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Abstract—With the rise of the mobile Internet, location-based
services (LBS) have become increasingly popular. However,
the location and trajectory leakage problem that can result
from the use of LBS services makes protecting location privacy
an increasing challenge. Existing approaches mainly achieve
location protection by perturbing key location points or the
whole trajectory, with little consideration of the correlation
between locations, which may result in a significant decrease
in the usability of the published trajectory. To address the
aforementioned issues, this paper proposes a differential privacy
trajectory-preserving method based on Mahalanobis distances.
The proposed approach describes the correlation between
neighboring location points by the amount of change in distance
and direction. Then generates perturb locations by combining
them into a covariance matrix using linear transformations of
a non-uniform scaling matrix and an isometric transformations
matrix. To better capture the directional correlation between
adjacent locations within the trajectory, a specialized algorithm
is designed to dynamically assign a regularization parameter
based on the importance of the directional changes of adjacent
locations. Experiments are carried out on different real tra-
jectory datasets and compared with some existing methods to
test the practicality of the proposed method. The experimental
results and analysis indicate that the proposed method improves
the utility of the published trajectory while ensuring its privacy.

Index Terms—Location-based services, Location privacy,
Trajectory protection, Differential privacy, Mahalanobis dis-
tance

I. INTRODUCTION

W ITH the widespread popularity of mobile Internet,
smart devices, and GPS, location-based services

(LBS) have permeated every aspect of our daily lives
[1], [2]. From navigation and route planning to point-of-
interest queries and online car services, these conveniences
rely on collecting and analyzing large amounts of location
and trajectory data from users [3]. Location-based service
providers (LBSPs) are dedicated to providing efficient and
accurate services that allow users to enjoy convenient and
personalized experiences based on their precise location.
However, the very nature of such services requires LBSPs
to collect and process sensitive geolocation information,
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which not only makes LBSPs a potential source of privacy
threats but also potentially exposes users to a wide range
of wireless communication threats [4]. User locations, if
mishandled or accidentally leaked, can lead to several privacy
and security concerns. For example, an attacker can obtain
the real-time location of a user’s trajectory by listening to
or intercepting the communication data to perform tracking
or other malicious and illegal activities. In addition, trajec-
tory data often contains a significant amount of personal
information. If accessed or publicized, this data could be
exploited for social engineering attacks, advertising fraud, or
even physical security threats. Furthermore, vulnerabilities
in wireless communication [5], such as man-in-the-middle
attacks and signal spoofing, can be exploited to interfere with
or manipulate location data. The security vulnerabilities in
smartphone applications [6] can also be leveraged by attack-
ers to obtain trajectory information. Due to these privacy and
security threats, LBSPs must adopt stringent data protection
measures. Therefore, it has become imperative to find and
implement appropriate privacy protection strategies to ensure
the security of personal trajectory and location data.

To achieve the goal of trajectory privacy, most existing
research employs the following approaches: the dummy
trajectory method [7], [8], which does not publish the user’s
actual location in their trajectory, but instead generates a
dummy location to obtain the corresponding service. The
disadvantage of this approach is that it leads to a noticeable
degradation in service quality. The generalization method
[9], [10] improves privacy by decreasing the precision of
location points within a trajectory, with the anonymity of
the K trajectory being the primary representative technique.
The more trajectories within the anonymized region, the
stronger the privacy protection. The disadvantage of the
generalization method is that when there is a large difference
in the direction of the trajectory, it leads to an excessively
large anonymization region, which consequently deteriorates
the quality of the service provided. The suppression method
[11], [12] enhances privacy by removing or concealing key
locations within a trajectory. However, a significant drawback
is that the level of privacy achieved largely depends on the
number of sensitive locations that are suppressed. The dif-
ferential privacy model [13] has gained considerable traction
in the field of data publication, largely due to its rigorous
mathematical definition. In recent years, a substantial body
of research has emerged that explores the integration of
differential privacy with trajectory privacy preservation, to
develop a more comprehensive and efficient solution. Geo-
indistinguishability [14] further extends the application of
differential privacy models to the domain of location privacy
protection. Subsequently, the extension of differential privacy
in terms of metrics is called the differential metric privacy
model [15]. Geo-indistinguishability not only safeguards
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Fig. 1: An example of trajectory protection with geo-
indistinguishability.

the privacy of individual locations but also enhances the
overall privacy protection of the entire trajectories by adding
controlled noise to the trajectory data.

Currently, differential location privacy perturbation meth-
ods for real-time trajectories have been less studied. Few
studies take into account the correlation between neighboring
locations within a trajectory. Take the road network environ-
ment shown in Fig. 1, the black line represents the user’s
real trajectory, while the red line is the perturbed trajectory
generated through Geo-indistinguishability. Starting from the
beginning of the real location and perturbing at the second
and third locations, the generated perturbation trajectory is
quite different from the direction of the real one. It can also
be observed that at the end of the trajectory, the real and
the perturbed locations are in different directions. This is
because the Geo-indistinguishability perturbation mechanism
with circular noise distribution is perceived the same for any
direction. Therefore, it appears that, after applying a random
perturbation, there may be points that seem disorganized
and lack structure. This not only affects the effectiveness
of real-time services but also disrupts the coherence of
the trajectory, making it difficult to recognize the user’s
actual path. Therefore, when implementing perturbations to
real-time trajectory locations, reasonable distances between
neighboring points and continuous motion directions should
be maintained to preserve the basic structure and utility of
the trajectory.

To address the aforementioned issues of Geo-
indistinguishability in real-time trajectory location
perturbation, this paper proposes an adaptive real-time
trajectory privacy-preserving algorithm. This introduces the
correlation between neighboring locations in the trajectory
into the design of the metric differential privacy perturbation
algorithm, ensuring that the generated perturbed locations
retain a greater degree of correlation with the preceding
locations. Consequently, the usability of the published
trajectory is enhanced.

