3).

iii. (M1 ⊗M2)
−1 = M−1

2 ⊗M−1
1 .

Consider, ΦZ(G◦H) =

= det(λIm(n+1) − Z(G ◦ H))

= det

(
λIm − 2(r1 + n)A(G) −(r1 + r2 + n + 1)J1,n ⊗ Im

−(r1 + r2 + n + 1)Jn,1 ⊗ Im (λIn − 2(r2 + 1)A(H)) ⊗ Im)

)
= det

(
(λIn − 2(r2 + 1)A(H)) ⊗ Im

)
det

[
(λIm − 2(r1 + n)A(G))

− (r1 + r2 + n + 1)
2
(J1,n ⊗ Im)

(
λIn − 2(r2 + 1)A(H)) ⊗ Im)

)−1
(Jn,1 ⊗ Im)

]
= det

(
λIn − 2(r2 + 1)A(H)

)m
det

(
(λ − χH(λ))Im − 2(r1 + n)A(G)

)
= 2

m
(r2 + 1)

m
ΦH

( λ

2(r2 + 1)

)m
2
m
(r1 + n)

m
ΦG

(λ − χH(λ)

2(r1 + n)

)
Hence, the proof.

Corollary III.24. Let G be a r1-regular graph with m
vertices and H be a r2-regular graph with n vertices. Then
the coronal of H is given by

χH(λ) = (r1 + r2 + n+ 1)2
n

λ− 2r2(r2 + 1)
.

The spectrum of Z(G ◦H) is given by(
2(r2 + 1)θ

(2r2(r2+1)+µ)±
√

(2r2(r2+1)−µ)2+4n(r1+r2+n+1)2

2
m 1

)
,

where θ is the eigenvalue of H such that θ ̸= r2, and µ =
2(r1 + n)α, for each eigenvalue α of A(G).

Proof: From Theorem III.23, we can easily note that
2(r2+1)θ is a eigenvalue of Z(G ◦H) with multiplicity m,
where θ is an non-maximum eigenvalue of H.
We have 2(r2 + 1)A(H)Jn,1 = 2r2(r2 + 1)Jn,1.
Hence, (λI − 2(r2 +1)A(H))Jn,1 = (λ− 2r2(r2 +1))Jn,1.

χH(λ) = (r1 + r2 + n+ 1)2J1,n(λIn − 2(r2 + 1)A(H))−1Jn,1

= (r1 + r2 + n+ 1)2
( J1,nJn,1
λ− 2r2(r2 + 1)

)
= (r1 + r2 + n+ 1)2

( n

λ− 2r2(r2 + 1)

)
.

The pole of χH(λ) is the 2r2(r2 + 1), some eigenvalues
are root of ΦH(λ)which are not poles of χH(λ) and the
remaining eigenvalues are obtained by λ−χH(λ) = 2(r1 +

Engineering Letters

Volume 33, Issue 5, May 2025, Pages 1484-1490

 
______________________________________________________________________________________ 



n)α = µ for each eigenvalue of α of A(G).

λ− (r1 + r2 + n+ 1)2
n

λ− 2r2(r2 + 1)
= µ.

Solving for λ we get remaining eigenvalues of G◦H . Hence
the proof.

Corollary III.25. The spectral radius of Z(G ◦H) is given
by, (r1(r1 + n) + r2(r2 + 1)) +√
(r1(r1 + n)− r2(r2 + 1))2 + n(r1 + r2 + n+ 1)2.

Proof: The quotient matrix of Z(G ◦H) is given by

Bz(G ◦H) =

(
2(r1 + n)r1 n(r1 + r2 + n+ 1)

(r1 + r2 + n+ 1) 2r2(r2 + 1)

)
.

Simplifying the characteristic polynomial of Bz(G ◦H) we
get λ2 − (r1(r1 + n) + r2(r2 + 1))λ+
4r1r2(r1r2 + r1 + nr2 + n)− n(r1 + r2 + n+ 1)2 = 0. On
solving we get two eigenvalues and hence the spectral radius
follows from Theorem I.2.

IV. CONCLUSION

As a class of degree-based topological molecular
descriptors, the extended adjacency index of a connected
graph was proposed. There has been an extensive exploration
of spectral properties of the extended adjacency matrix
based on a wide range of degree-based topological indices.
The extended adjacency matrix associated with the first
Zagreb index, known as the Zagreb matrix of some classes
of graphs and some derived classes is studied in this article.

The energy of a graph is an emerging concept that serves
as a frontier between chemistry and mathematics, introduced
in the 1970s. It became a popular topic of research both in
mathematical chemistry and in pure spectral graph theory.
Eventually, scores of different graph energies have been
conceived. The Zagreb energy is one such quantity associated
with the Zagreb matrix. Graph products include a wide range
of operations that join two or more existing graphs to produce
new graphs with distinctive properties and uses. This article
explores the Zagreb energy of various products of graphs.
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