II. RELATED WORK

Various solutions such as dummy trajectories, generaliza-
tion methods, suppression methods, and differential privacy
have been proposed to achieve privacy protection of tra-
jectories. Wu et al. [16] proposed a virtual-based privacy-
preserving algorithm that employs an adaptive virtual trajec-
tory generation algorithm to generate uniformly distributed

virtual trajectories, thereby fulfilling more privacy-preserving
requirements with a reduced number of virtual trajectories.
Shang et al. [17] proposed an algorithm that considers
the case of trajectory similarity connection. This algorithm
develops a pruning technique for the search space by defining
a similarity concept and divides the algorithm into a two-
phase partitioning algorithm to address the issues of trajec-
tory duplicate detection, route planning, and traffic situation
prediction. Hu et al. [18] proposed a trajectory protection
algorithm for dividing the time intervals. The algorithm con-
structs an undirected trajectory graph by creating a privacy
requirement matrix using trajectories that satisfy the specified
constraints. It then constructs an undirected trajectory graph
by identifying the relationship between the edges and the cor-
responding trajectories of vertices and creating K-anonymous
sets to achieve privacy protection. Wang [19] proposed
a novel approach to privacy protection, integrating social
attributes into the protection process to address the growing
threat of social privacy attacks. This technique responds
to the limitation of current privacy protection methods for
trajectories, which solely consider spatio-temporal attributes,
neglecting the crucial role of social attributes. Tian et al.
[20] proposed a personalized privacy trajectory protection
technique, which extracts the distribution characteristics of
trajectories by using Hilbert curves, proposes personalized
algorithms for trajectories with different privacy preferences
and achieves a trade-off between data privacy and utility.
As differential privacy continues to evolve, an increasing
number of researchers are investigating the integration of
differential privacy with trajectory privacy protection, with
the goal of developing a more comprehensive and efficient
solution. Cheng et al. [21] proposed a differential privacy into
the trajectory privacy protection algorithm and proposed the
optimal personalized trajectory differential privacy algorithm.
This algorithm first constructs a probabilistic mobility model
of trajectories and semantic matching between different
trajectories. It then proposes a privacy allocation scheme
for trajectory identification through semantic similarity and
finally perturbs the trajectory points. Sun et al. [22] im-
proved the utility of the data by capturing individual motion
patterns and combining them with differential privacy to
generate trajectories that are closer to the real thing. Qiu
et al. [23] proposed a privacy-preserving algorithm based
on Geo-indistinguishability in order to address trajectory
prediction attacks in continuous location queries. Dai et
al. [24] proposed a differential privacy for grid anonymous
trace privacy method. This method first extracts residency
data from the trajectories and then assigns different privacy
budgets according to different privacy levels to enhance the
user’s trajectory privacy.

After the concept of differential privacy, Geo-
indistinguishability was proposed by Andres et al.[14],
which is an application of differential privacy to two-
dimensional locations. Their algorithm is an extension
of differential privacy to the two-dimensional plane
and an instance of metric differential privacy [15].
Geo-indistinguishability defines the obvious concept of
introducing controlled noise to the user’s exact location as
a way to obtain a perturbed location, which is then sent to
the LBS server in order to obtain the desired service. In
the paper, Andres et al. use the planar Laplace algorithm to
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achieve Geo-indistinguishability, where an attacker cannot
distinguish between the true and perturbed locations within
a circular area of radius r. Differential privacy has been
extended to more research areas due to its flexibility [25],
[26], [27], [28]. Xu [29] et al. proposed a differential privacy
method using the regularized Mahalanobis metric to enhance
privacy in text analysis scenarios. Zhao et al. [30] proposed
the concept of directionality and combined the standard
deviation ellipse to propose a new differential privacy
algorithm, the Geo-ellipse-indistinguishability algorithm,
which solved the loss of directional distribution in traditional
Geo-indistinguishability and achieved higher directional
distribution utility. Similar to the above algorithms, this
paper also uses the differential privacy method based on the
regularized Mahalanobis metric, but differently, we propose
a dynamic trajectory privacy protection algorithm by
combining it with the real-time trajectory privacy protection
scenario and dynamically adjusting the parameters of the
generated noise based on the criticality of the trajectory
location points.

III. PRELIMINARIES

Definition 1. (ε-Differential Privacy [13]). For sibling
datasets D1 and D2 (D1 and D2 have the same attribute
structure and differ by only one tuple) and any output S ⊆
Range(M), given the privacy budget ε, if the probability that
the mechanism M obtains the same output result on D1 and
D2 satisfies the following inequality:

Pr [M (T1) ∈ S] ≤ eε × Pr [M (T2) ∈ S] (1)

Then the mechanism is said to satisfy ε-differential privacy.
The differential privacy model uses data perturbation to

ensure information security. It is grounded in rigorous math-
ematical theory and can quantitatively assess the level of
privacy protection. In Eq. (1), the privacy budget parameter
ε has a direct impact on the strength of privacy protection
provided by the mechanism: a smaller value of this parameter
means that the mechanism confers stronger privacy security;
conversely, the level of privacy protection is relatively low.
According to the differential privacy principle, even if an
attacker obtains all information other than the target data
entry, it is still impossible to accurately infer whether the
entry is included in the original dataset or not, thus ensuring
a high level of privacy security for user data.

Definition 2. (Geo-indistinguishability [14]). Given the
privacy budget ε, if algorithm M obtains the same out-
put z for any two location points x, x′ and satisfies the
following inequality, then the algorithm M satisfies Geo-
indistinguishability:

M(x)(z) ≤ eεd2(x,x′)M (x′) (z) (2)

where d2 is the Euclidean distance.
Geo-indistinguishability extends the application of the

differential privacy model from one-dimensional data to two-
dimensional geographical locations and demonstrates signif-
icant advantages in location privacy protection. In the defi-
nition of Geo-indistinguishability, the privacy requirement is
a constraint on the distance between geographical locations
generated by two different location points x and x′. The Geo-
indistinguishability model is a geographical extension of the

differential privacy model, which only needs to replace the
distance metric. This privacy protection method is called dX -
metric differential privacy [15]. However, any distance metric
must satisfy the following conditions:

dX (x, x′) ≥ 0 (3)

dX (x, x′) = dX (x′, x) (4)

dX (x, x′) ≤ dX (x, z) + dX (z, x′) (5)

Eq.(3) shows that the distance between any two locations
cannot be negative, with the minimum distance being zero.
Eq.(4) shows that distance does not matter to the order of
two points. Eq.(5) shows that the sum of any two sides in a
triangle is greater than or equal to the third side. It means
that the distance between the two location points x and x′

is less than or equal to the distance from location point x
to the other location point z plus the distance from location
point x′ to location point z. Metric differential privacy is
an effective extension of differential privacy, addressing the
limitations of differential privacy in Hamming distance. The
concept of metric differential privacy is as follows:

Definition 3. (Metric differential privacy [15]). Given the
privacy budget ε, if algorithm M obtains the same output
result z for any two locations x, x′ and satisfies the following
inequality, then the algorithm M satisfies metric differential
privacy:

M(x)(z) ≤ eεdX (x,x′)M (x′) (z) (6)

Metric differential privacy can be applied in many fields.
Since we only focus on location privacy in this article,
locations are considered in the above definition.

Definition 4. (Mahalanobis distance [31]). Given two
locations xi = (lngi, lati), xi−1 = (lngi−1, lati−1), and a
covariance matrix ϖ, the Mahalanobis distance is calculated
as follows:

dM (xi,xj) =

√(
lngi − lngj
lati − latj

)T

ϖ−1

(
lngi − lngj

lati − latj

)
(7)

Where ϖ−1 is the inverse of the covariance matrix.
Definition 5. (Regularized Mahalanobis distance

[31]). Given two locations xi = (lngi, lati), xi−1 =
(lngi−1, lati−1), and a covariance matrix ϖ, the regularized
Mahalanobis distance is calculated as follows:

dRM (xi,xj) =

√(
lngi − lngj
lati − latj

)T

κ−1

(
lngi − lngj
lati − latj

)
(8)

Where κ = {λϖ + (1− λ)Im}, Im is the identity matrix.
if λ = 0, it is the Euclidean distance, if λ = 1, it is the
Mahalanobis distance [31].

IV. ADAPTIVE REAL-TIME TRAJECTORY PRIVACY
PROTECTION METHOD

As can be seen from Fig. 1, the Geo-indistinguishability
perturbation mechanism with a circular noise distribution has
the same characteristics in every direction, which leads to the
privacy protection mechanism not taking into account the
user’s movement direction and failing to capture important
movement patterns or behavioral characteristics, which will
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hurt traffic flow analysis, urban planning, behavior analysis,
and other work. Furthermore, it can also hinder applications
in accurately obtaining the user’s movement direction, thus
negatively impacting user experience.

The Geo-ellipse-indistinguishability proposed by Zhao et
al. [30] utilizes the covariance matrix of global data to
transform the circular noise distribution into an elliptical
noise distribution. This transformation allows the algorithm
to show differences in different directions and better preserve
the correlation between location points. However, if the Geo-
ellipse-indistinguishability is directly applied to a real-time
dynamic scenario, the following problems will be caused.
Firstly, in a real-time trajectory scenario, the user terminal
cannot predict the user’s next destination, nor can it access
the user’s global data. Secondly, analyzing the covariance
matrix using historical data can result in a significant increase
in time overhead, making it unsuitable for deployment on the
user side. Furthermore, relying on early historical data may
not produce advantageous outcomes.

Therefore, we propose an elliptic noise generation algo-
rithm that can generate noise by constructing a covariance
matrix according to the correlation of adjacent locations.
In addition, we noticed that as the user’s trajectory lo-
cations continuously change, the user’s directional change
significance also varies. Therefore, a dynamic adjustment
algorithm is proposed for the elliptic noise perturbation
algorithm, to retain more correlation in the locations with
high significance, and reduce the retention of correlation in
the locations with low significance.

A. Proposed Method

For location data, correlation can be described by dis-
tance magnitude and direction consistency between adjacent
points. Therefore, the method proposed in this paper de-
scribes the change in distance between neighboring location
points by constructing a non-uniform scaling matrix, and
uses an isometric transformation matrix to represent the
change in direction between neighboring location points.
Finally, the covariance matrix is constructed by combining
the linear transformations of the above two matrices so
that the proposed method can perceive the correlation of
the neighboring location points, which in turn improves the
usability of the generated perturbation locations.

1) Non-uniform Scaling Matrix: Non-uniform scaling is
a geometric transformation that applies different scaling
factors in different dimensions. In mathematics and computer
graphics, this transformation is often used to adjust the shape
of an object. For example, in two dimensions, an object
may be stretched horizontally while remaining unchanged
vertically; in three dimensions, different scaling factors can
be applied to the length, width, and height, respectively. In
two dimensions, a non-uniform scaling transformation can
be implemented by a special linear transformation matrix
that expresses a change in the dimensions of a point or
vector while keeping its shape and scale constant. This
transformation takes the locations (Xi, Yi) as an example,
which can be expressed as follows:(

X′
i

Y′
i

)
=

(
SX 0
0 SY

)(
Xi

Yi

)
(9)

where
(
Xi

Yi

)
represents the coordinates of the original

location point, SX and SY are the scale factors along

the longitude and latitude directions respectively,
(
X

′

i

Y
′

i

)
represents the coordinates of the transformed location point.
When SX and SY are both equal to 1, the distribution of the
generated noise is circular, as shown in Fig. 2(a). When SX

= 1 and SY = 0.5, the object remains unchanged along the
longitude axis, the size decreases along the latitude axis, and
the distribution of the generated noise is elliptical, as shown
in Fig. 2(b). While SX = 0.5 and SY = 1, the object remains
unchanged along the latitude axis and the size decreases
along the longitude axis, as shown in Fig. 2(c). Therefore,
the shape of the noise distribution at the perturbation location
can be adjusted from circular to elliptical with the help of a
non-uniform scaling matrix, while SX and SY can determine
the semi-major and semi-minor axes of the elliptical noise
distribution, which determines the eccentricity and thus the
shape of the ellipse. The non-uniform scaling matrix S is:

S =

(
SX 0
0 SY

)
(10)

After knowing how the non-uniform scaling matrix is
obtained, the semi-major and semi-minor axes of the el-
liptical noise distribution need to be determined. In the
elliptical noise distribution, the semi-major and semi-minor
axes determine the eccentricity of the elliptical noise distri-
bution, while the values of SX and SY in the non-uniform
scaling matrix determine the semi-major and semi-minor
axes of the elliptical noise distribution. In order to perceive
the latitude and longitude changes of neighboring location
points, this paper proposes a way to set the values of SX

and SY according to the changes in the horizontal and
vertical coordinates of the location points, which treats the
coordinate axes with large variations as the semi-major axes
in the elliptical noise distribution to produce a more dispersed
noise, while the coordinate axes with small variations are
treated as the semi-minor axes to produce denser noise. The
resulting noise then provides more privacy on axes with
large changes and boosts more correlation utility on axes
with small changes. Specifically, the coordinates (Xi, Yi,)
and (Xi−1, Yi−1,) of the location points are obtained by
projecting the current location xi−1 = (lngi−1, lati−1) and
the previous location xi = (lngi, lati) onto the Cartesian
coordinate system. The coordinate difference between the
current location coordinates and the previous location point is
computed and denoted as SX and SY , respectively. Since SX

and SY are the coordinate differences between two locations
in the Cartesian coordinate system, the values of SX and SY

may be very large. The method in this paper is to change
the circular noise produced by the unit matrix into elliptical
noise distribution, so the value of the non-uniform scaling
matrix cannot be set too large. It is necessary to adjust SX

and SY again according to the following formula:


SX = SY = 1 if SX = SY

SX = max
{

SX

SY
, 0.2

}
, SY = 1 if SX < SY

SX = 1, SY = max
{

SY

SX
, 0.2

}
if SX > SY

(11)

After obtaining SX and SY by calculation, if the value
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(a) Sx = 1, Sy = 1 (b) Sx = 1, Sy = 0.5 (c) Sx = 0.5, Sy = 1

Fig. 2: Effect of non-uniform scaling.

(a) β = 45° (b) β = 90° (c) β = 135°

Fig. 3: Effect of isometric transformations.

of SY is greater than SX , indicating that the change of Y-
axis coordinates is slightly larger, then set SY = 1 and SX =
SX/SY , to prevent the value of SX/SY from being too small
and resulting in the noise points showing a linear distribution.
Thus set SX to be max {SX/SY , 0.2}; if the value of SX is
greater than SY , then set SX = 1 and max {SY /SX , 0.2}.

2) Isometric Transformation Matrix: When using the non-
uniform scaling matrix set up in the previous section, the
proposed algorithm produces more reasonable noise only
when the user is moving in a straight line. In the real world,
the user does not move in a straight line all the time, and
the algorithm does not work well when the user’s trajectory
is skewed. Therefore, this subsection introduces isometric
transformations to rotate the noise so that the user trajectory
works properly when it is tilted.

Isometric transformations are a special class of geometric
transformations that keep the distance between points con-
stant. In two or three dimensions, this usually consists of the
following basic types of operations: translation and rotation.
Both translations and rotations are performed without affect-
ing the distances between distributions. The shape of the
noise distribution at the perturbed location can be adjusted
using a non-uniform scaling matrix, while the direction of
the noise distribution at the perturbed location can be further
rotationally transformed with the help of isometric transfor-
mations. Therefore, in order to enable a better perception
of the change in direction between neighboring locations,

the angle β between the line connecting the neighboring
locations and the positive x-axis needs to be calculated. After
obtaining the rotation angle β parameter, one can use the
isometric transformation matrix R as in Eq. (12) to rotate
the major axis of the ellipse to align with the orientation
of the neighboring locations. However, since this is done
by rotating the major axis of the ellipse noise distribution, it
results in a weakened perception of the differences in latitude
and longitude.

R =

(
cosβ − sinβ
sinβ cosβ

)
(12)

In order to visualize the effect of rotation, SX = 1 and SY

= 0.5 in the fixed non-uniform scaling matrix are fixed, and
the principle of rotational transformations under isometric
transformations is demonstrated by choosing different angles,
e.g., 45°, 90°, and 135°. In Fig. 3, it can be observed that
the shape and size of the ellipse remain the same during the
rotation, only the direction changes.

3) Perturbation Location Generation Algorithm: After
obtaining the non-uniform scaling matrix S and the isometric
transformations matrix R, the covariance matrix can be con-
structed by combining the following linear transformations:

ϖ = RSRT (13)

where RT is the transpose matrix of the isometric transfor-
mations matrix.
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Algorithm 1 describes the pseudo-code of the elliptical
noise distribution generation algorithm proposed in this pa-
per. The inputs to the algorithm are, in order, the coordi-
nates of the previous location (Xi−1,Yi−1) after projection
through the Cartesian coordinate system, the coordinates of
the current location (Xi, Yi), the privacy budget ε, and the
regularization parameter λ. The output of the algorithm is
the perturbed Cartesian coordinates (Xi, Yi). Steps 1 and 2
samples from a multivariate normal distribution with a mean
of (0, 0) and a covariance matrix of the 2x2 identity matrix to
obtain the vector v. Normalize v to obtain a vector w. Steps
3 to 5 calculate β needed for the isometric transformation
matrix R and SX and SY needed for the non-uniform scaling
matrix S. Then, combine R and S to form the covariance
matrix. Step 6 samples from the gamma distribution with
shape 2 and parameter 1/ε to get r. Steps 7 to 9 apply the
noise value obtained from the linear variation to be added to
the current location. The regularization parameter in step 7
will be described in detail in the next section.

Algorithm 1 Elliptical noise distribution generation algo-
rithm.
Input: previous moment Cartesian coordinates (Xi−1, Yi−

1), current moment Cartesian coordinates (Xi, Yi), pri-
vacy budget ε, regularization parameter λ

Output: current moment after perturbation Cartesian
(Xi,Yi)

1: Sample v from a multivariate normal distribution with a
mean of (0, 0) and a 2x2 identity matrix as the covariance
matrix.

2: Normalize v obtain w.
3: Calculate the angle to the positive x-axis from

(Xi−1, Yi−1) and (Xi, Yi), to get the rotation angle , and
then get R.

4: SX and SY are computed from (Xi−1, Yi−1) and
(Xi, Yi), and then S.

5: Obtain ϖ using R,S matrix.
6: Sample r from a gamma distribution with shape param-

eter 2 and scale parameter 1/ε.
7: NX,NY = r{λϖ + (1− λ)I2}1/2 w
8: (Xi,Yi) = (Xi, Yi) + (NX,NY ).
9: return (Xi,Yi)

B. Dynamic Adaptive Parameter Tuning

In Section 3, it was mentioned that the parameter λ of the
regularized Mahalanobis distance adjusts the semi-major and
semi-minor axes of the elliptical noise distribution produced
by Algorithm 1. Consequently, it also affects the eccentricity
of the resulting elliptical noise distribution. As the value of
λ gets closer to 1, the closer the elliptical noise distribution
is to the correlation between neighboring locations, and as it
gets closer to 0, the less correlation is retained to neighboring
locations. Fig. 4 depicts the schematic diagram for λ of 0,
0.5, and 1, respectively:

As illustrated in Fig. 4, when λ = 0, the noise distribution
appears circular, and the algorithm has no perception of
the correlation between adjacent locations. When λ = 0.5,
the noise distribution gradually elongates into an ellipse
with lower eccentricity, and the algorithm’s perception of

correlation between adjacent locations increases. When λ =
1, the elliptical noise distribution becomes more pronounced,
and the algorithm’s perception of correlation between adja-
cent locations reaches its maximum. However, in trajectory
scenarios, not all trajectory points require a high level of
correlation retention. Therefore, we can adjust the λ value
based on the need for correlation retention, increasing the λ
value at points where high correlation retention is required,
and decreasing it where high correlation is unnecessary.

Combining the concept of key points in a trajectory
proposed in a related study [23], we propose directional
change significance as a way to determine those location
points that need to retain higher relevance. As shown in Fig.
5, the directional change significance of location point 3 is
equal to the ratio of the magnitude of the α3 pinch angle
to the maximum angle. The larger the angle, the greater
the directional change significance, e.g., α7; the smaller the
angle, the smaller the directional change significance. The
higher the directional change significance of a location point,
the better it reflects the overall architecture of the user’s
trajectory.

Therefore, we propose a dynamic λ parameter tuning
scheme that makes the directional change significance grow
in parallel with the λ parameter, that is, the λ parameter
is proportional to the directional change significance. Since
λ ∈ [0, 1], the specific formula is as follows:

λi =
αi

π
(14)

For example, when the angle α = π
4 , λ = 1

4 , at which
time the value of λ is small, which means that preserving
the correlation between neighboring location points is on the
low side; while when the angle α = 3π

4 , λ = 3
4 , at which time

the value of λ is large, which also means that preserving
the correlation between neighboring location points is on the
high side.

Algorithm 2 Adaptive real-time trajectory privacy protection
algorithm (ARTPP).

Input: Set of real trajectory Cartesian coordinates (X1, Y1),
(X2, Y2),....., (Xn, Yn) ,Privacy budget ε

Output: Set of Cartesian coordinates for perturbed trajecto-
ries (X1 ,Y1), (X2,Y2),....., (Xn,Yn)

1: for i ∈ {3, ..., n} do
2: Calculate from (Xi−2, Yi−2), (Xi−1, Yi−1), (Xi, Yi).
3: Calculate λi using αi

π .
4: Sample (Xi, Yi) using Algorithm 1.
5: end for
6: return (X1 ,Y1), (X2,Y2),....., (Xn,Yn)

Algorithm 2 describes the pseudo-code of the proposed
Adaptive real-time trajectory privacy protection algorithm
(ARTPP). The inputs of Algorithm 2 are sequentially the set
of user trajectory locations projected through the Cartesian
coordinate system and the privacy budget ε. The output of
Algorithm 2 is the set of user trajectory locations in Cartesian
coordinates after perturbation. Since the algorithm needs to
calculate the pinch angle α, it must involve three locations.
Therefore, for the first location point, no perturbation is
performed, and the second location point is processed by
adding noise using Algorithm 1. From the third location,
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(a) λ = 0 (b) λ = 0.5 (c) λ = 1

Fig. 4: Effect of adjusting the parameter λ.

Fig. 5: Schematic of directional change significance. Fig. 6: Real trajectory protection effect using ARTPP algo-
rithm.

the angle λi is calculated. Once this angle is obtained,
Algorithm 1 is input to generate the perturbed location until
the whole trajectory has been processed. Fig. 6 depicts the
real trajectory protection effect using the proposed ARTPP
algorithm.

C. Proof of Privacy

Theorem 1. For any given ε > 0, λ ∈ [0, 1], Algorithm 1
satisfies εdRM − privacy.

Proof: To prove theorem 1, we have to prove the following
inequality:

M(x)(z) ≤ eεdRM(x,x′)M (x′) (z)

By inputting the probability density function, the following
results are obtained:

Pr[M(x)(z)]

Pr [M (x′) (z)]
=

e−ε
√

(x−z)T {λϖ+(1−λ)Im}−1(x−z)

e−ε
√

(x′−z)T {λϖ+(1−λ)Im}−1(x′−z)

≤ eε
√

(x−x′)T {λϖ+(1−λ)Im}−1(x−x′)

The above inequality can be simplified as:

−ε
√

(x− z)T {λϖ + (1− λ)Im}−1 (x− z)

+ε
√

(x′ − z)T {λϖ + (1− λ)Im}−1 (x′ − z)

≤ ε
√

(x− x′)T {λϖ + (1− λ)Im}−1 (x− x′)

Since ϖ in Algorithm 1 is formed by a combination of linear
transformations and satisfies positive definite, eigendecompo-
sition can be used to obtain:

ϖ = QΛQT

There is Q−1 = QT , and Λ is a diagonal matrix with all
elements greater than 0, so that:

{λϖ + (1− λ)Im} = {λQΛQT + (1− λ)Im}

Since QTQ = I , we can simplify as: Q{λϖ + (1 −
λ)Im}QT . Now, we seek {λϖ + (1− λ)Im}−1.

Since {λϖ + (1 − λ)Im} is a diagonalizable matrix, its
inverse is the reciprocal of each element on the diagonal, let

ν−1 = λΛ + (1− λ)Im

Therefore, the final inverse matrix is:

Q{λϖ + (1− λ)Im}−1QT = QνQT

The matrix QνQT can be replaced with a new covariance
matrix M , and the equivalent expression can be rewritten as:

− ε
√
(x− z)TM(x− z) + ε

√
(x′ − z)TM(x′ − z)

≤ ε
√

(x− x′)TM(x− x′)

Since the Mahalanobis distance measure satisfies the triangle
inequality, we can thus prove that Algorithm 1 satisfies
εdRM -privacy.
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V. EXPERIMENTS AND ANALYSIS

In order to fully evaluate and analyze the proposed
algorithms, it was compared with some related algo-
rithms in recent years in terms of usability and di-
rectionality of the published trajectory. These algorithms
include Geo-indistinguishability(Geo-ind) and Geo-ellipse-
indistinguishability(Geo-ellipse-ind). It is important to note
that when λ = 0, our proposed algorithm has the same
principle as Geo-indistinguishability.

The experimental environment is a 12th Gen Intel(R)
Core(TM) i7-12700H 2.30 GHz, 32 GB of RAM, Windows
11 operating system. The algorithm is implemented using
Python 3.11.

A. Experimental Dataset

The T-drive dataset and the Geolife dataset are selected
to carry out the experiments and comparisons. The T-
drive dataset contains the GPS trajectories of 10,357 cabs
in Beijing from February 2 to February 8, 2008. During
the experiments, it was firstly filtered by longitude range
[116.35, 116.45] and latitude range [39.85, 40.0], and then,
the trajectory data of 1,200 cabs during February 8, 2008,
was selected as our experimental data. The Geolife dataset
contains the GPS trajectory data of 182 users in more than
three years. During the experiments, each user’s trajectory in
the dataset with the period of 8:00 a.m. to 10:00 a.m. was
selected to be the experimental data.

B. Evaluation Indicators

Trajectory privacy protection methods based on perturba-
tion strategies usually use the perturbed locations instead of
users’ real coordinates so as to realize location-based services
without exposing users’ location privacy. In this framework,
the spatial distance between the perturbed location and the
actual location becomes an intuitive indicator of the loss of
location service quality. To quantify the change in location
service quality caused by different privacy protection strate-
gies, this paper adopts the average of the spatial distance
between the perturbed location and the real location of all
the trajectory location points, also known as the distance
error, as an evaluation index, which is defined as:

Distanceerror =
1

n
×

n∑
i=1

d (xi, x
∗
i ) (15)

where n is the length of the trajectory.
In addition, to evaluate the directionality error between

trajectories, we use the directionality error between neigh-
boring points and the directional consistency index defined
below as evaluation metrics. The directionality error between
neighboring points is defined as follows:

Let Tr = {(X1, Y1), (X2, Y2), ....., (Xn, Yn)} be the real
trajectory dataset, the perturbation data set is Tr

′
={

(X
′

1, Y
′

1 ), (X
′

2, Y
′

2 ), ....., (X
′

n, Y
′

n)
}

. Then, the polar angle
between neighboring points of dataset Tr can be described
as:

Tr αi = arctan

(
Yi − Yi−1

Xi −Xi−1

)
(16)

The polar angle between neighboring points of dataset Tr′

can be expressed as:

Tr′ θi = arctan

(
Y ′
i − Y ′

i−1

X ′
i −X ′

i−1

)
(17)

The directionality error between neighboring points of the
real trajectory dataset and the perturbed dataset is formulated
as follows:

Directionalityerror =

∑
|Tr αi − Tr′ θi|

n− 1
(18)

The directional consistency index (DCI) is used to measure
the consistency of two trajectories in terms of direction. By
calculating the initial heading between neighboring locations
of the real trajectory plus the preset threshold angle to get the
angular error tolerance range, and then calculating whether
the direction of the locations of the perturbed trajectory is
in the angular error tolerance range. The DCI indicates that
among all the trajectory points, the number of directional
discrepancies in the tolerance range is in the proportion of the
whole. The index is expressed as a percentage, with higher
values indicating that the two trajectories are more consistent
in direction. The initial heading indicates the direction of the
shortest path along the Earth’s surface from the first location
to the second location.

Let the real trajectory data and the perturbed trajectory,
each with N corresponding trajectory points, have initial
heading angles of Θreal

i and Θpertu
i , respectively, where i =

1, 2, ..., N. Setting a preset threshold angle ∆Θ, the direction
consistency index is calculated as follows:

DCI =
Ncondition

N
× 100% (19)

where Ncondition represents the number of points that satisfy
the condition:

|∆ϑi| = |ϑreal
i − ϑpertu

i | ≤ ∆Θ (20)

C. Results of the Experiments

1) Experimental Results of the Proposed Method: Select
privacy budget ε in [0.003,0.005,0.007,0.01,0.02], and set
the preset angle thresholds at [5°, 10°, 15°, 20°, 30°] for the
test to observe the changes in the evaluation index under
different parameter settings. Fig. 7 and Fig. 8 depict the
comparison of DCI with different λ on the experimental
datasets. No matter how much the preset angle threshold
is increased, the parameter λ = 0 has the lowest DCI value
and λ = 1 has the highest DCI value. When λ is dynamic
changed, the DCI value is between λ = 1 and λ = 0.7. The
above phenomenon proves that the parameter λ can adjust the
eccentricity of the elliptical noise distribution, thus providing
a better correlation utility at larger values. With the constant
increase of the preset angle threshold, it is obvious that
the DCI value of all λ values is also increasing. Because
the larger the angle, the more disturbance location points
will be included. As ε keeps increasing, the DCI value gets
progressively higher, this is because ε is a parameter used
to adjust the size of the noise, the larger ε adds the smaller
noise. So, the DCI value gets progressively higher. These
experimental results show that the parameter configurations
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(a) ε = 0.003 (b) ε = 0.005 (c) ε = 0.007

(d) ε = 0.01 (e) ε = 0.02

Fig. 7: Comparison of DCI with different λ on Geolife dataset.

(a) ε = 0.003 (b) ε = 0.005 (c) ε = 0.007

(d) ε = 0.01 (e) ε = 0.02

Fig. 8: Comparison of DCI with different λ on T-drive dataset.

have similar effects on the balance of privacy protection and
data utility in different location datasets.

Then, let’s focus on the variation of the proposed method
in terms of distance error and directional error between
neighboring points. Related experimental results are por-
trayed in Fig. 9 and Fig. 10. As depicted in Fig. 9 (a)

and Fig. 10 (a), regardless of ε, the parameter λ = 0 has
the largest directionality error and λ = 1 has the smallest
directionality error, whereas when it is an adaptive dynamic
variation, the directionality error is presented between λ =
1 and λ = 0.7. The above phenomenons are also due to the
fact that the parameter adjusts the eccentricity of the elliptical
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(a) Directionalityerror (b) Distanceerror

Fig. 9: Comparison of errors with different λ on Geolife dataset.

(a) Directionalityerror (b) Distanceerror

Fig. 10: Comparison of errors with different λ on T-drive dataset.

noise distribution, thus providing a better correlation utility at
larger values so that when the value is larger, the directional
error becomes correspondingly smaller. As ε continues to
increase, the directional error becomes progressively smaller,
because a larger ε adds less noise, resulting in a smaller
directional error. As shown in Fig. 9 (b) and Fig. 10 (b),
regardless of ε, the distance error of parameter λ = 0 is the
largest, and the distance error of λ = 1 is the smallest, and the
directionality error is still observed between λ = 1 and λ =
0.7 when the adaptive dynamics changes. The phenomenon
is due to the non-uniform scaling matrix of the algorithm
in the setup of the algorithm, when λ = 0, the algorithm
produces a variance in all directions of 1. And when λ > 0,
the algorithm produces a variance in all directions of the
algorithm by the change of position, so when λ is closer
to 1, the more information can be retained adjacent to the
location of the point on the more information, and so it will
result in the reduction of the distance error.

2) Comparison with Other Perturbation Algorithms:
Since the Geo-ellipse-ind method cannot be used directly
in the scenario of this paper, a sliding window algorithm
with a window size of 6 is used to generate noise for this
algorithm. For the fairness of the test, all the algorithms
are changed to be compared based on the sliding window

strategy. The proposed algorithm uses a non-uniform scaling
matrix to reflect the effect of the variance of the covariance
matrix across the axes, the area of the perturbed noise region
of the proposed algorithm is lower than that of the Geo-ind
noise when compared to the Geo-ind perturbation mechanism
with circular noise distribution. Therefore, to compare the
proposed algorithm with other algorithms in a fairer manner,
the proposed algorithm will calculate the determinant value
of the covariance matrix after the covariance matrix has
been generated and adjust the covariance matrix according
to this value, so as to ensure that the area of elliptical noise
distribution formed by the proposed algorithm is the same
as the area of the Geo-ind perturbation mechanism with
circular noise distribution. The adjusted algorithm is marked
as ARTPP-adjusted.

Fig. 11 and Fig. 12 depict the comparison results of
DCI between different methods on the experimental datasets.
It can be observed that the proposed algorithms ARTPP
and ARTPP-adjusted outperform the other comparative algo-
rithms in terms of the DCI value in both datasets, with Geo-
ind performing poorly and ARTPP performing best. This
is because the ARTPP algorithm, by focusing on angular
variation, ensures that the generated noise will also retain
better directionality. In addition, since the effect of the
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(a) ε = 0.003 (b) ε = 0.005 (c) ε = 0.007

(d) ε = 0.01 (e) ε = 0.02

Fig. 11: Comparison of DCI between different methods on Geolife dataset.

(a) ε = 0.003 (b) ε = 0.005 (c) ε = 0.007

(d) ε = 0.01 (e) ε = 0.02

Fig. 12: Comparison of DCI between different methods on T-drive dataset.

variance of the covariance matrix across all axes is slightly
less pronounced than the effect of the variance of Geo-
ind, the noise produced by ARTPP is marginally less than
that associated with Geo-ind. The ARTPP-adjusted algorithm
outperforms both the Geo-ind algorithm and the Geo-ellipse-
ind algorithm in terms of DCI metrics, although it performs

slightly worse than the original ARTPP algorithm. This is
because area adjustment amplifies the amount of noise and
therefore causes the ARTPP-adjusted algorithm to perform
less well on the DCI metrics. In summary, ARTPP and its
adjusted version, ARTPP-adjusted, show better performance
in both trajectory datasets.
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(a) Directionalityerror (b) Distanceerror

Fig. 13: Comparison of errors between different methods on Geolife dataset.

(a) Directionalityerror (b) Distanceerror

Fig. 14: Comparison of errors between different methods on T-drive dataset.

Fig. 13 and Fig. 14 protray the comparison of errors
between different methods. It can be seen that the pro-
posed algorithms ARTPP and ARTPP-adjusted outperform
the other compared algorithms in terms of directional errors
in both datasets, with Geo-ind performing worse and ARTPP
performing best. Despite the area adjustment, the ARTPP-
adjusted algorithm also still outperforms Geo-ind and Geo-
ellipse-ind. As for the distance error metrics, although
ARTPP works best, both ARTPP-adjusted and Geo-ellipse-
ind errors are larger than Geo-ind, and ARTPP-adjusted is
in the middle of Geo-ind and Geo-ellipse-ind. The algorithm
ARTPP-adjusted is compared after adjustment and found that
the reason why it performs well in directionality metrics is
the loss of a certain amount of distance error to achieve
it. In geographic location privacy protection, the smaller
the perturbation distance represents the better the utility of
the algorithm, but with it comes a certain loss of privacy,
because too close to the perturbation point is likely to be
attacked by the attack so as to carry out the attack, and
the larger the perturbation distance represents the better the
privacy of the algorithm because of such a location point
the attacker is difficult to go to make a judgment, but the
cost is sacrificed to the user’s utility experience. Therefore,
the algorithm ARTPP proposed in this paper is suitable for

scenarios that require high relevance, while ARTPP-adjusted
is suitable for scenarios that require certain relevance but
cannot lose too much privacy.

3) Efficiency Analysis: Since the setting of the privacy
budget has no significant effect on the running time of
generating perturbed locations, this section analyzes the
running time of different perturbation algorithms with ε =
0.003 as an example. We repeat the algorithm 200 times in
both datasets and record only the perturbation time in the
trajectory each time, and take the average time value as the
experimental value.

It can be observed from Fig.15 that the proposed algo-
rithm ARTPP takes slightly longer execution time than the
Geo-ind algorithm shorter than the Geo-ellipse-ind. This is
because our algorithm spends more time than the Geo-ind
algorithm in computing the non-uniform scaling matrix and
the isometric transformations matrix, but the computational
steps that ARTPP has more than Geo-ind is itself O(1) time
complexity, so ARTPP and Geo-ind algorithms are both O(1)
time complexity itself. The Geo-ellipse-ind algorithm, on the
other hand, has the longest execution time, due to the fact that
it requires the computation of the global covariance matrix,
a computation that is particularly sensitive to an increase
in the amount of data, resulting in a high time overhead.
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(a) Running time of different algorithms on Geolife dataset (b) Running time of different algorithms on T-drive dataset

Fig. 15: Comparison of running time.

It is foreseeable that if the amount of data increases, it will
lead to higher time overhead, so the algorithm itself operates
with time complexity depending on the number of global
covariance matrices. If the number is n, then the algorithm
operates with time complexity O(n).

To summarize, our proposed algorithm has more time
overhead with Geo-ind algorithm mainly because the al-
gorithm consumes more time utility to improve the utility
in correlation, and the Geo-ellipse-ind algorithm results in
higher time overhead because of the need to compute the
overall covariance matrix.

VI. CONCLUSION

To address the privacy protection problems of trajectory,
metric differential privacy is introduced into the dynamic
real-time trajectory scenarios in this paper. The non-uniform
scaling matrix and the isometric transformation mapping ma-
trix are designed according to the correlation of neighboring
locations. The covariance matrix is constructed by combining
the linear transformations of the above two matrices, and on
the basis of the perturbation algorithm with elliptical noise
distribution is proposed so that the generated perturbation
locations can better perceive the correlation changes with
the neighboring locations. The significance of the direction
change of each location in the trajectory is defined and com-
bined with the proposed perturbation algorithm with elliptical
noise distribution. By doing this, more relevant information is
retained at locations with high direction change significance,
while less relevant information is retained at locations with
low direction change significance. A differential privacy
metric proof for the proposed algorithm is provided to
ensure its privacy. The proposed algorithm is compared and
analyzed with other existing correlation algorithms through
experiments on real trajectory data, which proves that the
proposed algorithm has advantages in the availability of
perturbed locations. In the future, we will consider users’
personalized needs on this basis and further balance the data
utility and the privacy protection effect of this algorithm.
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